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Abstract: Hyperparameter optimization is a critical task in enhancing machine learning model performance. This paper introduces a novel 

approach, for hyperparameter tuning without making assumptions about the underlying hyperparameter distribution or convergence 

behavior. This approach treats hyperparameter configurations as indices and focuses solely on the associated loss sequences. The objective 

is to efficiently search for the configuration by minimizing the selected configuration's validation error. The algorithm employs an 

acquisition function to determine the next configuration to evaluate and leverages a classification model to guide the search process. The 

proposed methodology is agnostic to the structure of hyperparameter relationships, aiming to strike a balance between resource usage and 

performance improvement. Experimental results demonstrate the proposed approach’s effectiveness in identifying optimal configurations 

while being adaptive to various domains and data types.  
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1. Introduction 

In recent years, the application of machine learning (ML) 

algorithms [1] has become ubiquitous across various 

domains, from healthcare [2] and finance [3] to image 

recognition [4] and natural language processing [5]. These 

algorithms offer the capability to extract intricate patterns 

and insights from large datasets [6], [7], enabling informed 

decision-making and predictive analytics [8]. However, the 

efficacy of ML models heavily relies on the careful selection 

of hyperparameters [9], configuration settings that dictate 

the learning process and influence the model's 

generalization ability. [10] 

Hyperparameter tuning is a critical aspect of ML model 

development that involves the optimization [11], [12] of 

these configuration settings. Proper tuning can significantly 

impact model performance, enabling enhanced accuracy, 

convergence, and generalization. As hyperparameters 

control [13], [14] the trade-off between model complexity 

and generalization, their selection warrants careful 

consideration to strike the optimal balance [15]. 

This research delves into the paramount importance of 

hyperparameter tuning in the realm of machine learning. By 

systematically adjusting hyperparameters, models can be 

fine-tuned to achieve optimal performance [16], [17] on 

specific tasks and datasets [18], [19]. The objective of this 

study is to evaluate the impact of hyperparameter tuning on 

the performance of various ML algorithms using real-world 

datasets from the financial sector, specifically sourced from 

a private bank and a Non-Banking Financial Company 

(NBFC) operating in India. 

In this context, hyperparameter tuning can be seen as a 

mechanism to navigate the complex landscape of 

algorithmic configurations, improving model accuracy, 

convergence, and efficiency. The investigation presented in 

this paper focuses on elucidating the effects [20] of 

hyperparameter optimization on different ML algorithms, 

thereby contributing to a deeper understanding of their 

behavior [21], [22] and the extent to which tuning influences 

their performance. [23], [24] By shedding light on the 

relationship between hyperparameter tuning and ML model 

performance, this research aims to contribute valuable 

insights to the broader field of machine learning 

optimization and inspire advancements in algorithmic 

development for enhanced predictive analytics. 

1.1. Hyperparameter Tuning Strategies 

Hyperparameter tuning has been explored through various 

optimization strategies. Grid Search [18], [25], [26], a 

systematic search approach, explores predefined 

hyperparameter values across a grid. Random Search, an 

alternative, randomly samples hyperparameters to achieve a 

trade-off between exploration and exploitation. Bayesian 

Optimization [27] leverages probabilistic models to 

estimate the utility of different hyperparameters, adapting 

the search based on previous observations. Genetic 

Algorithms mimic biological evolution to iteratively evolve 

hyperparameter configurations, while Particle Swarm 

Optimization simulates social behavior to optimize 

parameters collectively. These strategies collectively 
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constitute a toolkit for systematically navigating the 

complex space of hyperparameters. [28] 

1.2. Impact of Hyperparameter Tuning 

Hyperparameter tuning has been demonstrated to have a 

substantial impact on model performance across a range of 

ML algorithms. Researchers showed that hyperparameter 

optimization can lead to significant improvements in 

accuracy for Support Vector Machines (SVMs) and neural 

networks. [29] Similarly, the studies also demonstrated how 

hyperparameter optimization outperforms manual tuning 

for SVMs, k-Nearest Neighbors, and Random Forests. [19] 

These findings underscore the effectiveness of automated 

tuning methods in enhancing model accuracy. 

