

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4), 187–196 | 187

A Survey on Various Load Balancing Approaches in Distributed and

Parallel Computing Environment

Mrs. Minal Shahakar 1, Dr. S. A. Mahajan2, Dr. Lalit Patil 3

Submitted: 07/05/2023 Revised: 15/07/2023 Accepted: 06/08/2023

Abstract: One of the important issues in distributed and parallel computing is to allocate computational load across different processors

or nodes by making better utilization of all the available resources and increasing system performance or throughput. Since this survey

mainly reviews and categorize the study on load balancing and task allocation as per the characteristics of distributed systems to make

comprehensive taxonomy and to correlate studies on various types of load balancing techniques. Various load balancing techniques

helps to meet the QoS requirements and simultaneously maximize throughput by optimum use of the resources. Firstly, this survey briefs

the general characteristics of load balancing and distributed systems. On the basis of these characteristics, the survey reviews the study

on load balancing and task allocation with respect to resource optimization, various techniques to achieve reliability, load balancing in

heterogeneous environment. The resources and workloads must be scheduled in an efficient manner to balance the load. Through the

survey, different load balancing techniques are summarized that resolve the issue of task scheduling and load balancing, also in this area

the related studies can be understood well on how the general characteristics of distributed systems are satisfied.

Keywords: Distributed Computing, Load Balancing, Heterogeneous System, Task allocation, Heuristics

1. Introduction

A software system known as distributed computing makes

computing resources accessible to several nodes or

computers. The growing computing demands of today's

software programmes, made possible by recent technical

breakthroughs, are readily able to outpace the hardware

that is now available. Applications requiring techniques

with high level computing complexity or where a large

quantity of information is implicated such as those

pertaining to Deep machine Learning, Modeling &

Simulation, and other application areas, fall under this

category. In these situations, cloud computing solutions

provide an excellent means of expanding the

computational capacity and achieving gains in both

practicality and performance. [2]. Specialized hardware for

parallel code acceleration, including Field-Programmable

Gate Arrays and General-Purpose Graphics Processing

Units, is incorporated into new HPC architectures. In many

scientific applications, such techniques are energy efficient

as well as efficient in time required for execution, but

because the hardware is specialised, they also introduce

heterogeneity. [3]. Cluster caches enable load balancing

without encoding/decoding overhead or memory

redundancy.

The selective partition splits files into a number of

partitions based on how well-liked they are; the more

partitions a file has, the more popular it is. Servers in the

cluster randomly cache file partitions. This strategy offers

three advantages. It first improves load balancing by

evenly distributing the workload of read requests across

cache servers. Second, it boosts the hot files' read

parallelism, which enhances I/O performance. Third,

simply dividing files into segments does not add storage

redundancy or the computational costs associated with

encoding and decoding [4]. Clearly, even while doing load

balancing at each stage ensures an optimal workload

distribution, the overhead caused due to this techniques of

balancing load itself may outweigh this advantage. [2].

EDGE computing has the potential to address a number of

issues, including computing limitations [27], high energy

consumption from end devices, and intolerable propagation

delay to the cloud. To provide services with high

bandwidth and low latency, edge computing places

resource-rich servers near the data source and the end

devices. Using established norms, dispatchers collect work

units (also known as jobs) and distribute them to servers

for processing. This frequently occurs in data centres,

server farms, and supercomputers due to the high density

of computing resources in these places. The fundamental

challenge in achieving high performance is distributing

workloads across different servers when size of work units

or processing speed vary greatly. Particularly intriguing

the fact that when jobs are scheduled statically by using

FCFS i.e. First Come First Serve servers, only one lengthy

task can significantly increase the average latency if

1 Research Schola, Smt. Kashibai Navale College of

Engineering, Savitribai Phule Pune University, India.

ORCID ID : 0000-0003-3449-5489

mhjn.minal@gmail.com

2 Department of Information Technology ,PVG' College of Engg

& Tech & GK Pate, (Wani) IOM, Savitribai Phule Pune

University, India

sa_mahajan@yahoo.com

3 Department of Information Technology, Smt. Kashibai Navale

College of Engineering, Savitribai Phule Pune University, India

lalitvpatil@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4), 187–196 | 188

several shorter tasks must wait in queue behind it. Easy

and inexpensive load monitoring [7] Long-term computing

load balance is achieved through aware and long-view load

balancing by migrating out the data blocks from an

overburdened server at various epochs over the course of a

period, data blocks contribute more to the server's

computing workloads when the server is overloaded and

less when it is underloaded [6]. However, a task

reassignment algorithm [6] redistributes the backed-up

server's workload among other task data servers before

CALV is executed.

Balancing workloads is a significant obstacle for

distributed and parallel computing. A cache network is a

graph consisting of n nodes (cache-enabled servers) and a

set of edges (links between them). Files are divided into

uniformly sized chunks as part of the cache content

insertion process [5]. Coded chunks corresponding to each

file are created by linearly merging these chunks.

Thereafter, each server will store in its cache the particular

encoding sections that are a match for those several files

with popular profile. As part of the delivery phase,

however on the basis of popular profile the request is

placed for the file, n random requests are sent to various

servers. After that, a graph is used to determine the shortest

path for sending the coded pieces of the requested file to

the nodes closest to the request's origin. If the various

encoded parts use independent linear combinations, it is

simple to demonstrate that at the request origin server each

file can be decoded [5]. Use of available resources can be

optimised to reduce response times, increase throughput,

improve fault tolerance and scalability, raise user

satisfaction, reduce operational costs, and reduce wasteful

heat and power consumption.

There are two subproblems that make up the load

balancing problem:

1. Allowing new requests for provisioning nodes or

machines and allocating host space for nodes.

2. System reallocation or migration.

Different load balancing approaches that are mentioned in

the literature review and that we will explore in a moment

can be used to address the first sub-problem. The second

subproblem presents a number of difficulties, including

where and when to reallocate resources, which node should

be chosen for migration, etc.

