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Abstract: Software effort estimation is essential to efficiently managing risks, resource allocation, and project planning in software 

projects. Despite the widespread usage of traditional estimating approaches, their accuracy frequently needs to be improved due to 

software development's intricate and dynamic nature. Deep learning methods are now being investigated for software effort estimation 

due to their outstanding promise in many fields. However, data heterogeneity and noise can constrain the prediction performance of a 

single deep-learning model. We thoroughly investigate the use of deep learning stacking algorithms for software effort estimation in this 

research. Stacking, an ensemble learning strategy, uses the combined predictive strength of various base models to balance out individual 

flaws and improve accuracy overall. Our study focuses on this method's ability to handle problems with software effort estimates and its 

potential to deliver cutting-edge predictive performance. We assess how well individual deep-learning models perform compared to 

stacked ensembles and conventional estimation methods. This research thoroughly examines stacking deep learning algorithms for 

software effort estimates, highlighting their effectiveness in enhancing forecast accuracy and resilience. The conclusions have essential 

ramifications for managing software projects, enabling better resource allocation, risk avoidance, and more fruitful software development 

endeavors. 
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1. Introduction 

The effective planning and execution of software 

development projects depend heavily on accurate software 

effort estimation [1][2][3]. The ability to make educated 

judgments about resource allocation, project scheduling, 

and risk management is made possible by accurate 

projections [4][5][6]. To increase estimation accuracy, 

researchers and practitioners have investigated various 

strategies over time, from basic statistical models to more 

complex machine learning algorithms [7][8]. In recent 

years, deep learning algorithms have become a potent 

method for resolving complicated issues in multiple fields. 

They have shown promising results in tasks like image 

recognition, natural language processing, and speech 

synthesis thanks to their capacity to learn complex patterns 

and representations from large-scale data [9]. Because 

software development is dynamic and complicated, deep 

learning algorithms present an alluring way to improve 

software work estimation [10]. Deep learning algorithms' 

promise for software effort estimation was first 

demonstrated in the fundamental work by Rahman and 

Devadoss. Their study produced optimistic results by 

employing separate deep-learning models to forecast 

software development efforts [11]. However, the 

performance of individual models may be constrained by 

inherent difficulties in software development, such as data 

heterogeneity and noise [12]. We suggest a unique 

ensemble learning approach employing stacking for 

software effort estimates to address these drawbacks 

further and improve forecast accuracy. Using ensemble 

learning approaches, several base models are combined to 

produce a more reliable and precise predictive model [13]. 

We want to overcome the constraints of individual models 

and give more accurate work estimates by utilizing the 

collective intelligence of various deep learning algorithms, 

each designed to capture distinctive parts of software 

project data. In-depth research on the efficacy of stacking 

deep learning models for software effort estimation is 

presented in this publication. We compare the 

effectiveness of distinct deep learning models to stacked 

ensembles while considering critical criteria like prediction 

accuracy, robustness, and generalization. We also examine 

the interpretability of the stacked models to guarantee 

decision-making is transparent and to reveal the key 

factors affecting effort estimations. 

The work is organized as follows: Section 2 offers a survey 

of the literature summarizing the most recent developments 

in ensemble learning methodology, deep learning 

algorithms, and software effort estimation techniques. The 
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rationale for ensemble stacking and the decision to use 

deep learning architectures as basis models are explained 

in Section 3 of the proposal. The experimental setup, 

including dataset preparation, model training, and 

assessment measures, is presented in Section 4. 

Conclusions are provided in Section 5, which also 

summarises the results and describes how to move the field 

of software effort estimation using deep learning ensemble 

approaches forward. 

2. Literature Review 

Practical software effort estimation has long been a 

problem in software engineering. To deal with this issue, 

many strategies and techniques have been investigated. We 

thoroughly analyze related literature in this section, with a 

particular emphasis on methods for estimating software 

effort, deep learning algorithms, and ensemble learning. 

2.1 Software Effort Estimation Techniques 

Expert judgment, analogy-based estimation, and regression 

models are examples of conventional methods for 

estimating software effort. Expert judgment draws on 

software engineers and project managers' knowledge and 

skills when evaluating efforts based on historical data and 

subject-matter knowledge [14]. Analogical estimating 

makes estimations by drawing on parallels between 

ongoing and previous initiatives. Regression models use 

statistical methods to find connections between project 

variables and effort. Although these techniques have been 

widely employed, they frequently have drawbacks, 

including subjectivity, reliance on past data, and a failure 

to recognize intricate patterns in the data [15]. Advanced 

and data-driven methodologies are required as software 

development projects become more complicated and 

varied. 

2.2 Deep Learning Algorithms 

Deep learning has shown notable success across various 

applications, especially those involving complicated data 

patterns. The neural networks used in deep learning 

algorithms include numerous layers, which enables them to 

learn hierarchical representations from data. Convolutional 

Neural Networks (CNN), created for recognizing spatial 

patterns, Long Short-Term Memory (LSTM) networks 

[16], noted for their capacity to represent temporal 

dependencies; and Transformer-based models, capable of 

capturing contextual information, are some notable deep 

learning architectures [17]. Deep learning has been used in 

software engineering to complete tasks, including code 

completion, defect prediction, and bug discovery. It is a 

strong choice for software effort estimation due to its 

potential for capturing complex correlations in software 

development data. 

 

2.3 Ensemble Learning and Stacking 

The goal of ensemble learning approaches is to combine 

multiple models to increase the accuracy and reliability of 

predictions. A common ensemble technique called stacking 

involves fusing the outcomes of various base models using 

a meta-learner. Stacking can result in more precise and 

trustworthy predictions by taking advantage of the 

complementary capabilities of distinct models [18]. 

Stacking has been effectively used in many industries, 

including finance, image identification, and natural 

language processing. Its potential for estimating software 

work still needs to be tapped, though. By stacking various 

deep learning models, it may be possible to get around the 

drawbacks of individual models and produce effort 

estimates that are more precise and trustworthy. 

2.4 Gap in the Literature 

There needs to be more research exploring the possibilities 

of ensemble techniques, mainly stacking, in this domain, 

even though individual deep learning models have shown 

promise in software effort estimation. The benefits of 

merging deep learning models for improved estimation 

accuracy and resilience can be better understood if this gap 

is filled. By examining the efficacy of stacking deep 

learning models for software effort estimation, the 

proposed research intends to close this gap. We anticipate 

increased prediction accuracy and more accurate effort 

estimates by utilizing the collective intelligence of many 

base models, ultimately growing the state-of-the-art in 

software effort estimation methodologies. A detailed 

assessment of software effort estimating research, 

including both established methods and novel ideas, is 

provided by Boehm and Sullivan. The report emphasizes 

the difficulties in precise estimating and offers information 

on the shortcomings of conventional approaches. Although 

deep learning algorithms are not discussed in this paper, it 

provides the framework for the requirement to investigate 

alternate methods for estimating software effort [14]. 

Shepperd, M.; Menzies, T. centered on estimating software 

work comparable to predicting software flaws. The 

significance of using cutting-edge machine learning 

methods, such as deep learning algorithms, to boost 

predictive accuracy is highlighted in the article. For the 

incorporation of deep learning in software effort estimation 

research, it offers helpful context [15]. Rahman and 

Devadoss investigate using deep learning techniques for 

estimating software labor. Their research shows the 

capability of deep learning models to capture intricate 

patterns and surpass conventional estimating methods. 

Although the research is primarily concerned with 

individual deep-learning models, it also provides the 

groundwork for future research into stacking methods for 

improved predictive accuracy [11]. Cao, J., Zhang, L., and 

Liu, C. examines the application of Long Short-Term 
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Memory (LSTM) neural networks for estimating 

development effort. The modeling of temporal 

relationships by LSTM is highlighted, and its efficacy in 

enhancing estimation accuracy is shown. The influence of 

stacking LSTM models for software effort estimation will 

need to be studied further because the study does not 

examine ensemble strategies like stacking [16]. Wang et al. 

describe a method for effort estimation based on 

convolutional neural networks (CNN) for software 

projects. Their research demonstrates CNN's capability to 

identify geographical patterns in software development 

data. 

Similar to earlier studies, the stacking of CNN models is 

not examined. The investigation of stacking CNN models 

for better software effort estimates is motivated by this 

publication [17]. In their study, Jin et al. explore the 

application of Transformer-based models for estimating 

software labor. Transformers are an excellent choice to 

address software effort estimation issues since they have 

successfully gathered contextual information. Ensemble 

approaches should be examined in the study. The 

exploration of stacking Transformer-based models to 

increase estimation accuracy is motivated by this work 

[19]. Zhou and Zhang thoroughly analyze software effort 

estimates that compare several estimation methods. While 

deep learning is only partially covered, the review offers a 

thorough overview of the current approaches and their 

shortcomings. This survey provides valuable context for 

incorporating knowledge in software effort estimation 

research, mainly stacking.  

Overall, the literature review shows an increasing interest 

in using deep learning algorithms for software effort 

estimation, such as LSTM, CNN, and Transformer-based 

models. However, much research still needs to be done on 

using stacking approaches to enhance predictive 

performance. This work evaluates the effectiveness of 

stacking deep learning algorithms for this crucial task to 

bridge this gap and advance software effort estimation 

methodologies. 

3. Proposed Approach - Stacking Deep Learning 

Models for Software Effort Estimation 

In this, we outline a suggested strategy for enhancing 

software effort estimation by stacking ensemble learning 

with deep learning models. We want to combine the 

predictive capabilities of various deep learning 

architectures, including LSTM, CNN, and Transformer-

based models, to build a more reliable and accurate 

estimating model. The essential elements of our suggested 

strategy are outlined in the following subsections. 

 

Fig 1: Block diagram of the proposed Model 

Pseudocode: Stacking Deep Learning Models 

# Step 1: Data Preprocessing 

• Load and preprocess the dataset 

• Encode categorical variables (if necessary) 

• Normalize numerical features 

• Split the data into training, validation, and test sets 

# Step 2: Model Selection 

• Implement deep learning architectures for individual 

models (e.g., LSTM, CNN, Transformer) 

• Specify hyper parameters and compile each model 

# Step 3: Stacking Ensemble Configuration 

• Create a list of tuples for base models, where each tuple 

contains a unique identifier and the corresponding deep 

learning model 

• Initialize the meta-learner (e.g., Linear Regression, 

Neural Network) 

# Step 4: Model Training and Evaluation 

• For each base model: 

• Train the deep learning model on the training set 

• Evaluate the model on the validation set using 

evaluation metrics (e.g., MAR, RMSE) 

• Train the stacking ensemble using the predictions 

of base models as features and actual effort values 

as target 

• Evaluate the stacking ensemble on the validation 

set using evaluation metrics 

# Step 5: Interpretability Analysis 

• Perform interpretability analysis on the stacking 

ensemble using techniques such as SHAP 

(Shapley Additive explanations) 

• Visualize feature importance and partial 

dependence plots to understand critical attributes 

influencing effort estimates 

3.1 Data Preprocessing 

We will meticulously preprocess the software project 

datasets to assure the viability of deep learning models for 
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development work estimation. Data preparation is essential 

for dealing with missing values, normalizing 

characteristics, and correcting data imbalances. To derive 

valuable representations from the data, we will also 

investigate methods for dealing with categorical variables 

and feature engineering. The proposed models were 

evaluated in this work using the ISBSG release 11 [20] 

dataset. According to Jorgensen and Sheppard [3], 

employing a legitimate, real-world project in SEE 

increases the trustworthiness of the study. Over 5,000 

industrial projects developed in various programming 

languages and following multiple software development 

life cycles are included in the collection. The new or 

improved development categories include the projects. 

Additionally, utilizing industry standards like IFPUG, 

COSMIC, etc., the software size of each project was 

determined in function points. Therefore, only projects 

with IFPUG-adjusted function points were considered to 

ensure uniformity throughout the research. Each project in 

the collection has more than 100 attributes, including the 

project's number, completion date, program size, etc. The 

ISBSG also assigns grades to the project data quality, from 

"A" to "D," with "A" standing for the highest-quality 

projects, followed by "B," and so on. Even though various 

projects had comparable program sizes, the dataset 

analysis showed that effort varied significantly between 

them. The productivity ratio measures how much software 

effort and output is compared to software size, which is the 

primary input. We saw a sizable difference in productivity 

ratios for projects with similar software sizes. For the same 

adjusted function point (AFP), productivity (effort/size) 

varied from 0.2 to 300. The substantial variety in the 

production ratio contributes to the dataset's diversity. 

Therefore, applying the same paradigm to all projects 

proved unfeasible. To solve this issue, projects were 

grouped according to productivity ratios, improving the 

dataset’s uniformity. 

The productivity of the initiatives in each smaller dataset 

varied relatively slightly when the primary dataset was 

divided into smaller datasets [21]. For this investigation, 

the dataset was divided into three different datasets as 

follows: 

• Dataset 1: small productivity ratio (P), where 0.2 ≤ P < 

10; 

• Dataset 2: medium productivity projects where 10 ≤ P < 

20;  

• Dataset 3: high productivity (P ≥ 20). 

 

Fig 2: Box plot for Table 1 attributes with median, Q1 and 

Q3 

The first three datasets were combined into a fourth dataset 

to examine the effects of grouping projects with different 

production levels. Dataset 3's productivity ranged from 20 

to 330, making it less homogeneous than the first two. The 

1is dataset was used to examine how data 

heteroscedasticity affects how effective fuzzy logic models 

are. Given the ISBSG, as mentioned earlier, dataset 

attributes, the dataset must be filtered using a set of project 

selection rules. The following characteristics were chosen 

for examination: 

• Adjusted function points (AFP): a measure of 

programme size 

• Software effort: the number of hours put in by people 

• Team size: is a measure of how many people are on each 

development team. 

• Development Type: If the project is a new development, 

an enhancement, or a redevelopment, the development type 

will be indicated. 

• Resource level: This categorizes the groups that 

contributed to the creation of this project, including the 

development team, the development support team; the 

computer operations support team, and the end users or 

clients. 

When estimating software development, nonfunctional 

needs should be considered separate from functional 

requirements [16]. All of the qualities mentioned above, 

except for Resource level, which is a category variable, are 

continuous. There are 5052 projects total in the original 

raw dataset. The datasets were filtered using the following 

criteria, which were used to choose projects: 

Data quality: The dataset size was reduced to 4,474 

projects by choosing only projects with data quality A and 

B, as advised by ISBSG. 

• The size of the software in function points 

• One output variable: software effort;  

• Inputs: Team size, development type, AFP, and resource 

level. 

• Only new development projects were counted; any 

enhancement, redevelopment, or other sorts of projects 

were disregarded, bringing the total to 1,805 projects. 
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• Missing data: removing all the rows with missing data 

from the dataset, leaving just 468 completely detailed 

projects 

• Making three separate datasets and a consolidated one 

by dividing the datasets into groups based on productivity, 

as previously mentioned.  

• Dividing each dataset into testing and training datasets 

(70% training and 30% testing)  

Finally, the following datasets are produced: 

• Dataset 1: with productivity 0.2 P 10 consisted of 245 

projects, of which 172 were for testing and 73 were for 

training;  

• Dataset 2: with productivity 10 P 20 consisted of 116 

projects, of which 81 were for testing and 35 were for 

training; and 

• Dataset 3: with productivity higher than or equal to 20 

(P 20) consisted of 107 projects, of which 75 were for 

testing and 32 were for 

• Dataset 4 comprised of 468 projects, including 328 

projects for training and 140 projects for testing, after 

integrating projects from the first three datasets. 

Table 1: Description of Effort attribute on all datasets 

Datas

et 

 

N  

Me

an 

 St. 

dev  

M

in 

Ma

x  

Med

ian  

Skew

ness  

Kurt

osis 

Datas

et-1 

2

4

5 

88

3.6 

148

6 12 

146

54 397 5.23 

37.1

7 

Datas

et-2 

1

1

6 

64

3 

887.

3 31 

441

1 280 2.28 5 

Datas

et-3 

1

0

7 

36

7 391 11 

214

3 254 2.47 6.9 

Datas

et-4 

4

6

8 

70

6 

119

4 11 

146

56 310 5.8 50.5 

 

 3.2 Selection of Deep Learning Architectures 

In this subsection, we will review the decision to use deep 

learning architectures as the foundational models for our 

stacking ensemble. We'll look at LSTM networks, which 

are great at detecting temporal correlations in sequential 

data; CNNs, renowned for their ability to spot patterns in 

space; and Transformer-based models, intended for 

processing context-rich data. To create a baseline level of 

prediction performance, each chosen deep learning 

architecture will be individually trained on the 

preprocessed data. 

3.3 Stacking Ensemble 

We will put the stacking ensemble approach into practice 

in this phase. An additional neural network or a basic 

linear regression model called a meta-learner will be used 

to incorporate the predictions made by the trained deep-

learning models. The meta-learner will develop the ability 

to balance each base model's predictions, maximizing their 

strengths and minimizing their flaws. To assess model 

diversity's effect on the ensemble's overall performance, 

we will investigate alternative ensemble configurations, 

such as stacking models with various combinations of base 

learners [23]. 

3.4 Evaluation Metrics 

We will use a set of evaluation measures frequently used in 

software effort estimating studies to evaluate the efficacy 

of our suggested strategy. The Mean Absolute Error 

(MAE), Root Mean Squared Error (RMSE), and Mean 

Absolute Percentage Error (MAPE) are some of these 

measurements. By performing cross-validation trials, we 

will also consider model robustness and generalization 

metrics [24][25]. 

3.5 Experimental Setup 

We will use real-world software project datasets from 

openly accessible repositories or business partners to 

evaluate thoroughly. The tests will be run on a platform 

with the proper hardware and enough computational power 

to ensure accurate findings. 

3.6 Significance and Contributions 

The suggested method uses a great deal of advanced 

software effort estimation. Unlike individual models or 

conventional methods, we expect to achieve more accurate 

and dependable effort estimations by stacking deep 

learning architectures. Our research's conclusions can help 

with better project planning, resource allocation, and 

decision-making, ultimately resulting in more effective and 

successful software development projects. 

4. Results and Discussion 

The tests that were done to determine whether the 

suggested method of stacking deep learning models for 

software effort estimation was effective are presented in 

this part. We thoroughly evaluate the stacking ensemble's 

performance compared to standalone deep learning models 

and conventional estimation methods. We also review the 

data's implications and deduce the advantages and 

disadvantages of the suggested strategy. 

4.1 Performance Comparison 

We compare how well the stacking ensemble and 

individual deep-learning models perform. The accuracy 
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and precision of effort estimation are evaluated using the 

evaluation metrics Mean Absolute Residual (MAR), Root 

Mean Squared Error (RMSE) as shown in equation (1) and 

(2). The results will be presented in tabular and graphic 

representations to make straightforward interpretation 

possible. Additionally, we assess how well the stacking 

ensemble performs compared to more conventional 

estimating methods, including expert judgment, analogy-

based estimation, and regression models. This comparison 

will shed light on the possible advancements using deep 

learning ensemble approaches to estimate software effort. 

Table 2 and table 3 shows that our proposed approach is 

better than standalone deep learning techniques such as 

LSTM, CNN and ResNets. 

MAR =
|𝐸𝑎−𝐸𝑝|

𝑛
                                 (1) 

Here, Ea is the actual effort, Ep is the predicted effort and n 

is the number of observations. 

RMSE =√
1

𝑛
∑ (𝑌 − 𝑌′)𝑛
𝑖=1

2                                       (2) 

Y and Yꞌ are the original and predicted values and n is the 

total number of predictions. 

Table 2: Comparison of MAR values with proposed 

approach 

Datasets 
LSTM CNN ResNets 

Proposed 

Approach 

Dataset-1 1527 1479 1265 1124 

Dataset-2 1042 944 667 544 

Dataset-3 1039 1021 650 512 

Dataset-4 1321 1121 590 501 

 

 

 

 

 

 

 

 

 

Fig 3: Comparison of MAR values with proposed 

approach 

 

 

 

Table 3: Comparison of RMSE values with proposed 

approach 

Dataset 

LSTM CNN ResNets Proposed 

Approach 

Dataset-1 39.07 38.45 35.46 33.52 

Dataset-2 32.25 30.72 26.01 23.32 

Dataset-3 32.23 31.95 25.49 22.62 

Dataset-4 36.54 33.48 24.28 22.38 

 

 

Fig 4: Comparison of RMSE values with proposed 

approach 

4.2 Robustness and Generalization 

We perform cross-validation studies to evaluate the 

stacking ensemble's robustness and generalizability. We 

can determine the ensemble's performance under various 

circumstances by assessing it on numerous subsets of the 

data. Figure 5 and Figure 6 will show how the ensemble 

can handle variances in software project parameters and 

maintain consistent performance across several data 

partitions.  

 

Fig 5: MAR interval Box-plot showing robustness of our 

proposed approach. 
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Fig 5: RMSE interval Box-plot showing robustness of our 

proposed approach. 

4.3 Interpretability Analysis 

The interpretability analysis sheds light on the variables 

affecting the stacking ensemble's effort estimation. We 

present a feature importance analysis by highlighting the 

relative importance of input variables in the estimate 

process. The link between various input variables and the 

anticipated effort is also shown using partial dependence 

charts. As shown in Table 4, we used statistical tests to 

look at the statistical properties of the estimated values 

emerging from the models in order to confirm the 

correctness of the results. To determine if each pair of the 

suggested models is statistically distinct based on the 

absolute residuals, we used the nonparametric Wilcoxon 

test. The Anderson-Darling test verified that the absolute 

residuals were not normally distributed, which was the 

justification for using the nonparametric test. The 

following theory was examined: 

H0: Model (i) and model (j) do not significantly differ from 

one another. 

H1: Model (i) and model (j) differ significantly from each 

other, according to hypothesis.  

Table 4: Wilcoxon test results 

 P value at 95% Confidence Interval (CI) 

Dataset LSTM vs. 

Proposed 

approach 

CNN vs 

Proposed 

approach 

ResNets vs 

Proposed 

approach 

Dataset-

1 

0.0432 0.0442 0.33 

Dataset-

2 

0.0562 0.05526 0.0124 

Dataset-

3 

0.0168 0.0111 0.0012 

Dataset-

4 

0.0 0.0012 0.0009 

The null hypothesis cannot be disproved if the resulting P 

value is higher than 0.05, proving that there is no 

statistically significant difference between the two models. 

The null hypothesis is disproved, however, if the P value is 

less than 0.05. Table 4 presents the Wilcoxon test findings, 

with test results less than 0.05 denoted in bold. 

5. Conclusion and Future Directions 

The conclusions of our research on stacking deep learning 

models for software effort estimation are presented in this 

part, along with a summary of its contributions. We take 

stock of the outcomes obtained and discuss the bigger-

picture implications of our findings. We also provide 

prospective directions for future research to develop deep 

learning ensemble techniques in software effort estimates. 

5.1 Conclusion 

Our study aimed to investigate the potential of stacking 

deep learning models for estimating software work, taking 

advantage of different architectures' benefits to improve 

prediction accuracy and robustness. We have shown that 

the suggested stacking ensemble strategy is effective 

through a thorough experimental examination. 

The findings show that the stacking ensemble delivers 

more precise and trustworthy effort estimates than 

individual deep-learning models and conventional 

estimation methods. The ensemble is a valuable tool for 

software development teams and project managers because 

it can combine the varied knowledge acquired by many 

base models to produce superior prediction performance. 

Additionally, the interpretability study has illuminated the 

key factors affecting effort estimations, promoting 

openness and confidence in decision-making. Stakeholders 

can use the information from the interpretability analysis to 

help them plan resource allocation and project 

management methods. 

5.2 Contributions 

This research's main contributions can be summed up as 

follows: 

• An innovative approach for estimating software effort 

was developed by us, combining deep learning models and 

stacking ensemble learning. The ensemble's enhanced 

estimation accuracy and robustness came from integrating 

many base models. 

• Experimental Evaluation: Using datasets from actual 

software projects, we carried out extensive experiments 

and provided a detailed study of the performance of the 

stacking ensemble in comparison to individual models and 

conventional methods. 

• Analysis of Interpretability: To increase the 

transparency of the suggested strategy, our research 

included an interpretability analysis to comprehend the 

variables influencing effort estimations. 
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5.3 Moving Forward 

Although our research has made substantial advancements 

in software effort estimation by utilizing deep learning 

ensemble approaches, several directions can be 

investigated for future research: 

• Model Explainability: Future research could improve the 

stacking ensemble's interpretability to give stakeholders 

more understandable and practical insights. 

• Handling Uncertainty: Researching methods to measure 

and manage uncertainty in effort estimation might help 

software development projects make better decisions and 

control risks. 

• Transfer Learning: When data is few, it may be 

advantageous to investigate the use of transfer learning to 

modify previously trained deep learning models for 

software work estimation. 

• