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Abstract: Forecasting SMP is critical in power systems, allowing market participants and grid operators to make more informed decisions. 

SMP prediction faces nonlinearities, volatility, and intricate factor interactions. Meanwhile, several existing methodologies exhibit 

inaccuracies in their predictions. Furthermore, when used across multiple circumstances, single forecasting algorithms have lower accuracy.  

This paper presents a novel forecasting model that combines Least Squares Support Vector Machines (LSSVM) and the Genetic Algorithm 

(GA) for (i) parameter optimization, and (ii) parameter optimization and input selection, for accurate SMP prediction. Furthermore, the 

performance of LSSVM-GA was observed through daily and weekly forecasts. GA optimizes the LSSVM parameters and forecast inputs 

concurrently to ensure the best possible performance. Historical data from the Single Buyer (SB) has been employed to train and evaluate 

this model. Correlation Analysis aids feature selection, boosting model generalization. Multiple forecast input combinations were examined 

to identify the most important forecasting features. The proposed daily forecast model exhibited a 3.54% performance improvement 

compared to the SB daily forecast model. Likewise, the proposed weekly forecast model outperformed the Single Buyer (SB) forecast by 

1.19%. As per the results, the hybrid algorithm shows great potential as a viable option for generating precise forecasts of electricity prices. 

Keywords: Electricity price forecasting, Genetic algorithm, Least squares support vector machine, System Marginal Price (SMP) 

1. Introduction 

The SMP is a fundamental indicator in electricity markets 

that represents the short-term cost of producing an 

additional unit of electricity at any given time. SMP 

forecasting is critical to the efficient operation of modern 

electricity markets, assisting market participants, grid 

operators, and policymakers in making informed decisions 

to optimize power generation, trading, and consumption. 

The prediction enables electricity generation firms to 

optimize generator output and the SMP by considering 

production expenses for profit maximization. Concurrently, 

electricity consumers utilize price predictions to strategize 

and regulate their usage, especially during anticipated 

increases in electricity prices. 

Significant progress has been made in developing 

sophisticated SMP forecast models in recent years, 

leveraging advances in machine learning and optimization 

techniques to improve accuracy and robustness. 

Nonetheless, forecasting electricity prices proves more 

challenging than predicting electricity loads due to the 

inherent price volatility. Several factors contribute to the 

problem's complexity in the context of SMP forecast 

modelling. These include the non-linear and volatile nature 

of electricity prices, the impact of various exogenous 

variables such as weather conditions and demand patterns, 

and the dynamic interactions within the electricity market. 

Previous studies used statistical models (SM) for price 

forecasting; for example, an autoregressive model with 

Dirac and Student's t-distributions was used to forecast 

intraday electricity prices in Germany [1]. Other SM 

methods include regression [2], transfer function (TF) [3], 

autoregressive integrated moving average (ARIMA) [4]–

[7], and autoregressive moving average (ARMA) with 

generalized autoregressive conditional heteroskedastic 

(GARCH) [8]. Nonetheless, a notable drawback of the SM 

is its demand for a substantial degree of time series stability. 

To address these issues, researchers have turned to advanced 

computational methods in order to capture intricate patterns 

and relationships within historical SMP data.  

As a result, recent advances in SMP forecast modeling have 

been made possible using various techniques such as 

ensemble methods, hybrid models, support vector 

regression, deep learning, and online machine learning. 

Artificial intelligence techniques like artificial neural 

networks (ANN) and support vector machines (SVM) do 

not necessitate high stability and have the capability to 

generate precise and consistent predictions by leveraging 

training data [9]. A comprehensive comparison of SVM, k-
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nearest neighbors (KNN), and ensemble-based methods has 

been reported to analyze SMP in the Turkish electricity 

market [10]. The ensemble-based method outperforms the 

other methods in terms of accuracy. 

Many researchers have reported on the development of 

neural network (NN) models [3–10]. The deep neural 

network stands as a prominent NN approach that has drawn 

attention and been employed for electricity price prediction. 

[11]–[15]. Meanwhile, the multilayer perceptron (MLP), 

nonlinear autoregressive exogenous (NARX), and ARIMA 

models have been compared [16]. Overall, the forecast 

errors examined in the Korean energy market exhibit 

relatively minor magnitudes, following the sequence of 

ARIMA, MLP, and NARX. 

Conversely, load and price predictions have been structured 

by applying wavelet transform (WT) as a preliminary 

process, coupled with the utilization of long short-term 

memory (LSTM) [17]. Entropy and the utilization of mutual 

information (MI) for feature selection have also been put 

forth as methods to enhance the precision of forecasting. 