The remainder of the paper is organised as follows: The

sorts of various load balancing techniques are briefly

reviewed in Section II. In Section III, load balancing

methods and their advantages and disadvantages are

covered. A summary of a heterogeneous system is

provided in Section IV. Final thoughts and the potential for

further investigation on this subject are presented in

Section V, which also finishes the essay.

2. Types of Load Balancing Techniques

Various Fixed and dynamic techniques used for balancing

load are the two most common varieties. Static load

balancing pre-assigns tasks to processing elements, in

contrast to dynamic load balancing, which rebalances tasks

as an algorithm executes [2]. In cases where the

computations required to complete a task are well-known

in advance and remain stable throughout the processing, a

static mapping may be the most efficient option. However,

in case, computing requirements are not specified in

advance before the time of execution or change occurs at

runtime [2], than a static or fixed mapping may result into

a acute load imbalance. In this situation, balancing load

using dynamic techniques is the best option. Avalanches,

in their simplest form, spread sand across a lattice, and

when applied to queuing tasks in a distributed system, they

can result in load-balancing. [8]. When using a static

scheduling method, tasks are not prioritised.

The foundation of dynamic load balancing is reallocating

jobs among processors as they are being executed.

Processors with high loads have their tasks redistributed to

those with lower loads, and vice versa. The system's

primary objective is to achieve the highest possible

efficiency in terms of both resource utilisation and

throughput. One of the major drawbacks of dynamic load

balancing is the runtime overhead associated with

transferring load information among processors, choosing

tasks and processors for job transfers, and dealing with

communication delays related to the task relocation itself.

Load balancing is a key component in maximising the

network's lifespan. Overburdening individual nodes is

detrimental to networks, so it's important to allocate tasks

effectively. Without an efficient job allocation mechanism,

the sensor nodes in a wireless sensor network will only be

able to operate independently, wasting resources. Because

of their high demand characteristics and constraints, like

environmental restrictions, the unstable wireless links and

the changing topology, WSNs introduce additional

uncertainty and weaknesses for real time applications. [10].

The processing components can be toggled on and off to

optimise resource usage based on the current workload.

[8]. However, centralised approaches have many problems,

such as a bottleneck and a weak spot. Distributed load

balancing systems, however, do not face these challenges.

By shifting work from busy to idle processors and

underutilised resources, the adaptive solution improves

network performance, shortens the time it takes to

complete tasks, lessens the amount of energy used by

individual nodes, and lengthens the lifespan of the network

as a whole. [8] [10].

The following is a concise explanation of why dynamic

work allocation is implemented: In order to decrease task

execution time, conserve node energy, balance network

load, increase network lifetime, guarantee that the task

would not fail due to abrupt node failure, and improve the

reliability of task management, it is recommended that m

tasks be distributed fairly among n sensors [10].

Dynamic load balancing is achieved through the utilisation

of a binary matrix encoding form, the reduction of task

execution time, the conservation of node energy, the

balancing of the network load, and the development of a

fitness function for improving scheduling efficiency and

system dependability. [10].

3. Literature Survey of Load Balancing Techniques

In the network of scattered datacenters that makes up the

cloud computing environment, there are hundreds of

servers. As a result, the datacenter controller uses a load

balancer to manage tasks that users submit. The load

balancer also chooses which computer should be assigned

to handle the forthcoming request. The load balancer can

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4), 187–196 | 189

utilise the following algorithms to balance and distribute

load equitably.

Cache aware, the cache hierarchy in multicore systems is

used by Reorder also known as corder, a straightforward

job reordering approach. It primarily supports equitable

distribution of compute loads among multicores at the

shared memory level and increases cache efficiency by

implementing additional vertex order refinements at the

private cache level. [1] Several graph applications and

datasets are used to adequately evaluate performance of

this method. This method works with vertexes identified

by outgoing edges, while achieving outstanding benefits in

cross-platform scalability and reordering overhead.

The Cellular Automata-CA Model is a dynamic load

balancing approach for running spatially-aware

applications in parallel. From a qualitative standpoint, it

demonstrates the LB by employing a Cellular Automata

model adapts to diagrammatically depict the system's

enlargement and how strain on the nodes is maintained

throughout execution [2]. In this study, we experimented

with several different configurations of parallel execution

by initiating technique such as message passing interface

on an identical node as well as on other nodes in order to

achieve load balancing.

UIIMF: This multiobjective load balancing method allows

applications to be dynamically customized in accordance

with a number of objectives, including time, energy,

communications, or combinations of these. It uses various

methods, which can diverse the extra time, to achieve the

goal of greater resource use at any given time [3]. Energy

measurements have been shown to be particularly helpful

in situations when workload is regular across iterations,

and multi-objective approaches help in irregular workload

situations.

Two common methods for dealing with load imbalance are

making multiple copies of "hot" files, also known as "hot

spots," and breaking large files into smaller ones using

storage codes. Due to the memory overhead caused by

unnecessary data or complex encoding/decoding, this

approach is not ideal. For data parallel clusters, Selective

Partitioning Cache is an effective cluster-caching

approach. that distributes caching loads evenly and

eliminates redundant caching nodes. It selectively divides

hot files into multiple divisions based on their sizes and

levels of popularity [4] so that read requests can be

distributed evenly across different servers. Without

frequent load balancing, SP-Cache is unable to handle

sudden changes in popularity, such as spikes in access to

specific files, even though it eliminates hot spots

efficiently while minimising the impact of stragglers.

Comparison of two different strategies used to allocate task

to the server with lesser load [5], result into better

performance of content placement and delivery using a

coded cache scheme. Although computationally this may

not be viable in some real world settings, For a mesh

network, expressions in closed form are created that almost

perfectly balance the load without raising communication

costs. Scheduling tasks in distributed, parallel context,

towards a heuristics based design and development

explores how tasks should be allocated across a network's

many nodes.