1.3. Algorithm-Specific Hyperparameter Tuning 

Different ML algorithms exhibit varying sensitivities to 

hyperparameter settings. For instance, in neural networks 

[30], [31] [31], the learning rate significantly impacts 

convergence speed and optimization quality. A higher 

learning rate may lead to faster convergence but risk 

overshooting the optimal solution, while a lower learning 

rate may converge slowly or get trapped in local minima. 

Researchers also emphasized the importance of tuning 

learning rates for neural networks, demonstrating its impact 

on convergence and generalization [32] [33]. In decision 

tree-based algorithms like Random Forest and Gradient 

Boosting, hyperparameters control tree depth, number of 

trees, and splitting criteria.  

1.4. Resource Allocation and Hyperparameter Tuning 

Hyperparameter tuning interacts closely with resource 

allocation, as both involve optimizing the utilization of 

limited computational resources. Researchers introduced 

the concept of "budgeted optimization," where resource 

allocation is strategically managed during hyperparameter 

optimization. [34], [35] This approach maximizes the 

efficiency of resource utilization, ensuring optimal 

hyperparameter configuration discovery within a specified 

resource budget. [12], [36], [37] 

1.5. Transfer Learning and Hyperparameter Tuning 

Transfer learning techniques have been integrated with 

hyperparameter tuning to leverage knowledge gained from 

one task to improve performance on another. Researchers 

demonstrated how transfer learning can be applied to 

transfer information across datasets, optimizing 

hyperparameters efficiently [27]. This approach has 

practical implications in scenarios where labeled data is 

scarce, enabling the effective tuning of models with limited 

samples. 

Despite its importance, hyperparameter tuning presents 

challenges. The hyperparameter space can be vast, making 

exhaustive search impractical. Additionally, the interaction 

between hyperparameters can be intricate, requiring 

sophisticated optimization [12], [38] methods. Open 

questions persist about the robustness of tuning methods 

across diverse datasets and algorithms, as well as the 

incorporation of domain knowledge into the tuning process. 

2. Methodology 

Overall methodology followed in this research process is 

shown in figure 1.   

 

Fig. 1. Research Methodology 
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2.1. Data Collection and Preprocessing 

Data is sourced from a private bank and a Non-Banking 

Financial Company (NBFC) operating in India by signing 

NDA. These organizations provide anonymized customer 

data including demographics (age, gender, location), 

financial transactions (credit/debit, amounts), credit 

histories (credit scores, loan histories), and loan applications 

(approved/denied, loan type). This diverse dataset captures 

various financial behaviors and customer profiles, crucial 

for training and evaluating machine learning models. 

Before model development, the data undergoes 

preprocessing to ensure quality and consistency. Missing 

values are addressed by imputing them using relevant 

techniques. For instance, missing age values could be 

imputed with median age, while missing credit scores might 

be imputed based on regression models using correlated 

features. Feature engineering involves creating new features 

like debt-to-income ratios, credit utilization percentages, 

and time since last loan application, which offer deeper 

insights to the models. 

Categorical variables like loan type or gender are encoded 

into numerical formats. One-hot encoding is used for 

nominal variables (e.g., loan types), creating binary columns 

for each category. For ordinal variables (e.g., education 

level), label encoding is applied to represent their order. 

Outliers are detected using statistical methods like Z-score 

or IQR and are either removed or transformed to minimize 

their impact on model training. 

The preprocessed dataset is divided into training and testing 

sets. An 80:20 split is chosen to allocate a larger portion for 

training while ensuring a substantial portion for unbiased 

model evaluation. The training set is used to develop and 

optimize the models, whereas the testing set simulates real-

world scenarios, gauging how well the models generalize to 

new, unseen data. 

2.2. Hyperparameter Tuning 

In the realm of optimizing hyperparameters, let's delve into 

a space of feasible hyperparameter setups denoted as X. 

This space covers a spectrum of variables—continuous, 

discrete, or categorical—and they can interdepend in 

flexible ways, not bound by specific ranges like [0, 1]. For 

each value of k, starting from 1 and beyond, we're equipped 

with a series of loss functions, denoted as lk: X → [0, 1]. 

These functions quantify the validation error of a model, 

parameterized by x, employing k units of resources (e.g., 

iterations). 