Additional research has documented multi-horizon 

predictions for electricity load and price utilizing a hybrid 

deep learning approach that incorporates bidirectional long 

short-term memory (BiLSTM) and a multi-head self-

attention mechanism. This technique is applied to forecast 

locational marginal price (LMP) and system load on a daily 

scale [18].  Moreover, an ensemble empirical mode 

decomposition (EEMD) algorithm is employed to extract 

concealed characteristics from the time series of load and 

price.  

Furthermore, Heydari et al. [19] demonstrated load and 

price forecasting. The initial step encompassed applying 

variational mode decomposition (VMD) to both signals 

(load and price series), followed by optimizing the number 

of inputs through the NN gravitational search algorithm 

(NNGSA). Subsequently, the forecasting procedure was 

executed, with the parameters of the generalized regression 

neural network (GRNN) being optimized by the GSA. 

Differing from prior research, Lee and Wu [20] introduced 

a similar day strategy to predict electricity prices in the PJM 

energy market. Four distance models were used to choose 

the days: the Euclidean norm, the Manhattan distance, the 

cosine coefficient, and the Pearson correlation coefficient. 

The forecasting outcomes were then derived using similar 

day regression (SDR) and similar day-based ANN 

(SDANN). Another investigation detailed the creation of a 

day ahead SMP prediction model utilizing an artificial 

neural network (ANN) algorithm. This model integrated 

both long-term historical data and short-term historical data, 

while employing the k-fold cross-validation optimization 

algorithm [21].  The Pearson correlation coefficient was 

utilized to identify the short-term input variable. The 

selection of the long-term variant to compute the Similar-

Days Index was accomplished using the discrete Frechet 

distance, combined with insights into the season and day 

type. 

However, ANNs have a few limitations, including 

challenges like the local minima issue, sluggish 

convergence speed, and disparities in structure selection. 

These shortcomings have led to the frequent substitution of 

ANNs with the SVM algorithm. This shift is supported by 

the work of Halu et al. [22], who demonstrated the 

superiority of the SVM model over alternative approaches 

in the Greek and Hungarian energy markets. demonstrated 

that the SVM model outperformed other models in the 

Greek and Hungarian energy markets. Meanwhile, 

Ghasemi-Marzbali [23] created a LSSVM model with self-

adaptive kernel functions and GARCH time series to 

capture linear and non-linear trends. WT and MI were used 

for pre-processing and input selection, respectively. The 

optimization of LSSVM parameters was achieved through 

an enhanced virus colony search algorithm (VCS). 

Meanwhile, LSSVM has been used as the primary 

forecasting technique in other studies aimed at predicting 

electricity prices and loads. For instance, dyadic wave 

transformation (DWT) and a modified version of MI (MMI) 

were employed for pre-processing and feature selection 

respectively. These steps were followed by the utilization of 

a modified gravitational search algorithm (GSA) for 

optimization purposes.  

All the studies mentioned have shown that these 

methodologies have the potential to enhance the accuracy 

and reliability of short-term SMP forecasts.  These 

advancements are critical in facilitating efficient decision-

making and contributing to the overall sustainability of the 

power system as electricity markets continue to evolve. 

Under normal conditions, most available models can predict 

electricity prices with high accuracy. During a price spike, 

however, forecasting error increases. Consequently, this 

study introduces a novel methodology for forecasting SMP 

on daily and weekly basis. This approach involves a hybrid 

LSSVM-GA model, wherein the parameters of the LSSVM 

and the inputs for forecasting are optimized using a GA.  

The following are the main contributions of this work: 

1) Correlation Analysis is used to investigate the 

relationship between the input variables and the SMP. 

The data for this analysis was obtained from the Single 

Buyer (SB) website. To ascertain the most influential 

input for short-term SMP prediction, simulations were 

executed using nine distinct combinations of inputs. The 

input variables include historical day-ahead prices from 

the past three days and one week earlier, demand 

forecasts, and monthly generation mix forecasts. 

2) A LSSVM-GA based SMP forecast model is proposed, 

with two types of optimizations performed: (i) LSSVM 
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parameter, and (ii) LSSVM parameter and forecast 

input.  Both simulation results show that optimizing only 

the LSSVM parameters yields higher accuracy than 

optimizing both the LSSVM parameters and the forecast 

input. This means that optimizing or reducing forecast 

inputs may result in insufficient input and thus 

inaccurate forecasting.  

