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Abstract: As the use of wireless communication expands, so does the need for more complex, easy-to-use, and low-cost solutions. The 

need for network solutions ranging from wireless sensor networks to wireless ad-hoc networks to the Internet of Things prompted 

academics to engage in the development of acceptable network solutions. Inventions made by researchers have led to an increase in the 

desire for additional advancements in current researchers. In the beginning, research and development focused on network protocols. IoT 

devices are being employed in a variety of industries and are amassing an enormous amount of data through sophisticated applications, 

regardless. This necessitates study into IoT network load balancing. As IoT networks become more overburdened, researchers have made 

many efforts to find ways to reduce the communication costs that result. In these studies, the IoT nodes were recommended to be evenly 

distributed in the network's load. The data gathered by IoT nodes and the applications that handle that data will eventually be moved to the 

cloud, but this will take time. A cloud-based load balancer meeting the needs of IoT network protocols is the difficulty here. A new 

technique is proposed in this study to deal with IoT network frameworks' load management. The main problem of this study is to develop 

a load balancer that considers the limited energy and processing capabilities of IoT nodes, yet with the goal of increasing the response time 

of the IoT network. Consideration has been given to the low-effort integrations with current IoT frameworks in the design of the suggested 

algorithm for load balancer. 
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1. Introduction 

This A game-changing networking invention is the Internet 

of Things, sometimes known as IoT. Three basic 

components have helped make the IoT networks a big 

success: gathering data from the open operating 

environment using sensors, autonomous machine-to-

machine communication, and cloud computing for 

applications and data acquired by sensor agents. The 

Internet of Things (IoT) has become a vital aspect of current 

wireless communications because of the rising popularity of 

smart concepts in modern goods and lifestyles. A 

computerised innovation's layered hidden engineering is 

commonly evaluated by IoT frameworks. CPS, sensors, and 

machines are all included in the gadget layer. Physical 

system transports, distributed computing, and 

correspondence conventions compose the system layer, 

which totals and conveys data to the administration layer, 

which includes uses that manage and combine data into data 

that may be seen on the dashboard of the driver. The 

substance layer, often known as the user interface, is the 

highest level of the stack. 

In 1968, Dick Morley developed the programmable 

rationale controller, which was used by General Motors in 

their programmed transmission manufacturing business. 

The history of the Internet of Things begins there. Individual 

components in the assembly chain were taken into account 

while designing these PLCs. It was in 1975 when 

Honeywell and Yokogawa unveiled the world's first DCS 

systems, the TDC 2000 and CENTUM, respectively. They 

were a further step in providing flexible process control 

across a plant, with the added benefit of removing the single 

point of failure in a central control room by transmitting 

control over the whole framework. 

However, in light of the growing need for more advanced 

IoT load balancing algorithms for cloud-integrated apps and 

frameworks, this study suggests a new approach. 

2. Foundational Strategy for Load Balancing on 

IoT 

Henceforth, after setting the context of the research in the 

previous section of this work, in this section, the base line 

method for load balancing strategies for IoT networks are 

discussed. 

Assuming that, for an IoT network, I[] of n number nodes, 

each node can be identified by IX. Thus, this can be 

formulated as,  

𝐼[] =< 𝐼1, 𝐼2, 𝐼3, … . . 𝐼𝑛 >            

(1) 

During the transmission of the data in the network, the IoT 

nodes are expected to process minimal amount of the data 

and few of the situations can be observed, where these 
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minimal data is becoming overload for the node capacity. In 

order to analyze the load condition, from each node in the 

network, the utilization must be extracted. Assuming that, 

the CX is the compute capacity of the node and C`X is the 

utilization of the compute capacity for any given node NX, 

thus this can be formulated as,  

𝑪𝑿 < 𝑪′
𝑿 : : 𝑵𝑿 → 𝑶𝒗𝒆𝒓𝑳𝒐𝒂𝒅      (2) 

It is also understandable, that each node in the network has 

a specific range, which can be extracted from the properties 

table and also can be calculated using the standard IoT node 

properties. Here, it is assumed that using the function 𝜆, the 

range for each node is extracted from the properties table. 

Assuming that, for two different nodes as N1 and N2, the 

range are R1 and R2 respectively. Thus, this can be 

formulated as, 

𝑅1 = 𝜆(𝑁1. 𝑃𝑇)  (3) 

And, 

𝑅2 = 𝜆(𝑁2. 𝑃𝑇)  (4) 

Where, PT is the properties table.  

 

On a given situation, if both the ranges overlap, then it is 

justified to mention that, in case of overloading on either of 

the nodes, the load can be distributed over two range 

overlapping nodes as, 

{𝑁1 ↔ 𝑁2} : :{ 𝑅1 ∩ 𝑅2 ≠ 𝜙}, 𝐶1 < 𝐶′
1 (5) 

This is the foundational strategy for load balancing in case 

of IoT networks.  