In this landscape, we make the assumption that 

hyperparameter configurations are selected at random 

according to a known probability distribution, represented 

by p(x): X → [0, ∞). Although we lean towards a basic 

uniform distribution for p(x) in our experiments, the 

approach accommodates any sampling technique. Given a 

random pick X ∈ X from this distribution, the value l∗(X) 

transforms into a random variable, encompassing an 

unknown distribution. This opacity arises from our lack of 

insight into the genuine l∗(·) function. Moreover, 

deciphering information about lk(x) through the lens of lj(y) 

for any j ∈ N and y ∈ X is elusive, as the inner workings of 

hyperparameters and their effects on loss functions remain 

concealed. 

As a consequence, we simplify the task of hyperparameter 

optimization by engaging with hyperparameter 

configurations x ∈ X solely through their corresponding 

sequences of loss, denoted as lk(x) for various k. The 

specific identity of x ∈ X functions as a mere reference or 

tag for the loss sequence it represents. Lacking knowledge 

about the speed at which lk(·) converges to l∗(·), or the 

distribution of l∗(X), Hyperband's aim is to pinpoint a 

hyperparameter configuration x ∈ X that minimizes l∗(x) by 

a specified margin ν∗, a constant defined by the user. This 

endeavor entails selecting a suitable number of random 

configurations, all the while optimizing resource utilization. 

In essence, Hyperband aims to find the best hyperparameter 

configuration in the given space X based solely on its loss 

sequence, disregarding any underlying hyperparameter 

structure or distribution. The goal is to efficiently search for 

the configuration that minimizes the gap between the 

validation error of the selected configuration and the user-

defined constant ν∗, without making any assumptions about 

the loss function convergence or distribution. 

Input: 

• Objective function: f(x) (where x represents the 

hyperparameter configuration) 

• Hyperparameter search space: X  

• Number of iterations: T  

• Acquisition function: A(x) 

Algorithm: 

Step 1: Initialize a dataset D = {(x_i, y_i)} with a few 

initial hyperparameter configurations (random or 

predefined). 

Step 2: for t = 1 to T do:  

2.1: Fit a Classification model to the dataset D. 

2.2: Determine the next hyperparameter configuration to 

evaluate by maximizing the acquisition function: x_t = 

argmax A(x | D).  

2.3: Evaluate the objective function f(x_t) to obtain the 

corresponding performance metric y_t.  
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2.4: Add (x_t, y_t) to the dataset: D = D ∪ {(x_t, y_t)}. 

Step 3: Return the hyperparameter configuration with the 

highest observed performance: x* = argmax y_i, where 

(x_i, y_i) ∈ D. 

Output: 

• Set of optimal hyperparameters for the model 

2.3. Model Selection and performance evaluation 

Numerous instances of each model variant are trained with 

distinct hyperparameters. Validation metrics, such as 

accuracy, precision, recall, and F1-score, are employed to 

assess the model's performance. These metrics shed light on 

the model's proficiency in accurately categorizing various 

classes and handling imbalances. The model exhibiting the 

most favorable hyperparameters, as gauged by these 

metrics, is designated for further evaluation. 

The selected model is subjected to comprehensive 

evaluation on the testing set. Performance metrics, including 

accuracy, precision-recall values, offer a detailed 

understanding of the model's predictive capabilities. Finally, 

the key parameters and characteristics of the selected model 

are tabulated for reference and documentation. This 

includes a summary of the hyperparameters chosen through 

optimization, the model's architecture and features that 

proved most influential, and insights gained from the 

evaluation process. This tabulation serves as a valuable 

resource for understanding the model's configuration, 

performance, and potential future improvements. 

3. Results and Discussion 

 

Table 1. Performance of Machine Learning Algorithm on Data set 1 

Algorithm Accuracy (before 

hyper parameter 

tuning) 

Accuracy (after 

hyper parameter 

tuning) 

Loss (before hyper 

parameter tuning) 

Loss (after hyper 

parameter tuning) 

Gaussian NB 0.84168 0.85652 

  

0.28097 

  

0.14231 

Logistic 

Regression 

0.94168 

  

0.95668 

  

0.14969 

  

0.13469 

  

Extra Trees 

Classifier 

0.94128 

  

0.95628 

  

0.15969 

  

0.14469 

  

Random Forest 

Classifier 

0.94184 

  