3) Daily and weekly SMP forecasts have been proposed. 

The proposed models were tested on the Peninsula 

Malaysia energy market and were shown to improve 

prediction accuracy when compared to the SB forecast. 

Hence, this hybrid has the potential to streamline the 

electricity price bidding process and enhance the 

efficiency of power system operations. 

The subsequent sections of this paper are structured in the 

following manner. Section 2 summarizes the related SMP 

forecasting methodology, the proposed LSSVM-GA 

framework, and the pre-processing techniques used in this 

work. Section 3 contains the experimental evaluation of the 

SMP forecasting model, encompassing the correlation 

analysis and the outcomes of forecasting performance. The 

paper concludes in Section 4. 

2. Methodology 

2.1. SVM and LSSVM 

LSSVM, an improved SVM model, was used as the primary 

forecasting engine in this study. SVM is capable of 

managing a high-dimensional input space effectively [24], 

reducing overfitting, and avoiding the local minima trap 

[25]. In contrast, SVM demands significant a substantial 

amount of processing. The LSSVM model was created to 

reduce the computational load on the SVM. Through the 

solution of a linear equation system within a quadratic 

programming problem (QP), LSSVM enhances 

computational speed [24], [26]. Notably, the linear Karush-

Kuhn-Tucker (KKT) system is less intricate compared to the 

QP system. Furthermore, LSSVM maintains the distinctive 

attributes of SVM, encompassing its robust capacity for 

generalization. 

2.2. GA 

Holland [27] proposed GA, drawing from the concept of 

'survival of the fittest' and emulating the natural progression 

through reproduction. GA achieves optimal solutions 

through iterative computations, driven by its three core 

processes: selection, crossover, and mutation. The fitness 

function is GA's objective function.  

The process of GA optimization commences by establishing 

an initial distribution of chromosome positions within the 

population. This distribution then optimizes both prediction 

inputs and LSSVM parameter values. The LSSVM is 

subsequently trained and tested using the refined set of 

inputs and parameter settings. The fitness function or 

forecasting error, MAPE, is computed during the 

evaluation. 

During the reproduction phase, the selection of the fittest 

individual, often referred to as a parent, takes place. 

Chromosomes possessing higher fitness values are more 

likely to contribute to the subsequent generation through 

offspring creation. Chromosomes with superior fitness 

engage in gene exchanges via crossovers and mutations to 

form the offspring's chromosome. Maintaining a constant 

population number, highly robust parent chromosomes 

engage in crossovers with others in the population. This 

exchange results in the swapping of genetic segments 

between the two genotypes. Typically, crossover rates fall 

within the range of 0.6 to 1.0 [28]. 

Following the crossover process, every parental 

chromosome performs mutations to maintain a diverse set 

of solutions through slight, random alterations. Mutations 

are carried out at random, involving the conversion of bit 

"1" to bit "0" or vice versa. Mutations, unlike crossovers, are 

not an assured step in the process. However, they can avert 

chromosomes from becoming trapped within local minima 

by introducing a new genetic substance for evolutionary 

progress. Mutation rates are generally set below 0.1 [28], or 

0.1 [29]. 

Fig. 1 depicts the processes that occur during GA 

optimization. Four primary factors, namely population size, 

generation size, crossover probability, and mutation 

probability, collectively influence the performance of GA. 

Setting a larger population size and generation can improve 

the chances of finding a global optimum. This entails 

employing hundreds of chromosomes or populations across 

thousands of generations. However, this advantage is 

balanced by an increase in computational time [28]. 

2.3. The Proposed LSSVM-GA Model 

Fig. 1 displays the flowchart detailing the hybrid LSSVM-

GA model for both daily and weekly forecast. The 

population and generation numbers were fine-tuned to 

achieve the best MAPE during the validation stage. Once 

convergence is reached, the optimization process will be 

terminated. The GA optimizes and streamlines the inputs for 

subsequent processing by the LSSVM. Simultaneously, the 

GA identifies the best numbers for the LSSVM parameters 

which are gamma (γ) and sigma (σ). The main objective 

function, or fitness function, of the model is the MAPE. 

Additionally, the Mean Absolute Error (MAE) is computed 

through a comparison of the forecasted and real SMP.   

2.4. Data Interpretation and Correlation Analysis 

The model's accuracy is evaluated using historical SMP data 

which publicly available via Single Buyer (SB) website. 