Henceforth, in the light of the foundational strategy, in the 

next section of this work, the parallel and recent research 

outcomes are analyzed.  

3. Parallel Research Outcomes 

In the recent times, the parallel research outcomes have 

come a long way from the baseline method. This section of 

the work is dedicated to critically analyze the persistent 

research bottlenecks of the research.  

The total performance of a parallel and distributed 

computing system is intimately linked to load balancing, as 

shown in the work of Q. Liu et al. [1]. It is true that 

communication and processing difficulties related to the 

Internet of Things (IoT) have been extensively researched 

in data centre contexts, but this has not been the case for 

edge scenarios. For the latter, processing data in a load-

balanced manner is more difficult. In an IoT edge system, 

both the data sources and the network infrastructure are 

dynamic, unlike in a data centre. This is the fundamental 

reason. The performance model and runtime optimization 

for the whole system will be difficult to quantify given the 

diverse performance needs of IoT networks and edge 

servers. This paper proposes a load-balancing networking 

strategy for effective data processing in IoT edge devices to 

address this issue. A dynamic clustering solution for IoT 

networks based on the upcoming deep reinforcement 

learning (DRL) is presented in this study. This approach 

fulfils both the communication and compute balancing 

needs of IoT networks and edge servers. Dueling Double 

Deep Q-Learning Network (D3QN) model is implemented 

in this study, and our tests using real world datasets obtained 

from an autonomous car show that our suggested technique 

may achieve considerable performance increase compared 

to benchmark methods. 

A dynamic load-balancing technique, EdgeSafe, was 

presented by C. Roy et al. [2] for delivering Safety-as-a-

Service (Roy et al., 2018). Sensor nodes in a Safe-aaS 

architecture may be either stationary or mobile, depending 

on whether the cars they're coupled to are stationary or 

moving. As a result, the mobile sensor node's distance from 

the edge nodes in its vicinity varies. It is imperative that the 

data be processed at the edge nodes since it is so time 

critical. This work does load balancing in two phases, using 

road transportation as the application case for Safe-aaS. The 

initial step in this process is to determine the desired 

capacity ratio of the edge nodes within the sensor nodes' 

communication range. second step of this study uses 

Markowitz Portfolio Selection Theory for edge node 

selection. Edge nodes are selected based on their 

profitability and risk, and their portfolio is designed 

accordingly. After then, the utility of each node on the edge 

is tallied up separately. In order to minimise the utility of the 

edge nodes, this paper develops an optimization function. 

According to extensive simulation findings, EdgeSafe is 

capable of increasing data rates by 41.37 percent, 35.64 

percent and 21.05% respectively, compared to the current 

schemes $HO$ (Park et al. 2018), $MLB$ (Lobinger et al., 

2010) and Honeybee $HO$ (Park et al. 2018). (Fernando et 

al., 2019). 

According to A. Amjad et al. [3], the Internet of Things 

(IoT) has led to the development of linked infrastructures 

with more flexibility and efficiency for Industry 4.0. The 

term "Industrial IoT (IIoT)" has been coined to describe the 

IoT-enabled remote monitoring of a broad range of 

industrial operations as part of Industry 4.0. Data 

interoperability is the most difficult issue in enabling 

smooth real-time communication in the IIoT because of the 

enormous number of heterogeneous devices involved. 

Various IoT application layer protocols must be integrated 

with different data collecting protocols and 

hardware/software platforms in order to achieve data 

interoperability. The state-of-the-art has many such 

integrations, but it is rare to find an in-depth exploration and 

analysis of these techniques in a single research paper. The 

interoperability of application layer protocols for IIoT is 
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examined in this article as a result of a Systematic Literature 

Review (SLR) that examines 34 significant academic 

publications released between 2014 and 2020. As a result, 

the studies chosen for inclusion fall into three distinct 

categories: To address interoperability challenges, 13 

papers addressed the integration of IoT application layer 

protocols; 6 papers addressed the integration of IoT and data 

collection protocols; and 15 papers addressed the integration 

of IoT protocols with hardware and software platforms. 1. 

An additional nineteen (19) tools that were included into the 

chosen research projects are also documented in this paper 

as a result, leading methods for integrating data, such as 

Gateways, are widely accepted. As a result of this research, 

it has been determined that, although researchers frequently 

propose centralised intermediaries (such as a gateway or a 

protocol converter) and distributed intermediaries (such as 

Middleware), in order to achieve the required 

interoperability for IIoT, a device-level approach is now 

required. Multi-industry interoperability issues including 

scalability, load balancing and a failure point in a system 

will be addressed. 