0.95684 

  

0.13370 

  

0.1187 

  

XGB Classifier 0.9542 

  

0.96920 

  

0.07955 

  

0.06455 

  

LGBM 

Classifier 

0.95426 

  

0.96926 

  

0.07775 

  

0.06275 

  

Neural Network 0.94138 

  

0.95638 

  

0.19968 

  

0.18468 

In this discussion, we will analyze the performance of 

various classification algorithms on Data set1. The detailed 

results are shown in table 1 and visually represented in 

figure 2. Gaussian NB is a simple probabilistic classifier 

based on Bayes' theorem with the assumption of feature 

independence. It performs reasonably well on the dataset 

with an accuracy of 0.84168 before tuning. However, after 

hyperparameter tuning, the accuracy increases to 0.85652, 

indicating that the tuning process led to improved model 

performance. Additionally, the loss decreased significantly 

from 0.28097 to 0.14231, indicating better convergence 

during training. Logistic Regression is a linear classification 

algorithm that models the probability of a binary outcome. 

It performs quite well on the dataset with an accuracy of 

0.94168 before tuning. After hyperparameter tuning, the 

accuracy improves to 0.95668, indicating that the tuning 

process further optimized the model. The loss also reduced 

from 0.14969 to 0.13469, suggesting better convergence. 

Extra Trees Classifier is an ensemble method based on 

decision trees with random feature selection. It achieves an 

accuracy of 0.94128 before tuning, which is already 

relatively high. After hyperparameter tuning, the accuracy 

increases to 0.95628, showing that tuning further boosted its 

performance. The loss also decreased from 0.15969 to 

0.14469, indicating better convergence during training. 

Random Forest is another ensemble method based on 

decision trees, utilizing bootstrapping and random feature 

selection. It performs well on the dataset with an accuracy 

of 0.94184 before tuning. After hyperparameter tuning, the 

accuracy increases to 0.95684, indicating that the tuning 

process improved the model's performance. The loss 
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decreased from 0.13370 to 0.1187, suggesting better 

convergence during training. 

 

 

Fig. 2. Performance on Data set 1 

 

Table 2. Performance of Machine Learning Algorithm on Data set 2 

Algorithm 

Accuracy 

(before hyper 

parameter 

tuning) 

Accuracy 

(after hyper 

parameter 

tuning) 

 Loss (before 

hyper 

parameter 

tuning) 

Loss (after 

hyper 

parameter 

tuning) 

Gaussian NB 0.91423 0.92986 0.26217 0.31292 

Logistic 

Regression 
0.93806 0.95306 0.26217 0.17717 

Extra Trees 

Classifier 
0.93903 0.95403 0.24917 0.16417 

Random Forest 

Classifier 
0.93988 0.95488 0.23426 0.14926 

XGB Classifier 0.95671 0.97171 0.15639 0.07139 

LGBM 

Classifier  
0.96327 0.97827 0.1439 0.05890  

Neural Network 0.93903 0.95403 0.40291 0.31791 

XGBoost is a powerful gradient boosting algorithm known 

for its high performance. It already exhibits excellent 

accuracy of 0.9542 before tuning. After hyperparameter 

tuning, the accuracy further increases to an impressive 

0.96920, indicating that the tuning process significantly 

improved its performance. The loss also decreased from 

0.07955 to 0.06455, suggesting better convergence during 

training. LightGBM is another gradient boosting algorithm 

that uses a novel technique to improve training speed and 

efficiency. It demonstrates excellent performance with an 

accuracy of 0.95426 before tuning. After hyperparameter 

tuning, the accuracy increases to 0.96926, indicating that the 

tuning process further optimized the model. The loss also 

decreased from 0.07775 to 0.06275, suggesting better 

convergence during training. 
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Neural networks are powerful models capable of learning 

complex patterns in data. The neural network in this case 

achieves an accuracy of 0.94138 before tuning, which is 

already quite good. After hyperparameter tuning, the 

accuracy increases to 0.95638, indicating that the tuning 

process improved the model's performance. The loss also 

decreased from 0.19968 to 0.18468, suggesting better 

convergence during training. Overall, the performance 

comparison of the classification algorithms before and after 

hyperparameter tuning reveals that hyperparameter tuning 

significantly improved the models' accuracy and reduced 

their loss. These results demonstrate the effectiveness of 

hyperparameter tuning in optimizing the performance of 

machine learning models and highlight the importance of 

choosing the right algorithm and tuning its parameters for 

the given dataset. Similarly, on dataset2 also accuracy 

increased and loss reduced. Detailed results are shown in the 

table 2 and also visually represented in figure 3. 

 

Fig. 3. Performance on Data set 2 

The results of experimentation demonstrated a consistent 

pattern of improvement, with increased accuracy and 

reduced log loss observed for all models following 

hyperparameter tuning. Our findings (shown in figure 4 and 

figure 5) indicate that the fine-tuning of hyperparameters led 

to notable improvements in model accuracy. This suggests 

that the default hyperparameter settings provided by the 

model libraries may not always yield the best results for a 

given dataset. By customizing the hyperparameters to better 

fit the characteristics of the data, our models were able to 

capture more intricate patterns and relationships, resulting 

in higher accuracy.  

Through the process of hyperparameter tuning, we were 

able to consistently decrease the log loss for all models. This 

reduction implies that the tuned models produced more 

confident and precise probability estimates, aligning closely 

with the ground truth labels. Consequently, the overall 

uncertainty and errors in the model predictions were 

minimized, contributing to improved model robustness. The 

results are shown in figure 6 and 7 for data set 1 and 2 

respectively. 

It is worth noting that different models may exhibit varying 

degrees of sensitivity to specific hyperparameters. For 

instance, parameters related to regularization, learning rates, 

and batch sizes can significantly impact the performance of 

neural network-based models. On the other hand, tree-based 

models such as Random Forest and Gradient Boosting Trees 

may show sensitivity to tree depth, number of estimators, 

and feature importance settings. The effectiveness of 

hyperparameter tuning is influenced by the complex 

interplay between these parameters and their effects on 

model behavior. 
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Fig. 4. Accuracy after and before tuning hyper parameters on data set1 

 

 

Fig. 5. Accuracy after and before tuning hyper parameters on data set2 
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Fig. 6. Loss after and before tuning hyper parameters on data set1 

 

 

Fig. 7. Loss after and before tuning hyper parameters on data set2 

4. Conclusion 

In this study, we conducted a comprehensive analysis of the 

performance of various machine learning algorithms on two 

distinct datasets, emphasizing the impact of hyperparameter 

tuning on their effectiveness. The aim was to assess how 

different algorithms responded to hyperparameter 

optimization and to highlight the significance of parameter 

tuning in enhancing model performance. 

Our findings provide valuable insights into the 

improvements achieved through hyperparameter tuning. 

The initial performance of the algorithms on both Dataset 1 

and Dataset 2 was notable, yet the application of 

hyperparameter tuning consistently led to substantial 

enhancements in accuracy and reductions in loss across the 

board. This underscores the importance of fine-tuning 

model configurations to achieve optimal results.Among the 

algorithms tested, Gaussian NB, Logistic Regression, Extra 

Trees Classifier, Random Forest Classifier, XGB Classifier, 

LGBM Classifier, and Neural Network, the gradient 
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boosting techniques (XGB and LGBM) consistently 

demonstrated remarkable performance, showcasing their 

robustness in capturing intricate relationships within the 

data. Moreover, hyperparameter tuning played a pivotal role 

in elevating their accuracy and convergence speed, 

reaffirming the value of optimization. 

These results emphasize that the choice of algorithm is 

pivotal, but the tuning of hyperparameters significantly 

influences the final outcome. It is important to acknowledge 

that the extent of improvement varied across algorithms, 

indicating that while hyperparameter tuning is beneficial, it 

can be more pronounced for some algorithms compared to 

others. 

The observed improvements in accuracy and convergence 

illustrate the potential for achieving more accurate and 

efficient models through systematic hyperparameter 

optimization. As machine learning continues to advance, 

future research should explore additional algorithms, 

optimization techniques, and strategies to uncover further 

insights that can lead to even more effective model 

configurations. Ultimately, this research underscores the 

iterative nature of machine learning model development, 

where experimentation and refinement of hyperparameters 

lead to models that can better capture the complexities of 

real-world data and make more accurate predictions. 
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