SMP historical data is examined to ensure that it is accurate, 
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reliable, and covers a sufficiently long period to capture 

market conditions and patterns. Fig. 2 depicts the SMP 

series in Peninsula Malaysia from 2017 to 2022, 

demonstrating the price series' volatility over a few years.  

Demand patterns, fuel price dynamics, renewable energy 

integration, regulatory changes, and geopolitical events all 

have an impact on this variability. Throughout the year, 

periods of increased demand, such as during the peak 

summer months, can cause price increases. In contrast, the 

incorporation of renewable energy sources such as solar and 

wind may dampen price fluctuations. Volatility can be 

exacerbated by regulatory changes and unforeseeable 

events. 

The developed model also refers to the Energy 

Commission's Corporate Green Energy Programme 

Guidelines (CGPP), which were issued on November 7, 

2022. It includes NEDA application guidelines covering 

NEDA participant categories, SMP, NEDA governing 

documents, and the NEDA registration process. According 

to the NEDA application guidelines, SMP is primarily 

influenced by fuel price, system demand, and generation 

system condition. However, fuel price information is private 

and not available to the public. As a result, before 

developing the short-term forecast model for SMP in 

Malaysia, Correlation Analysis was performed using data 

provided by SB via 

https://www.singlebuyer.com.my/about.php?id=1 to 

investigate the correlation relating the input features and the 

desired output. Individual correlations between SMP on the 

targeted day and the six input variables were investigated:  

i. Past day-ahead prices for the preceding three days and 

one week (𝑆𝑀𝑃𝑑−1, 𝑆𝑀𝑃𝑑−2, 𝑆𝑀𝑃𝑑−3, 𝑆𝑀𝑃𝑑−7). 

ii. The demand forecast for the upcoming day (𝐷𝑑). 

iii. The day-ahead forecasts of monthly generation mix 

(total for solar, hydro, gas, and coal) (𝐺𝑑). 

2.5. Data Splitting 

The subsequent task within the preprocessing phase 

involves choosing data for training, validation, and testing. 

The training set aids the model in learning patterns, while 

the validation set fine-tunes parameters, and the testing set 

assesses real-world performance. Splitting correctly 

prevents overfitting (model fitting noise), ensures 

generalization, and aids in the detection of model bias or 

instability. Improper splitting can result in inaccurate 

forecasts because of biased training, over-optimization, or 

an inability to generalize. The following options are 

available for creating a subset of the dataset: 

a. 80% for training, 10% for validation, and 10% for testing. 

b. 70% for training, 15% for validation, and 15% for testing. 

c. 60% for training, 20% for validation, and 20% for testing. 

 

Table 1 shows the data selection for training, validation, and 

testing for daily and weekly SMP forecasts. Additionally, 

Table 3 shows ten different sets of input for daily forecast 

models. The daily forecast training sample spans 184 days, 

from June to November 2021. The daily forecast generates 

a half-hourly SMP of 48 points for the day ahead. The 

testing sample has a total of 28 days, so the forecasted output 

dimension comprises 28*48 points. In the case of weekly 

forecast, each input sample covers a week of historical SMP 

preceding the output. The weekly forecast model also 

generates half-hourly SMP for 7 days ahead, resulting in 

336 columns for both input and output. 

Table 1. Data splitting for short term SMP forecasting. 

Data 

splitting 

Daily 

forecast 
Weekly forecast 

Training 

June – 

Nov 

2021 

3 

April, 

2017 

- 

17 

May, 

2020 

(161 

weeks) 

Validatio

n 
Jan-22 

18 

May, 

2020 

- 

23 

May, 

2021 

(53 weeks) 

Testing Feb-22 

24 

May, 

2021 

- 

29 

May, 

2022 

(53 weeks) 

 

https://www.singlebuyer.com.my/about.php?id=1
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2.6. Accuracy Measure 

The accuracy of the developed model was assessed using 

MAPE and MAE, computed using Equations (1) and (2). 

MAPE measures the average percentage difference between 

predicted and actual values, highlighting proportional 

forecasting errors. The average absolute difference between 

predicted and actual values is calculated using MAE, which 

indicates the magnitude of errors. In these equations. 

SMPactual denotes the real SMP value, SMPforecast represent 

its forecasted value at hour t, whereas N stands for the total 

number of hours. 