According to study by A. Asghar et al. [4], health 

monitoring systems have begun experiencing challenges, 

such as efficient processing and latency, as a result of the 

rising volume of data. The Internet of Things (IoT), cloud 

computing, fog computing, and wireless sensor networks 

(WSN) have all been used in the development of health 

monitoring systems (IoT). Health monitoring systems in 

general have been built with cloud computing architecture 

in mind. Big-scale deployment of latency-sensitive 

healthcare applications is hampered by the significant delay 

generated by the cloud-based architecture while processing 

large amounts of data. Latency issues may be alleviated, 

resources can be more easily accessed, and security can be 

improved considerably using fog computing. To reduce 

latency and network utilisation, this study proposes a fog-

based health monitoring system design for large-scale 

deployment of the health monitoring system, the authors 

introduce a novel Load Balancing Scheme (LBS) for 

balancing load among fog nodes. Researchers used iFogSim 

to run simulations and contrasted their findings with those 

of other approaches, such as the cloud-only implementation, 

Fog Node Placement Algorithm (FNPA), and LoAd 

Balancing Algorithm (LAB). With the suggested health 

monitoring system implementation, latency and network 

use will be drastically reduced in comparison to the current 

cloud-only model, as well as FNPA and LAB Scheme. 

Y. Shao et al. have made yet another significant contribution 

with their work on software-defined Internet-of-things 

networking (SDIoT). [5] In large-scale IoT networks, per-

flow sampling dramatically simplifies network monitoring 

by keeping track of all the current flows in the network and 

sampling the IoT devices on each flow route to obtain real-

time flow data. Controller sampling preference and 

balancing device loads are intertwined in this system. When 

it comes to IoT devices in the flow route, controllers may 

opt to sample some of them for more accurate flow statistics. 

However, uniform sampling of the devices is preferred in 

order to maintain an equilibrium between their energy use 

and longevity. Markov decision processes are used to model 

the flow sampling issue in large SDIoT networks, and 

strategies that strike a suitable compromise between these 

two objectives are proposed in this research. The optimum 

policy, state-independent policies, and index policies are all 

examined (including the Whittle index and a second-order 

index policies). The most favoured policy is the second-

order index policy: First, it's on par with the Whittle index 

policy in terms of performance; second, it surpasses state-

independent policies significantly. State-independent and 

Whittle index policies are equal in terms of complexity, 

although this policy is simpler than optimum policy in terms 

of realizability and does not need previous knowledge of 

network dynamics. 

An earlier study by H. Choi et al. [6] took a similar turn in 

this direction, as well. When it comes to cell range 

expansion (CRE) in dense heterogeneous networks, this 

research provides an online bias offset (BO) management 

strategy based on COMORL (HetNets). Comorl aims to 

increase the number of user devices (UEs) that meet their 

quality of service (QoS), particularly in terms of latency and 

data rates, by controlling BOs for CREs. In order to meet 

these needs, this study created a QoS satisfaction indicator 

that quantifies delays by taking into account both the QoS 

standards and the ratio of signal to interference and noise in 

a given channel (SINR). In addition, this study developed a 

cooperative multi-agent online reinforcement learning 

system to solve a Markov decision process model. Load-

coupled base stations benefit from the planned COMORL 

concept. Throughput, delay satisfaction ratio, and fairness 

are all shown by our simulation findings for COMORL. A 

dynamic scenario including medium and full traffic loads is 

used to test if the suggested COMORL scheme improves the 

delay satisfaction ratio by as much as 27% and 30% 

compared to the max-SINR method. 

Because of the scalability of the cloud and the need to 

minimise network latency, a new processing paradigm for 

the Internet of Things (IoT) has been proposed by Z. Nezami 

and colleagues [7]. It is, on the other hand, very difficult to 

achieve this level of flexibility in the dispersed networked 

ecosystem of heterogeneous computing resources at the 

edge-to-cloud continuum. Traffic patterns and a growing 

demand for low-latency services need a balance between 

service location and response time. A key component of 

efficient fog computing administration and operations is 

load-balancing. A decentralised load-balancing problem for 

the placement of Internet of Things (IoT) services is 

formulated and studied in this paper in order to minimise the 

cost of deadline violation, service deployment, and unhosted 
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services, in terms of (global) workload balance and (local) 

quality of service (QoS). It is recommended that an edge-to-

cloud node-based decentralised multi-agent learning 

system, called EPOS Fog, be used to balance input 

workloads throughout the network and reduce service 

execution costs at the same time. In order to improve edge 

usage while minimising service execution costs, the agents 

collaborate to develop a set of feasible resource allocations. 