Computing with a load-aware and long-term perspective

(CALV) load balancing technique. Overloaded [6] servers

cause CALV to prioritize blocks that contribute the most

workload, while underloaded servers cause CALV to

prioritize blocks that contribute the least. Load balancing

efficiency is improved by CALV thanks to the

incorporation of the slow data block transmission

mechanism. In order to avoid overloading the destination

servers and free up the peak network overhead for data

reallocation, it selects a time for each data migration. By

enhancing data locality while reducing tasks time, network

traffic load, and cost of reallocation, CALV beats

competing techniques. .

SITA is a size-based routing technique [7] used in highly

dynamic, multi-server distributed queuing systems at scale.

It is shown that as the size of the system grows to infinity,

the mean waiting time achieved by a size-interval task

assignment policy that equalises server loads converges to

the minimum mean waiting time achieved by that policy.

In spite of this, due to the heterogeneity of servers, SITA

performance may decrease for no obvious cause.

Sandpile: This criticality approach for self-organized self-

organization is used to dynamically load-balance

computing workloads. The issue of scheduling independent

jobs is addressed by extending the sandpile model [8]. The

sandpile's decentralised execution may automatically

adjust the amount of active resources to the specifics of

incoming workloads. In order to reduce energy usage and

increase service quality, the emerged load balance

response of the system is investigated.

TATIM- It demonstrates that the NP-complete Knapsack

problem is a variation on the scheduling of tasks with tasks

significance for multi tasks transfer learning, requiring that

a challenging computation be carried out repeatedly in

various scenarios to solve [9]. Using a strategy for

allocating cooperative tasks that is data driven, utilises

3.24 times less processing time due to which it is possible

to reduce the amount of resources needed for multi tasks

transfer learning on the edge.

FTAOA – In this method, each task is given a priority

level based on the principle of earliest deadline first, and

the task with the highest priority is given priority

consideration. A novel fault resistant soft real time job

allocation technique is mentioned in relation to wireless

sensor networks [10]. The job allocation problem is solved

using the DPSO approach in this research effort, and a

utilisation function is developed to evaluate the nodes'

overall performance.

TCHAP: A performance/energy variance technology-

aware partitioning method that is mindful of the underlying

cluster heterogeneity. Energy-efficient partitioning [11] is

discussed as a software-level technique where task

allocation to heterogeneous clusters directly impacts the

energy consumption of the entire system. In addition to

impacting the power consumption of single-ISA

heterogeneous platforms, this problem combines the

difficulties of task-aware scheduling with those of energy-

efficient partitioning.

PathGraph - For quick iterative graph calculations on very

large graphs, task distribution is achieved using a path

centric approach. This approach demonstrates path centric

abstraction at the computation and storage tiers [12]. The

concept of a tasks queue with several stealing points is

used in this study to allow work theft from various places

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4), 187–196 | 190

in the task queue. It demonstrates that for a variety of

iterative graph algorithms that achieve better balance and

speedup on real graphs of different sizes, the path graph

defeats x-stream and graph chi.

EXA2PRO - The EXA2PRO approach optimises the

distribution of tasks across available resources in

heterogeneous computing environments. The runtime

supports that oversees the applications-deployment on

various nodes in heterogeneous environment and is

constructed on top of complex processing models and

abstractions that contains lower level platform specific

improvements. More HPC applications can now scale to

exascale [13] because it aids programmers in taking

advantage of heterogeneous computer systems. It's

compatible with CPUs, GPUs, and FPGAs, among other

processors and accelerators. To test the efficacy of the

EXA2PRO framework, four HPC applications from

various disciplines were used. Developers can get

performance results on accelerators, test scalability on MPI

clusters, and efficiently investigate the extent to which

each application can effectively use various types of

hardware resources thanks to the EXA2PRO framework's

ability to automatically deploy and evaluate applications

on a wide range of computing architectures.

TaPRA: Algorithms for scheduling tasks to be completed

as quickly as possible are used in task allocation. This is

essential because it will increase efficiency and

effectiveness when working in the cloud. In this research,

we focus on the challenge of scheduling parallel jobs that

consist of multiple discrete processes. The programmes

TaPRA and TaPRA-fast aim to solve this problem by

dividing the work between them. To manage a large

number of tasks, online schedulers like OnTaPRA are

employed [14]. The JCT can be lowered by as much as 430

percent with TaPRA and TaPRA-fast, and by as much as

60 percent on average with the OnTaPRA scheduler. In

addition, TaPRA-fast is up to ten times faster than TaPRA,

with only a five percent performance loss, making its

implementation in practise very attractive.

Ant - Having jobs set up in the same way across different

nodes is a major cause of workload inconsistency and

subpar performance. Tasks should be set up in a different

way to account for the abilities of heterogeneous nodes. In

order to find the optimal configurations for each task

running on each node, Ant uses a self-adaptive task tuning

technique. Through the use of hardware features, Ant

partitions a heterogeneous cluster into several smaller,

more manageable clusters. The self-tuning procedure is

then individually applied to each sub cluster while treating

them as homogeneous clusters [15]. Randomly selecting

configurations, Ant then configures tasks, gradually

improving configurations by emulating those with the

highest performance and discarding those with the lowest.

During the adaptive task setup phase, Ant uses a genetic

algorithm to speed up task tuning and avoid getting stuck

in a local optimum.

Resource Allocator: This strategy makes use of fully

connected system and graph convolutional system to

determine the nearest optimum number of processor cores

to speed up the execution of jobs [16]. The fully connected

network uses the contigency in flow of work as well as

excess factors like size of input, count of processor cores,

the memory capacity, and the execution jobs count are

serves as input for predicting execution time of job after

this the contigency between operations from task

scheduling is discovered by graph convolutional networks .

The user can choose a close to ideal count of processor

cores using the result of predicted job execution time.

Timed Loop Storage – To decentralise the data and utilise

the idle capacity of local network lines, one IoT node must

queue computational data packets that will later be

processed in chunks by other nodes. Extra packets circulate

through the network lines until they are needed for

processing [17], while the sequenced packets are processed

sequentially on the intended IoT device. Each node has a

mechanism to handle data transport and prevent packet

looping by diverting data at the right time. With this

approach, the temporary storage capacity of the connected

Internet of Things devices is scalable while still being

practical for large datasets thanks to its low 45 Kb primary

storage system requirement.

With ROSE, you can oversubscribe without sacrificing

performance on a brand new platform designed from the

ground up to manage your resources. ROSE enables the

simultaneous execution of both latency-sensitive long-

running applications and batch jobs with intensive

computational requirements (LRAs). Job managers in

ROSE can request the launch of speculative tasks in

specific machines based on their suitability for

oversubscription [18], rather than waiting for resource

allocation to be validated by the centralised scheduler.

However, by enforcing an admission control mechanism

that makes use of performance-aware resource throttle and

multi-resource threshold control, the node agents in these

computers can prevent resource oversubscription.

Schedulers use adaptive scheduling to plan multiple,

concurrent Spark Streaming micro-batch jobs and make

proactive adjustments to scheduling parameters in order to

optimise resource utilisation and performance in real time.

To be more specific, A-scheduler intelligently modifies the

degree of job parallelism and resource sharing among jobs

based on workload parameters, and schedules many jobs

concurrently using different policies based on their data

dependencies [19]. The efficiency of the custom Spark

Streaming system can be further enhanced with the help of

dynamic batching with A-Scheduler. The duration of each

batch interval is dynamically adjusted with the aid of an

expert fuzzy control approach to account for variations in

the streaming workload and the processing speed of the

system over time.

In order to better allocate resources, Hypergraph Partition-

based Scheduling has been upgraded with HPS+. HPS+

uses an enhanced hypergraph partitioning technique to

model the intertwined dependencies between tasks and

data as well as between datacenters, all with the goal of

decreasing WAN traffic. In addition, it uses a coordination

mechanism to allocate network resources in tight

accordance with task requirements [20], which helps to

reduce the makespan. When compared to conventional

methods, HPS+ evaluation shows a 39% reduction in the

makespan and a reduction of up to 53% in the number of

data transfers.

Two distinct batch allocation strategies are layered and

core-based. While the former can yield better performance

using the hierarchy pattern as the main technique to create

every conceivable batch, the latter may incur higher

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4), 187–196 | 191

computational cost due to the necessity of forming and

observing each and every one of them. Using the latter

method, which selects core tasks to form batches,

suboptimal performance can be achieved with significantly

reduced computational cost and complexity [21]. These

strategies outperform alternatives in a number of respects,

including the total amount paid by requesters, the average

salary of workers, the likelihood that the job will be

completed successfully, the amount of time spent on task

allocation, and so on.

Resource-Constrained Replication Strategies - These

strategies are used in a variety of situations, such as when

the task's subtasks' completion times are determined by

empirical or heterogeneous distributions, or when a job

consists of hierarchical tasks that must be completed in a

particular order as indicated by a task precedence graph.

To examine how to distribute replication resources across

the subtasks so that the overall task completion time is

minimised, a unique framework is employed [22]. For

integer programmes, this research develops a water-filling-

like technique and a Lagrange multiplier-based method. It

explores the tradeoff between cost and latency from

introducing replications in a task graph and demonstrates

the efficiency and optimality of algorithms through

analysis and simulations.

Field Programmable Gate Array (FPGA): To share

resources, the FPGA space is often divided into slots of a

fixed size. Particularly when the number of activities rises,

this leads to suboptimal resource usage and relatively poor

performance. The exploratory capabilities of OpenCL are

used to construct a revolutionary, area-sharing

methodology that more successfully manages task resource

requirements through intelligent clustering, bespoke, task-

specific partitioning, and mapping [23]. Workload needs to

increase temporal compute density, thus use models with

various resource/throughput profiles and choose the most

suitable distribution based on the runtime. A comparable

task-based virtualization model supports the technique in

the system stack.

Resource allocation policies - Three important

considerations must be made when allocating a wide

variety of system resources to a large number of users: user

satisfaction for a lower average user response time;

efficiency to maximise system throughput; and fairness

among users. Using resource allocation policies for

multiple users and multiple application workloads in a

hierarchical computing system [24], the task is completed

in the allotted time. Three competing policies fairness,

greedy efficiency, and fair efficiency are being debated.

The simulation results show that the fair efficiency policy

may offer competitive efficiency with a level of fairness

and user satisfaction that is balanced when compared to the

other two resource allocation policies.

Energy Optimized Scheduling: In a non-preemptive

heterogeneous environment, a series of periodic real-time

tasks are scheduled using an active replication-based

framework to ensure that the required reliability and

timeliness constraints are met while the energy

consumption is kept to a minimum. The issue is first

presented as a constraint optimization problem, which

offers an ideal resolution but has poor scalability [25].

Therefore, the suggested heuristics in this study work use

processor reservations and job reallocation to compute

suboptimal solutions effectively in terms of energy usage

and scheduleability. Heuristics rely on the interaction

between the task-level reliability target, replica reliability,

replica number, task reliability, and energy consumption.

4. Heterogeneous System

Load balancing strategies are critical to improving

application performance in diverse environments.

Application performance can be improved with the help of

load balancing heuristics, but this can be a difficult

problem to solve if the necessary data is not available until

after the application has already begun running. A load-

balancing method called "Multi-Objective" because it

allows applications to be dynamically tuned for a wide

variety of objectives, including but not limited to any

factors or their combinations such as communications,

energy or time. The dynamic objective method is

accommodated, which may change over time, in order to

make the best use of the available resources at any given

time. This is especially useful when using asynchronous

measurements with varying degrees of accuracy on any

objective [3].

When jobs are set up consistently across nodes with

varying capabilities, performance suffers. Tasks should be

set up in a variety of ways to account for the various

capabilities of the nodes. In order to find the optimal

configurations for individual jobs distributed across

multiple nodes, Ant uses a self-adaptive task tuning

method [15]. At first, Ant divides a cluster of mixed nodes

into smaller, more manageable groups based on shared

hardware features. It then applies the self-tuning process

separately to each subcluster as if they were their own

distinct cluster.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4), 187–196 | 192

Table 1. Comparison of Various Load Balancing Techniques

Sr.

No.

Algorithm Description Pros Cons

1 Corder [1] The technique works on the basis of

pecking order of cache of

multitasking computers by

rearranging the task.

Encourages the equitable

allocation of computing

loads among multicores and

at the level of private cache.

It only functions on

vertices categorized by

outgoing edges in terms of

cross-platform scalability

and reordering overhead.

2 Cellular

Automata

[2]

Applications linked to space are run

concurrently using the CA Model's

dynamic load balancing method.

Launching both MPI

processes on the same node

allowed for parallel

execution to take place.

Depending on how well the

particular formalization is

done.

3 UIIMF [3] For balancing load, the multiobjective

technique is used in environments

where the applications may undergo

dynamic tuning.

It reveals the areas where

the workload varies across

iterations.

Effects of various

technologies on techniques

for dynamic load balancing

in parallel applications.

4 Selective

Partition [4]

Selective partitioning Cache, a load-

balanced, redundant free cluster

caching solution, is used by data-

parallel clusters.

It separates hot files into

various divisions based on

their sizes and levels of

popularity in order to evenly

share the read request

burden among different

servers.

SP-Cache is unable to

quickly respond to

fluctuations in short-term

popularity.

5 Coded

Cache [5]

The employment of a coded content

delivery and placement method

outperforms the nearest replica

strategy in terms of load balancing

effectiveness.

It derives closed-form

formulations for a grid

network that successfully

performs load balancing.

Requires a sophisticated

coding and decoding

method that, in some real-

world situations, is not

computationally possible.

6 CALV [6] It uses the Long-View and Load

Aware Computing load balancing

approach.

To avoid overloading the

destination servers and to

free up the peak network

overhead for data

reallocation, it selects a time

for each data movement.

Very high overhead is

required because a very

short time interval must be

set for the periodic

execution of load

balancing.

7 SITA [7] A subset of methods for size-based

routing is used by large-scale multi-

server distributed queuing systems

with highly variable workloads.

It demonstrates how a Size-

Interval Task Assignment

strategy can achieve a

minimum mean waiting

time when all servers have

the same processing speeds.

When servers are diverse,

they perform arbitrarily

poorly.

8 Sandpile [8] In order to solve the problem of

coordinating multiple activities, the

sandpile model is applied.

It self-organizes to suit the

specifics of incoming

workloads, adjusting the

amount of active resources.

use an endless supply of

energy.

9 TATIM [9] Through the application of multitask

transfer learning, different tasks

are combined to improve

decision performance.

To support target tasks, it

essentially reuses

source task parameters

or training samples.

Due to the many

environmental setups

and situations, task

relevance is difficult to

quantify.

10 FTAOA

[10]

A new fault-tolerant allocation

algorithm (FTAOA) for soft

real-time tasks has been

developed.

Each task is given a

priority level based on

the principle of earliest

deadline first, and the

task with the highest

priority will be taken

into consideration first.

uses active backup over-

lapping technology in

addition, which causes

unneeded redundancy.

11 TCHAP

[11]

The TCHAP partitioning algorithm

is employed.

It combines the issue of

task-aware scheduling

with the challenge of

energy-efficient

Affects power demand

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4), 187–196 | 193

9 TATIM [9] Through the application of multitask

transfer learning, different tasks are

combined to improve decision

performance.

To support target tasks, it

essentially reuses source

task parameters or training

samples.

Due to the many

environmental setups and

situations, task relevance is

difficult to quantify.

10 FTAOA

[10]

A new fault-tolerant allocation

algorithm (FTAOA) for soft real-

time tasks has been developed.

Each task is given a

priority level based on the

principle of earliest

deadline first, and the task

with the highest priority

will be taken into

consideration first.

uses active backup over-

lapping technology in

addition, which causes

unneeded redundancy.

11 TCHAP

[11]

The TCHAP partitioning algorithm

is employed.

It combines the issue of

task-aware scheduling with

the challenge of energy-

efficient partitioning on

single-ISA heterogeneous

platforms.

Affects power demand

12 PathGraph

[12]

Fast iterative graph computations are

performed using the path-centric

method called PathGraph.

Work can be stolen from

numerous points in the task

queue using a task queue

that is built on multiple

theft points.

Causing access conflicts and

imbalance loads.

13 EXA2PRO

[13]

The runtime supports that oversees

the applications-deployment on

various nodes in heterogeneous

environment and is constructed on

top of complex processing models

and abstractions that contains lower

level platform specific

improvements.

enables developers to test

scalability on MPI clusters,

acquire performance

findings on accelerators, and

productively examine how

effectively each programme

can utilise various hardware

resources.

do not always match the

application's computational

pattern.

14 TaPRA [14] It is crucial that each task's

completion time be as short as

possible when it comes to task

allocation in IT because this will

boost cloud resource utilisation and

productivity.

cuts the job's completion

time by 40% to 430%.

It is limited to single job

scheduling.

15 Ant [15] Based on the hardware specifications

of the nodes, Ant first separates them

into a number of homogenous sub

clusters. The self-tuning procedure is

subsequently individually applied to

each sub cluster while treating them

as homogenous clusters.

reproduces the settings from

the best-performing tasks

and discards the

configurations from

underperforming jobs to

improve task configurations.

In multi-tenant clouds, job

skew and varied hardware

capabilities caused by

interferences may make it

difficult to create effective

task setups.

16 ReLocag

[16]

Two distinct kinds of neural network

a fully connected one and a graph

convolutional network are

implemented in ReLocag approach.

Once the graph convolution network

has learned the relationship between

tasks in a job's workflow, it passes

that information along to the fully

connected network, which then uses

it in conjunction with other factors

for prediction of job execution time.

The accuracy in predicting

job execution time is

increased by 4–14% using

ReLocag approach.

Requires More power

consumption.

17 Timed Loop

Storage [17]

It disperses the data and utilises the

unused capacity of local network

lines to queue packets of

computational data that are being

processed in segments at one of the

With only a 45 Kb usage of

primary storage systems, it

enables scalability of the

temporary storage capacity

of the linked IoT devices,

There is packet processing

delay, which lengthens

operational latency overall.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4), 187–196 | 194

Using a random selection method, Ant configures tasks

and iteratively improves configurations by emulating the

settings of well-performing tasks and discarding the

settings of poorly performing tasks [15]. Nonetheless, the

main purpose of load balancing is to maximize resource

utilization, which speeds up the computation process as a

whole [2].

Two tried and true methods known as Dynamic Power

Management & Dynamic Voltage and Frequency Scaling

that can be used to cut energy use on heterogeneous

platforms. Methods for reducing energy consumption at

both the hardware and software levels should be used in

tandem for optimal efficiency. Allocating tasks to

heterogeneous clusters is one software-level strategy where

the overall system energy is affected directly [11].

The goal is to prevent resource abuse by enforcing

scheduling invariants across applications that run on

different platforms. It forgoes efficient resource

management in favour of guaranteed fair scheduling and

efficient task completion [18].

Heterogeneous Island and Task-Aware Largest-Possible-

Job Proposal The first approach [11] clusters tasks into

heterogeneous groups at the maximum frequency of each

group, and then gradually reduces that maximum

frequency without compromising on practicality. They

employ a method of energy conservation that takes into

account the remaining capacity of the central node in the

cluster that is under the most pressure. The following are

some thoughts on where node coordination research could

go from here, given the many challenges that have been

encountered in earlier studies.

• The fixed roles of nodes during task allocation and

execution in recent related studies do not accurately reflect

reality. Nodes can actually alter their responsibilities inside

the system dynamically. The coordination of dynamically

transformable nodes in job allocation is thus a research

challenge.

• According to recent studies, work distribution is

accomplished through maximising throughput and

improving resource usage. However, some machines or

nodes might form a cluster or a community, and these

nodes might carry out some associated work allocation

algorithms within a cluster or a community.

Conclusion

In this study, we reviewed a variety of load-balancing

approaches and tactics used in distributed computing. A

load balancing strategy works in two ways: first, it

distributes a lot of concurrent requests or data traffic

among several nodes in order to speed up response times;

and second, it distributes a single high load over several

nodes in order to maximize resource efficiency on each

node. As application settings change, task allocation

strategies also change. Because cellular automata models

are both representative of spatially-related applications and

amenable to testing load balancing strategies, they were

taken into account when designing the strategy of

balancing load dynamic for execution of such approaches

simultaneously. An even distribution of work during

parallel execution [2] is guaranteed by developing closed

form formulas for determining the best segregation of

space. We have also spoken about the advantages and

disadvantages of various load balancing approaches. So

that in the future, more effective load balancing solutions

might be created, the difficulties of these techniques are

addressed. Different techniques for balancing load

discussed in this paper not only serve to balance the load

but also to achieve efficient resource use, which increases

total throughput and cuts reaction time. Thus, all of these

will increase consumer interest in parallel and distributed

computing while simultaneously lowering operating

expenses.

References

[1] Mrs. Minal Shahakar, Dr. Surenda Mahajan, Dr.

Lalit Patil, “Load Balancing in Distributed Cloud

Computing: A Reinforcement Learning Algorithms in

Heterogeneous Environment”, International Journal on

Recent and Innovation Trends in Computing and

Communication, Vol. 11, Issue 2, 2023.

[2] YuAng Chen and Yeh-Ching Chung, “Workload

Balancing via Graph Reordering on Multicore Systems”,

IEEE Transactions on Parallel and Distributed Systems,

Vol. 33, No. 5, May 2022.

[3] Andrea Giordano, Alessio De Rango, Rocco

Rongo, Donato D’Ambrosio, and William Spataro,

21 Layered

batch

allocation

and core-

based batch

allocation

[21]

The earlier approach, which has the

potential for higher performance,

primarily forms all practicable

batches using the hierarchy structure.

Balances load efficiently. greater computing cost due

to the formation and

observation of all potential

batches;

22 Resource-

Constrained

Replication

Strategies

[22]

The investigation of how to distribute

replication resources across the

subtasks to reduce the total task

completion time makes use of a novel

framework.

obtaining the best

replication allocations

among the tasks/subtasks to

reduce the time taken to

complete the task/job.

Storage capacity and

Processing speed are not

considered.

23 Field

Programma

ble Gate

Array [23]

The FPGA space is often divided into

fixed-sized slots for resource sharing.

superior energy efficiency

compared to current

methods.

results in less efficient use of

resources and generally

inferior performance,

especially as the number of

tasks rises.

24 Resource

allocation

policies [24]

Using resource allocation policies for

M&M workloads in a distributed

computing environment, the task is

completed in the allotted time.

A competitive efficiency is

delivered through fair

efficiency policies, which

also balance fairness and

user, delight.

It is more difficult to strike a

balance between system

throughput and user reaction

time.

25 Energy

Optimized

Scheduling

[25]

In the non-preemptive heterogeneous

setting, a group of periodic actual

time tasks are scheduled using active

replication-based architecture.

While minimizing energy

use, reliability and

scheduling restrictions are

met.

It does not scale well

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4), 187–196 | 195

“Dynamic Load Balancing in Parallel Execution of

Cellular Automata”, IEEE Transactions on Parallel and

Distributed Systems, Vol. 32, No. 2, February 2021.

[4] Alberto Cabrera, Alejandro Acosta, Francisco

Almeida, and Vicente Blanco, “A Dynamic Multi–

Objective Approach for Dynamic Load Balancing in

Heterogeneous Systems”, IEEE Transactions On Parallel

And Distributed Systems, Vol. 31, No. 10, October 2020.

[5] Yinghao Yu , Wei Wang , Renfei Huang , Jun

Zhang , and Khaled Ben Letaief, “Achieving Load-

Balanced, Redundancy-Free Cluster Caching with

Selective Partition”, IEEE Transactions On Parallel And

Distributed Systems, Vol. 31, No. 2, February 2020.

[6] Mahdi Jafari Siavoshani , Farzad Parvaresh , Ali

Pourmiri , and Seyed Pooya Shariatpanahi, “Coded Load

Balancing in Cache Networks”, IEEE Transactions On

Parallel And Distributed Systems, Vol. 31, No. 2, February

2020.

[7] Guoxin Liu, Haiying Shen, and Haoyu Wang,

“Towards Long-View Computing Load Balancing in

Cluster Storage Systems”, IEEE Transactions On Parallel

And Distributed Systems, Vol. 28, No. 6, June 2017.

[8] Jonatha Anselmi and Josu Doncel,

“Asymptotically Optimal Size-Interval Task

Assignments”, IEEE Transactions On Parallel And

Distributed Systems, Vol. 30, No. 11, November 2019.

[9] Juan Luis Jimenez Laredo, Frederic Guinand,

Damien Olivier, and Pascal Bouvry, “Load Balancing at

the Edge of Chaos: How Self-Organized Criticality Can

Lead to Energy-Efficient Computing”, IEEE Transactions

On Parallel And Distributed Systems, Vol. 28, No. 2,

February 2017.

[10] Qiong Chen, Zimu Zheng, Chuang Hu, Dan

Wang, and Fangming Liu, “On-Edge Multi-Task Transfer

Learning: Model and Practice With Data-Driven Task

Allocation”, IEEE Transactions On Parallel And

Distributed Systems, Vol. 31, No. 6, June 2020.

[11] Wenzhong Guo, Jie Li, Guolong Chen, Yuzhen

Niu, and Chengyu Chen, “A PSO-Optimized Real-Time

Fault-Tolerant Task Allocation Algorithm in Wireless

Sensor Networks”, IEEE Transactions On Parallel And

Distributed Systems, Vol. 26, No. 12, December 2015.

[12] Ashraf Suyyagh and Zeljko Zilic, “Energy and

Task-Aware Partitioning on Single-ISA Clustered

Heterogeneous Processors”, IEEE Transactions On Parallel

And Distributed Systems, Vol. 31, No. 2, February 2020.

[13] Pingpeng Yuan, Changfeng Xie, Ling Liu, and

Hai Jin, “PathGraph: A Path Centric Graph Processing

System”, IEEE Transactions On Parallel And Distributed

Systems, Vol. 27, No. 10, October 2016. Design And

Development of An Efficient Approach for Task

Allocation in Distributed Systems Using Heuristics

Environment 26 | SKNCOE, Research Centre - Computer

Engineering 2022

[14] Lazaros Papadopoulos, Dimitrios Soudris,

Christoph Kessler, August Ernstsson, Johan Ahlqvist,

Nikos Vasilas, Athanasios I. Papadopoulos, Panos Seferlis,

Charles Prouveur, Matthieu Haefele, Samuel Thibault,

Athanasios Salamanis, Theodoros Ioakimidis, and

Dionysios Kehagias, “EXA2PRO: A Framework for High

Development Productivity on Heterogeneous Computing

Systems”, IEEE Transactions On Parallel And Distributed

Systems, Vol. 33, No. 4, April 2022.

[15] Li Shi, Zhemin Zhang, and Thomas Robertazzi,

“Energy-Aware Scheduling of Embarrassingly Parallel

Jobs and Resource Allocation in Cloud”, IEEE

Transactions On Parallel And Distributed Systems, Vol.

28, No. 6, June 2017.

[16] Dazhao Cheng, Jia Rao, Yanfei Guo, Changjun

Jiang, and Xiaobo Zhou, “Improving Performance of

Heterogeneous MapReduce Clusters with Adaptive Task

Tuning”, IEEE Transactions On Parallel And Distributed

Systems, Vol. 28, No. 3, March 2017.

[17] Zhiyao Hu , Dongsheng Li, Dongxiang Zhang ,

Yiming Zhang , and Baoyun Peng “Optimizing Resource

Allocation for Data-Parallel Jobs Via GCN-Based

Prediction”, IEEE Transactions On Parallel And

Distributed Systems, Vol. 32, No. 9, September 2021.

[18] Anandarup Mukherjee, Pallav Kumar Deb, and

Sudip Misra, “Timed Loops for Distributed Storage in

Wireless Networks”, IEEE Transactions On Parallel And

Distributed Systems, Vol. 33, No. 3, March 2022.

[19] Renyu Yang, Chunming Hu, Xiaoyang Sun, Peter

Garraghan , Tianyu Wo, Zhenyu Wen, Hao Peng , Jie Xu,

“Performance-Aware Speculative Resource

Oversubscription for Large-Scale Clusters”, IEEE

Transactions On Parallel And Distributed Systems, Vol.

31, No. 7, July 2020.

[20] Dazhao Cheng, Xiaobo Zhou, Yu Wang and

Changjun Jiang, “Adaptive Scheduling Parallel Jobs with

Dynamic Batching in Spark Streaming”, IEEE

Transactions On Parallel And Distributed Systems, Vol.

29, No. 12, December 2018.

[21] Laiping Zhao, Yanan Yang, Ali Munir, Alex X.

Liu, Yue Li, and Wenyu Qu, “Optimizing Geo-Distributed

Data Analytics with Coordinated Task Scheduling and

Routing”, IEEE Transactions On Parallel And Distributed

Systems, Vol. 31, No. 2, February 2020.

[22] Jiuchuan Jiang, Bo An, Yichuan Jiang, Senior

Member, IEEE, Peng Shi, Zhan Bu, and Jie Cao, “Batch

Allocation for Tasks with Overlapping Skill Requirements

in Crowdsourcing”, IEEE Transactions On Parallel And

Distributed Systems, Vol. 30, No. 8, August 2019.

[23] Weng Chon Ao and Konstantinos Psounis,

“Resource-Constrained Replication Strategies for

Hierarchical and Heterogeneous Tasks”, IEEE

Transactions On Parallel And Distributed Systems, Vol.

31, No. 4, April 2020.

[24] Umar Ibrahim Minhas, Roger Woods, Dimitrios

S. Nikolopoulos, and Georgios Karakonstantis, “Efficient

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4), 187–196 | 196

Dynamic Multi-Task Execution on FPGA-Based

Computing Systems”, IEEE Transactions on Parallel and

Distributed Systems, Vol. 33, No. 3, March 2022. Design

And Development of An Efficient Approach for Task

Allocation in Distributed Systems Using Heuristics

Environment 27 | SKNCOE, Research Centre - Computer

Engineering 2022

[25] Eunji Hwang, Suntae Kim, Tae-kyungYoo, Jik-

Soo Kim, Soonwook Hwang, and Young-ri Choi,

“Resource Allocation Policies for Loosely Coupled

Applications in Heterogeneous Computing Systems”,

IEEE Transactions on Parallel and Distributed Systems,

Vol. 27, No. 8, August 2016.

[26] Niraj Kumar, Jaishree Mayank, and Arijit

Mondal, “Reliability Aware Energy Optimized Scheduling

of Non-Preemptive Periodic Real-Time Tasks on

Heterogeneous Multiprocessor System”, IEEE

Transactions on Parallel and Distributed Systems, Vol. 31,

No. 4, April 2020.

[27] Myeonggyun Han , Jinsu Park , and Woongki

Baek, “Design and Implementation of a Criticality and

Heterogeneity-Aware Runtime System for Task-Parallel

Applications”, IEEE Transactions on Parallel and

Distributed Systems, Vol. 32, No. 5, May 2021.

[28] Jiaying Meng, Haisheng Tan, Xiang-Yang Li,

Zhenhua Han, and Bojie Li, “Online Deadline-Aware Task

Dispatching and Scheduling in Edge Computing”, IEEE

Transactions on Parallel and Distributed Systems, Vol. 31,

No. 6, June 2020.

[29] Hafiz Fahad Sheikh, Ishfaq Ahmad, and Dongrui

Fan, “An Evolutionary Technique for Performance-

Energy-Temperature Optimized Scheduling of Parallel

Tasks on Multi-Core Processors”, IEEE Transactions On

Parallel And Distributed Systems, Vol. 27, No. 3, March

2016.

[30] Mark A. Oxley, Sudeep Pasricha, Anthony A.

Maciejewski, Howard Jay Siegel, Jonathan Apodaca,

Dalton Young, Luis Briceno, ~Jay Smith, Shirish Bahirat,

Bhavesh Khemka, Adrian Ramirez, and Yong Zou,

“Makespan and Energy Robust Stochastic Static Resource

Allocation of a Bag-of-Tasks to a Heterogeneous

Computing System”, IEEE Transactions On Parallel And

Distributed Systems, Vol. 26, No. 10, October 2015.

[31] Peiquan Jin, Xingjun Hao, Xiaoliang Wang, and

Lihua Yue, “Energy-Efficient Task Scheduling for CPU-

Intensive Streaming Jobs on Hadoop”, IEEE Transactions

On Parallel And Distributed Systems, Vol. 30, No. 6, June

2019.

[32] Mark A. Oxley, Sudeep Pasricha, Anthony A.

Maciejewski, Howard Jay Siegel, Jonathan Apodaca,

Dalton Young, Luis Briceno, Jay Smith, Shirish Bahirat,

Bhavesh Khemka, Adrian Ramirez, and Yong Zou,

“Makespan and Energy Robust Stochastic Static Resource

Allocation of a Bag-of-Tasks to a Heterogeneous

Computing System”, IEEE Transactions On Parallel And

Distributed Systems, Vol. 26, No. 10, October 2015.

[33] Li Chen , Yuan Feng, Baochun Li and Bo Li,

“Efficient Performance-Centric Bandwidth Allocation with

Fairness Tradeoff”, IEEE Transactions On Parallel And

Distributed Systems, Vol. 29, No. 8, August 2018.

[34] Haitao Zhang , Xin Geng, and Huadong Ma,

“Learning-Driven Interference-Aware Workload

Parallelization for Streaming Applications in

Heterogeneous Cluster”, IEEE Transactions On Parallel

And Distributed Systems, Vol. 32, No. 1, January 2021.

[35] Amin Yoosefi and Hamid Reza Naji, “A

Clustering Algorithm for Communication-Aware

Scheduling of Task Graphs on Multi-Core Reconfigurable

Systems”, IEEE Transactions On Parallel And Distributed

Systems, Vol. 28, No. 10, October 2017.

[36] Jalal Khamse-Ashari , Ioannis Lambadaris,

George Kesidis, Bhuvan Urgaonkar, “An Efficient and Fair

Multi-Resource Allocation Mechanism for Heterogeneous

Servers”, IEEE Transactions On Parallel And Distributed

Systems, Vol. 29, No. 12, December 2018.

[37] Hafiz Fahad Sheikh, Ishfaq Ahmad, and Dongrui

Fan, “An Evolutionary Technique for Performance-

Energy-Temperature Optimized Scheduling of Parallel

Tasks on Multi-Core Processors”, IEEE Transactions On

Parallel And Distributed Systems, Vol. 27, No. 3, March

2016.

[38] Myeonggyun Han , Jinsu Park , and Woongki

Baek, “Design and Implementation of a Criticality-and

Heterogeneity-Aware Runtime System for Task-Parallel

Applications”, IEEE Transactions On Parallel And

Distributed Systems, Vol. 32, No. 5, March 2021.

[39] Tamilselvi, T. ., Lakshmi, D. ., Lavanya, R. ., &

Revathi, K. . (2023). Digital Companion for Elders in

Tracking Health and Intelligent Recommendation Support

using Deep Learning. International Journal on Recent and

Innovation Trends in Computing and Communication,

11(3), 145–152. https://doi.org/10.17762/ijritcc.v11i3.6331

[40] Dwarkanath Pande, S. ., & Hasane Ahammad, D.

S. . (2022). Cognitive Computing-Based Network Access

Control System in Secure Physical Layer. Research

Journal of Computer Systems and Engineering, 3(1), 14–

20. Retrieved from

https://technicaljournals.org/RJCSE/index.php/journal/artic

le/view/36