𝑀𝐴𝑃𝐸 =
100

𝑁
× ∑

|𝑆𝑀𝑃𝑎𝑐𝑡𝑢𝑎𝑙𝑡
−𝑆𝑀𝑃𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑡

|

𝑆𝑀𝑃𝑎𝑐𝑡𝑢𝑎𝑙𝑡

𝑁
𝑡=1   (1) 

𝑀𝐴𝐸 =
1

𝑁
× ∑ |𝑆𝑀𝑃𝑎𝑐𝑡𝑢𝑎𝑙𝑡

− 𝑆𝑀𝑃𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑡
|𝑁

𝑡=1  (2) 

3. Results and Analysis  

3.1. Correlation Analysis 

Table 2 shows the correlation between the input variables 

and future SMP observed between April 2 and May 31, 

2021.  

 

 

Fig. 1. Flowchart for the hybrid LSSVM-GA model for both daily and weekly forecasts. 

 

 
 

Fig. 2. SMP series for 2017 till 2022 
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Table 2. Correlation analysis between the input variables 

and future SMP 

Variable 1 

(Target) 

Variable 2 

(Input) 

Correlation 

coefficient 

𝑆𝑀𝑃𝑑 

𝑆𝑀𝑃𝑑−1 0.467 

𝑆𝑀𝑃𝑑−2 0.318 

𝑆𝑀𝑃𝑑−3 0.345 

𝑆𝑀𝑃𝑑−7 0.367 

𝐷𝑑 0.473 

𝐺𝑑 0.46 

 

The correlation coefficient derived from the correlation 

analysis ranges between 0.318 and 0.473, which is generally 

considered to be a medium correlation. However, since the 

forecast SMP for the following trading day is published 

every day at 5 p.m., the SMP on the day before the forecast 

day (𝑆𝑀𝑃𝑑−1) may not be the input variable. As a result, 

except for (𝑆𝑀𝑃𝑑−1), all the inputs in Table 2 are considered 

forecast inputs for the daily forecasts. 

3.2. Proposed Hybrid LSSVM-GA Model for Daily 

Forecast 

In order to develop daily forecast model using LSSVM-GA, 

two types of optimizations were performed:  

i. network parameters  

ii. network parameters and input selection 

LSSVM-GA performance was also evaluated using nine 

different input combinations to determine the most 

important input for short-term SMP forecasting. Table 3 

shows that optimizing only the LSSVM parameters 

Table 3. MAPE for different sets of input for daily forecast models. 

Optimization 

GA-LSSVM SB 

Number of Input 
MAPE 

(%) 

MAPE 

(%) 

LSSVM parameters and 

number of inputs 
241; (𝑆𝑀𝑃𝑑−2,  𝑆𝑀𝑃𝑑−3,   𝑆𝑀𝑃𝑑−7,  𝐷𝑑,  𝐺𝑑,  Day index) 9.18 

10.63 

LSSVM parameters 241; (𝑆𝑀𝑃𝑑−2,  𝑆𝑀𝑃𝑑−3,   𝑆𝑀𝑃𝑑−7,  𝐷𝑑,  𝐺𝑑,  Day index) 8.42 

LSSVM parameters 

240; 𝑆𝑀𝑃𝑑−2,  𝑆𝑀𝑃𝑑−3,   𝑆𝑀𝑃𝑑−7,  𝐷𝑑 ,  𝐺𝑑 8.95 

192; 𝑆𝑀𝑃𝑑−3,   𝑆𝑀𝑃𝑑−7,  𝐷𝑑 ,  𝐺𝑑 8.9 

144;  𝑆𝑀𝑃𝑑−7,  𝐷𝑑 ,  𝐺𝑑 12.9 

96; 𝐷𝑑 ,  𝐺𝑑 19 

49; 𝐺𝑑,  Day index 22 

48; 𝐺𝑑 21 

48; 𝑆𝑀𝑃𝑑−2 8.74 

48; 𝑆𝑀𝑃𝑑−1 7.09 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. A comparison of the daily forecasts generated by the LSSVM-GA and SB models to the actual SMP. 
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produces better accuracy than optimizing both the LSSVM 

parameters and the forecast input. Consequently, optimizing 

or reducing forecast inputs may result in insufficient input 

and, as a result, inaccurate forecasting. Therefore, only 

network parameters are optimized in the weekly forecast. 

Meanwhile, the SMP was strongly correlated to the latest 

input and had a smaller impact across extended time spans. 

Finally, both types of optimizations outperformed SB's 

prediction, which had a MAPE of 10.63%. Fig. 3 depicts the 

time series of the actual and predicted SMP from the 

proposed LSSVM-GA and SB models. 