It has been shown that EPOS Fog outperforms First Fit and 

Cloud-based techniques in terms of of workload balancing 

as well as of Quality of Service. Using EPOS Fog, network 

nodes are more evenly distributed, and service execution 

delays are lowered by up to 25%. By collecting collective 

intelligence, the results indicate how dispersed computing 

resources on the edge may be more cost-effectively 

employed. 

S. Aljanabi et al. [8] suggested that the need to equip these 

devices with high processing capabilities seems to execute 

the applications more rapidly and smoothly as the internet 

of things (IoT) devices and apps continue to grow. Even 

while manufacturers strive to offer IoT devices with the 

greatest technology, there are still certain disadvantages 

associated with running some advanced apps like virtual 

reality and smart healthcare based. Complex application 

activities related with the cloud servers are offloaded to the 

cloud servers and returned to the appropriate applications 

using a hybrid cloud-fog-offloading (HFCO) model. IoT 

nodes in the HFCO must decide on where to offload a high-

requirement processing job if they can't perform it 

themselves. The choice is based on the task's needs and the 

presence of neighbouring nodes of fog. While many fog 

nodes and IoT nodes need to offload their jobs, selecting the 

optimal fog node for each activity is an issue. According to 

the needs of the applications and the circumstances of 

nearby fog nodes, this study proposes a unique solution to 

the issue, in which the IoT node may choose whether to 

offload duties to a fog node or to the cloud. The cloud or 

other fog nodes may be used to offload work, distributing 

the burden and improving present circumstances, so that 

activities can be completed more quickly. A Markov 

Decision Process (MDP) is used to model the situation 

(MDP). The model is solved, and the best offload strategy 

is selected using a Q-learning technique. By lowering 

latency and completing more jobs, the suggested strategy 

outperforms other approaches in numerical simulations. 

Task deployment has become a research hotspot in the 

combined "cloud-edge" datacenter, according to Y. Dong et 

al. [9]. The present "cloud-edge" datacenter is overcrowded 

with most of the hosts, which might lead to an uneven load 

in the datacenter. As a result, existing research focuses 

primarily on the issue of unilateral load balancing of cloud 

or edge computing centres. JCETD (Joint Cloud-Edge Task 

Deployment) is a resource management and task 

deployment technique based on pruning algorithm and deep 

reinforcement learning that is designed to achieve efficient 

deployment of "cloud-edge" jobs and overall load balancing 

on the basis of joint "cloud-edge" deployment. In the first 

place, the "cloud-edge" hosts are pruned based on the 

physical host's attribute value. So, the algorithm's 

computational complexity will be reduced, and the system's 

computational efficiency will be improved by a group of 

joint hosts that are not dominant. Second, the "cloud-edge" 

model simulates task deployment as a deep reinforcement 

learning process. The cloud computing centre and the edge 

computing centre are able to effectively and appropriately 

distribute work via constant investigation and use of the 

system environment. To sum it up, the "cloud-edge" 

approach has the potential to improve computing 

performance while also better distributing workloads. When 

compared to previous studies, our findings reveal that our 

method dramatically lowers the overall completion time and 

average response time, allowing us to better serve our 

customers and achieve load balancing for our combined 

"cloud-edge" system. 

By outsourcing demanding calculations to the omnipresent 

MEC server, mobile edge computing (MEC) may reduce the 

resource constraints imposed on mobile device users 

(MDU) [10]. However, existing offloading rules enable 

MDUs to send their jobs to the same linked small base 

stations (sBSs), which necessarily increases latency and 

limits performance gain owing to overload. It's also not clear 

how to deal with the problem of protecting sensitive 

information from being shared. As a result, in this research, 

in addition to offering a combined load balancing and 

computation offloading (CO) approach for MEC systems 

this work introduces a new security layer. At this point in 

the process, we offer a load balancing method for 

redistributing MDU resources efficiently across the sBS. As 

an additional layer of security, a novel advanced encryption 

standard (AES) cryptographic approach infused with 

electrocardiogram (ECG) signal-based encryption and 

decryption key is provided. It's also structured as an 

integrated model for balance, CO, and security, with the 

purpose of saving time and energy. According to extensive 

experimentation, we found that our approach, with and 

without extra security layers, may reduce system usage by 

about 68.2 percent and 72.4 percent, respectively. 

There is adequate evidence to support the use of ISDN, as 

shown by N. A. S. Al-Jamali and colleagues [11]. Using an 

intelligent controller and an intelligent ISDN (software 

defined network), a network may be managed and 

controlled in an amazing manner. A partial recurrent spike 

neural network (PRSNN) congestion controller is proposed 

in this article to estimate the packet flow at the sensing plane 

in the software defined network-Internet of Things (SDN-

IoT) to predict the next step ahead of packet flow and thus 

reduce the congestion that may occur. A congestion 

controller is added to the suggested model (spike ISDN-
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IoT). In the suggested approach, this controller serves as a 

proactive controller. A reactive controller based on an 

artificial neural network is also proposed in this study to 

regulate clustering in the spike ISDN-IoT sensor's sensing 

region. An intelligent queuing model is provided to control 

the buffer capacity of the spike ISDN-IoT network's flow 

table buffers, hence enhancing the overall network's quality 

of service. In order to teach the PRSNN to alter its weight 

and threshold, a new training algorithm is developed. As 

compared to a convolutional neural network, the suggested 

model improves the quality of service by 14.36 percent. 

According to X. Zheng et al. [12], sensor-cloud 

infrastructure provides a flexible and reconfigurable storage 

platform for massive amounts of sensed data in various 

application areas monitored by resource-limited networks 

such as wireless sensor networks (WSNs), ad-hoc networks, 

and the Internet of things (IoT) (IoT). These networks are 

employed in a variety of ways to aid people in their 

everyday lives because of their overwhelming qualities. 

However, these networks face a variety of challenges, 

including dependability in communication and processing, 

storage of the huge data, effective usage of on-board battery, 

maximum lifespan accomplishment, the least feasible 

average packet loss ratio, and dependable routing 

mechanisms. Even though several communications and load 

balancing strategies have been presented in the literature, 

these systems are either application-specific or overly 

complicated. Using the resources that are currently 

available, this research aims to provide a dependable 

communication and load balancing strategy for resource-

constrained networks. Each sensing device Ci is obligated 

to calculate the transmission capabilities of its nearby 

devices, which are residual energy Er, hop count Hc, round 

trip time (RTTi), and processing cost under the proposed 

architecture in order to fulfil these aims. To begin with, a 

source device chooses a nearby device Ci with a minimal 

Hc value over those with highest Hc values in order to 

ensure reliable wireless connection. By requiring all devices 

in a network to locate and use just two of the four most 

trustworthy and shortest routes, this design ensures that data 

is always sent via the most secure and efficient channel. As 

a result, gadgets Ci that exist on these pathways do not 

consume their on-board battery faster than those that do not. 

When one or two nearby devices Ci use up to 80% of their 

on-board battery, the allocated weight-age factors may be 

fine-tuned such that the maximum weightage is given to the 

remaining energy Er and the lowest weight-age is applied to 

Hc value. In terms of average packet delivery ratio, average 

throughput, end-to-end latency, and total network lifespan, 

simulation findings reveal that the proposed reliable 

communication and load balancing system outperforms 

field-proven techniques. 

Many different types of Internets of Things (IoT) devices 

are now linked to each other over the Internet. The 

bottleneck noted by W. Zhang et al. [13] is how to fulfil the 

needs of running IoT applications. Using the public cloud to 

host IoT applications is a cost-effective way to increase the 

computational power of these devices. IoT devices are 

located far away from the public cloud, which means that 

transmission delays will occur. Since IoT devices are close 

to MEC servers, this problem can be solved using mobile 

edge computing (MEC). When it comes to providing cloud 

services, pricing and load balancing are critical. Choosing 

an edge cloud service provider (ESP) based on pricing and 

load balancing is critical since it has a direct impact on the 

quality of the cloud service. Multi-cloud systems employ 

cloud service brokers (CSBs) to reserve resources from 

several cloud service providers (CSPs) and then provide 

cloud services to customers. Despite the fact that a lot of 

previous work has focused on offloading IoT applications to 

the MEC, many of these studies have only explored one 

scenario for multi-MEC deployments. This study examines 

the price and selection of services for offloading IoT 

applications in a multi-MEC system with several ESPs. It is 

described in this paper. This work specifically considers 

load balancing. Cloud service providers (CSBs) are initially 

given service pricing and load balancing techniques by CSB 

to optimise their revenues. Then, IoT users decide which 

ESP they want to utilise for their devices. The best answers 

may be found by using a backward induction method. 

Simulation data are used to verify the suggested strategy. 

Resource-constrained smart devices that can perceive and 

interpret data make up the Internet of Things (IoT). In other 

words, it links a large number of smart sensing devices, or 

"things," as well as many heterogeneous networks. Different 

applications, such as smart health, smart home, and smart 

grid, use the Internet of Things (IoT). Pilot experiments at 

healthcare institutions have led to the notion of "smart 

healthcare," which is being studied in several countries. The 

safety of IoT devices and data is critical in IoT-enabled 

healthcare systems, and Edge computing provides a 

potential architecture for addressing these issues. As IoT 

devices in healthcare systems improve their communication 

and calculation speed, they have the potential to deliver low 

latency data services enabled by edge computing. IoT Edge-

Based IoT-enabled healthcare systems use artificial 

intelligence (AI), a smart software-defined network (SDN) 

management, to balance network traffic, optimise resource 

usage, and save costs. Using SDN-based Edge computing, 

IoT devices may make better use of their limited resources. 