3.3. Proposed Hybrid LSSVM-GA Model for Weekly 

SMP Forecast 

The weekly SMP forecast represents the SMP trend's 

behaviour for the entire year. The dataset spans a significant 

period and captures various operational scenarios and 

market conditions, providing a solid foundation for model 

training and validation. This modelling can also be used to 

make long-term predictions. The input for each sample is a 

week of historical SMP preceding the output. The 

forecasting model was tested and compared to the SB 

forecast and the actual SMP, with the results shown in Fig. 

4. 

It is important to acknowledge that the comparison with SB 

forecasts involves the collection of daily forecasts generated 

by SB over a one-week timeframe. The time series in Fig. 4 

indicates that apart from an exceptionally sharp price spike, 

the projected price series closely mirrors the real price trend. 

The LSSVM-GA can capture price oscillations, 

demonstrating its ability to robustly generalize to new data 

even when confronted with unforeseen occurrences. The 

MAPE of the LSSVM-GA model was 8.55% when tested 

from May 2021 to May 2022, outperforming the SB forecast 

by 1.19%. 

3.4. The Overall Performance of the LSSVM-GA 

Table 4 presents the total efficacy of the LSSVM-GA 

framework for daily and weekly SMP forecasts. The GA 

optimizes the entire input and LSSVM parameters based on 

the distinct circumstances present in each training sample. 

The relationship between the target and the output is 

denoted by regression, spanning a scale from 0 to 1. A 

regression value approaching one signifies a significant 

relationship between forecasted and actual values, reflecting 

a high level of forecast accuracy.  

The optimal population and generation sizes are determined 

by the problem's complexity and the algorithm's 

convergence behaviour. A smaller population with fewer 

generations may result in insufficient exploration, whereas 

a larger population or too many generations may result in 

increased computation time. A larger population size 

frequently improves solution space exploration. A large 

population, on the other hand, may necessitate more 

computational time and resources. A large number of 

generations may result in overfitting, resulting in poor 

generalization to new data.  

Furthermore, Fig. 5 depicts the GA plots corresponding to 

the three cases, which represent the progression and 

behaviour of the GA during the validation stages or period. 

The plot shows the value of the fitness function over 

successive generations to help visualize how the algorithm 

refines solutions over time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. A comparison of the Weekly SMP Forecasts generated by the LSSVM-GA and SB. 
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Table 4. Total efficacy of the LSSVM-GA framework for 

daily and weekly SMP forecasts 

Forecasting 

horizon 
Daily forecast 

Weekly 

forecast 

Optimization 

Paramete

r and 

input 

Paramete

r 

Paramete

r 

Validation MAPE 6.85 6.55 9.22 

Testing MAPE 9.18 7.09 8.55 

MAE 0.023 0.018 0.02 

Regression 0.456 0.614 0.818 

Population size 10 10 20 

Generation size 30 30 40 

 

The optimization procedure ends when either the 

predetermined number of populations and generations has 

been attained or the MAPE threshold criteria are met. 

Notably, convergence was evident within 30-40 

generations, resulting in the modelling process ending at this 

juncture. 

(a) 

 

(b) 

 

 

(c) 

Fig. 5. GA plots for (a) daily SMP forecast with parameter 

optimization and input selection; (b) daily SMP forecast 

with parameter optimization, and (c) weekly SMP forecast 

with parameter optimization. 

4. Conclusion 

Short-term SMP forecasting accuracy is critical for efficient 

energy market operations and decision-making. This task 

necessitates selecting forecasting inputs and configuring 

network parameters. As a result, by optimizing LSSVM 

parameters, the proposed LSSVM-GA hybrid model 

provides significant advances in short-term SMP 

forecasting. In this model, the GA concurrently optimizes 

the inputs and LSSVM parameters by incorporating the 

most current inputs, specifically the SMP from the 

preceding day. The results show that the LSSVM-GA model 

predicts SMP values with greater accuracy and robustness 

for short-term SMP forecasting. The model is compared to 

a model generated by the SB and a baseline data set, which 

is the actual SMP.  

The findings demonstrate that the proposed LSSVM-GA 

model surpasses the SB forecasts by 3.54% and 1.19%, 

respectively, for daily and weekly SMP forecasts. Its ability 

to capture underlying patterns and adapt to dynamic market 

conditions makes it a valuable tool for electricity market 

participants, allowing them to make well-informed 

decisions about power generation, trading, and demand 

response. Furthermore, by providing reliable SMP forecasts, 

the model aids in optimizing the electricity supply-demand 

balance, facilitating efficient resource allocation, and 

promoting the incorporation of renewable energy sources 

through the power grid system.  
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