Patients' private sensitive data is at risk because of the 

limited power of these devices and the related data. To 

address these concerns in a healthcare IoT system, this study 

proposes a safe architecture for Edge computing based on 

SDN. The Edge servers in the proposed architecture use a 

lightweight authentication system to verify the identity of 

IoT devices. They then submit the patient's information to 

Edge servers for storage and analysis after authentication. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4), 402–412 |  407 

Load balancing and network optimization in the healthcare 

system are handled by an SDN controller that is linked to 

the Edge servers. Computer simulations are used to test the 

suggested framework. According to J. Li et al. [14], the 

findings reveal that the proposed framework offers superior 

solutions for IoT-enabled healthcare systems. 

Work by Babou and colleagues [15] also showed substantial 

results as the edge computing system is becoming more 

popular and is projected to meet the ultra-low reaction time 

requirements of developing IoT applications. The growing 

traffic that requires highly sensitive delay has led to a new 

system design for Edge Computing, dubbed Home Edge 

Computing (HEC), which supports these real-time 

applications. the central cloud, HEC servers, and Multi-

access Edge Computing (MEC) servers all work together to 

provide a three-tiered architecture for HEC. Latency issues 

on HEC servers may be alleviated using this paper's 

proposed approach. When there is an increase in traffic, 

there is an increase in processing time (delay) for requests 

on these servers. This paper proposes a novel approach, 

HEC-Clustering Balance, based on clustering and load 

balancing techniques. It enables us to distribute requests on 

HEC clusters in a hierarchical manner, which is an 

important aspect of the design for reducing latency. The 

findings reveal that HEC-Clustering Balance is more 

efficient than conventional clustering and load balancing 

strategies. On two experimental cases, our approach reduced 

processing time on HEC servers by 19 percent and 73 

percent relative to the HEC design. 

Henceforth, after realizing the parallel research 

improvements, the persistent problems in this domain of 

research are formulated mathematically in the next section 

of this work. 

4. Problem Formulations 

 Further, after the detailed analysis of the parallel research 

outcomes carried out in the recent times, in this section of 

the work, the persisting problems in this domain of research 

are formulated mathematically. During the analysis of the 

parallel research outcomes in the previous section of this 

work, primarily two major research problems are identified.  

Firstly, the complete process for load balancing actually 

relies on the availability of the neighboring nodes. 

Considering a situation, where the neighboring nodes are 

not found, then the complete process is bound to fail.  

Continuing from Eq. 5, Assuming that, for the node NX, the 

set of neighboring nodes are NN[]. The number of elements 

in the NN[] set can be calculated using the 𝛾function as,  

𝛾{𝑁𝑁[]} = 𝑅   (6) 

In case of very low number of members in the NN[] set, as 

𝑅 → 0, the possibilities of finding the appropriate nodes for 

balancing will fail. Secondly, during the load balancing 

condition, if the neighboring node, which are in range, does 

not contain the same data values, then, the existing strategies 

are bound to incur additional time complexity for the overall 

process.  

From Eq. 5 again, assuming that for the node NX, the set of 

neighboring nodes are identified with T1 time complexity. 

This can be formulated for each unit of time m as,  

𝑇1 = ∏ 𝑁[]{𝑁𝑋↔𝑁𝑌} ::{𝑅𝑋∩𝑅𝑌≠𝜙},𝐶1<𝐶′
1

∗ 𝑚  (7) 

This can be reformed in the light of Eq. 6 as,  

𝑇1 = 𝑅 ∗ 𝑚 ⇒ 𝑂(𝑚2)|𝑅 ≈ 𝑚  (8) 

Further, assuming that, out of R number of elements in the 

neighbouring nodes and all these nodes does not contain the 

similar data as the source node. Thus, the data replication 

must be performed before load distribution. Assuming that, 

T2 is the time complexity for data replication with a unit 

time for k. Thus, this can be formulated as,  

𝑇2 = 𝑅 ∗ 𝐾   (9) 

This can be reformed as,  

𝑇2 = 𝑂(𝐾2)   (10) 

Henceforth, the total time complexity can be formulated as,  

𝑇1
𝑇2 = 𝑂(𝑚2)𝑂(𝐾2)   (11) 

This can be re-written in terms of n as,  

𝑇1
𝑇2 = 𝑂(𝑛22

)   (12) 

Considering a large network, it is natural to realize that, the 

total time complexity will be significantly higher and this 

added time complexity will surplus the time reduced using 

the load balancing algorithms. 

Henceforth, these two identified problems are to be solved. 

In the next section, the foundation of the proposed solution 

is furnished using mathematical models. 

5. Proposed Solutions and Mathematical Models 

After realizing the problems in the current research, in this 

section of the work, the proposed solutions are furnished 

using mathematical models.  

Assuming that, the total data in the process for the 

considered network is D[] and each data item at various 

nodes are considered as DX. Thus, for a p number of data 

items, this can be formulated as,  

𝐷[] =< 𝐷1 , 𝐷2, 𝐷3, . . . . 𝐷𝑝 >  

 (13) 

Assuming that FND() is the function to extract the data 

available in each node, thus for a two given nodes NX and 

NY, the relation can be formulated as,  
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𝐷𝑋 = 𝐹𝑁𝐷(𝑁𝑋)   (14) 

And,  

𝐷𝑌 = 𝐹𝑁𝐷(𝑁𝑌)   (15) 

Here, the data points available in both the nodes must be 

identical to some extend as,  

𝐷𝑋 ≈ 𝐷𝑌   (16) 

Also, assuming that, these two nodes share arrange, thus in 

the light of Eq. 5, the following relation can be formulated,  

{𝑁𝑋 ↔ 𝑁𝑌} : :{ 𝑅𝑋 ∩ 𝑅𝑌 ≠ 𝜙}  (17) 

Hence, combining Eq. 5, Eq. 16 and Eq. 17, the following 

formulation can be established as,  

{𝑁𝑋 ↔ 𝑁𝑌} : :{ 𝑅𝑋 ∩ 𝑅𝑌 ≠ 𝜙, 𝐷𝑋 ≈ 𝐷𝑌}, 𝐶𝑋 < 𝐶′
𝑋  (18) 

This strategy not only solves the problem of finding the 

neighboring nodes rather also ensure the availability of the 

data in the selected node. Hence, the reduction of the time 

complexity is significant here.  

Assuming that, the time complexity of the proposed strategy 

as T, thus T can be formulated as,  

𝑇 = 𝑂(𝑛)   (19) 

As the selection of the nodes also ensured the reduced 

replication of the data. Hence the proposed method has to 

do only one iteration for neighbor selection during load 

balancing strategy. Further, based on the proposed 

mathematical model, in the next section of this work, the 

proposed algorithms are furnished. 

6. Proposed Algorithms 

After the detailed analysis of the proposed strategy using the 

mathematical model, in this section the proposed algorithms 

are furnished. Firstly, the Data Affinity Detection with 

Process Detection algorithm is furnished. 

Algorithm - I: Data Affinity Detection with Process 

Detection (DAD-PD) Algorithm 

Input: List of Nodes as N[], Source Node as SN 

Output: List of available Nodes as N1[] 

Process:  

Step - 1. For each element in N[] as N[i] 

a. If N[i] is SN 

b. Then, Next: i++ 

c. Else,  

d. Read process table for N[i] as PT[i] 

i. If PT[i] == PT[i+1] and PT[i]. Data 

== PT[i+1]. Data 

ii. Then, N1[j]=N[i] 

Step - 2. Return N1[] 

The benefits of this proposed algorithm are already been 

furnished in the previous sections of this work. Secondly, 

Neighbour Selection using Range Detection algorithm is 

furnished. 

Algorithm - II: Neighbour Selection using Range 

Detection (NS-RD) Algorithm 

Input: List of Nodes as N[], Source Node as SN 

Output: List of available Nodes as N2[] 

Process:  

Step - 1. For each element in N[] as N[i] 

a. If N[i] is SN 

b. Then, Next: i++ 

c. Else,  

d. Extract the range for N[i] using Eq. 3 

i. If N[i].range == N[i+1].range 

ii. Then, N2[j]=N[i] 

Step - 2. Return N2[] 

 

The benefits of this proposed algorithm are already been 

furnished in the previous sections of this work. Thirdly, Load 

Balancing using Range and Data Affinity algorithm is 

furnished. 

 

Algorithm - III: Load Balancing using Range and Data 

Affinity (LB-RDA) Algorithm 

Input: List of Nodes as N[] 

Output: Load Balancing Nodes as NLB[] 

Process:  

Step - 1. For each node in N[] as N[i] 

    a. Calcuate the capacity for N[i] as N[i].C using Eq. 2 

    b. Calcuate the utilization for N[i] as N[i].C' using Eq. 

2 

    c. If N[i].C < N[i].C' 

    d. Then,  

    e. Mark as N[i] as over loaded 

    f.  Check for N[i+1] in N1[] and N2[]  

    g. NLB[]=N[i+1] 

Step - 2. Return NLB[] 
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The benefits of this proposed algorithm are already been 

furnished in the previous sections of this work. 

Further, in the next section of this work, the obtained results 

are furnished. 

7. Results and Discussions   

After the realization of the proposed strategy and the 

proposed algorithms in the previous sections of this work, in 

the next section of this work the obtained results are 

furnished.  

During the simulation operations, nearly 500 IoT device 

connected network for more than 100 iterations of testing, 

the obtained results are seen to be extremely satisfactory. For 

the representation purposes, only 10 iteration results are 

displayed.  

Firstly, the dataset [20] total number of nodes and the 

overloaded nodes are compared [Table 1]. 

Table 1. Units for magnetic properties 

Trail 

Seq. 

(#) 

Number of 

Nodes 

Number of 

Overloaded 

Nodes 

Percentage 

of Over 

Loaded 

Nodes (%) 

1 422 273 64.69 

2 496 95 19.15 

3 435 429 98.62 

4 484 241 49.79 

5 490 138 28.16 

6 401 206 51.37 

7 458 399 87.12 

8 405 262 64.69 

9 494 156 31.58 

10 469 262 55.86 
  

The results are visualized graphically here [Fig. 1]. 

 

Fig. 1.  Network Loaded Node Estimation Analysis 

It is natual to realize that, the network under consideration 

is highly loaded and the application of the load balancing 

strategy is justified. Secondly, the energy consumption 

analysis is carried out [Table 2]. 

Table 2. Analysis of Energy Consumption 

Trail Seq. (#) Energy Consumption (kW) 

1 8.594 

2 9.952 

3 7.322 

4 7.546 

5 6.187 

6 6.469 

7 6.011 

8 9.863 

9 9.621 

10 9.018 

The results are visualized graphically here [Fig – 2]. 

 

Fig. 2. Energy Consuption Analysis 

It is notable that, during the actual load balancing process, 

the network maintained a nearly constant energy 

consuption. Thirdly, the load balancing time for the network 

are furnished here [Table 3]. 
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Table 3. Load Balancing Time Analysis 

Trail Seq. (#) 

Load 

Identification 

Time (ms) 

Load 

Distribution 

Time (ms) 

1 0.193 0.152 

2 0.145 0.152 

3 0.165 0.165 

4 0.145 0.172 

5 0.114 0.181 

6 0.167 0.138 

7 0.126 0.131 

8 0.140 0.159 

9 0.168 0.187 

10 0.170 0.197 

 

The results are visualized graphically here [Fig. 3].  

 

Fig. 3. Load Balancing Time Analysis 

It is noteworthy to observe that; the load identification 

and the load distribution time is almost static.  

Further, the improvements over the network life time 

are analyzed [Table 4]. 

 

 

 

 

 

 

 

 

Table 4. Network Life Time Analysis 

Trail Seq. (#) 
Initial Network 

Life Time (hours) 

Load 

Balanced 

Network Life 

Time (hours) 

1 1129.90 6779.40 

2 832.50 5827.50 

3 828.40 4142.00 

4 1196.40 9571.20 

5 1124.20 10117.80 

6 843.10 5901.70 

7 955.20 4776.00 

8 1126.60 5633.00 

9 1050.80 7355.60 

10 1175.70 9405.60 

 

Further, the results are graphically visualized [Fig. 4]. 

 

Fig. 4. Energy Consuption Analysis 

Finally, the significant improvements of the network life 

time is the key indication, that the proposed algorithms have 

distributed the loads highly accurately. Further, in the next 

section of this work, the research conclusion is presented. 

8. Conclusion 

This means that as the use of wireless communication 

grows, there is a greater need for more complicated, easy to 

use and cheap solutions. A wide range of network solutions 

was needed, from wireless sensor networks to wireless ad-

hoc networks to the Internet of Things. This led academics 

to get involved in the development of network solutions that 

were acceptable. Inventions made by researchers have led to 

a rise in the desire for more progress by current researchers. 

Network protocols were the focus of research and 

development at the start of the project. IoT devices are being 

used in a wide range of industries and are collecting a lot of 
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data through sophisticated apps, no matter what. This means 

that you need to learn more about IoT network load 

balancing. As IoT networks become more crowded, 

researchers have tried to find ways to cut down on the costs 

of communication. IoT nodes should be spread out evenly 

across the network's load in these studies, they said. A cloud 

service will one day store and process data from IoT nodes 

and the applications that use that data. This will take some 

time. IoT network protocols make it hard to find a cloud-

based load balancer that can meet the needs of those 

protocols, though. In this study, a new method is used to 

deal with the load management of IoT network frameworks. 

The main goal of this study is to come up with a load 

balancer that takes into account the limited energy and 

processing power of IoT nodes, but also wants to improve 

the response time of the IoT network. In the design of the 

algorithm for a load balancer, it was thought about how easy 

it would be to integrate with current IoT frameworks. 
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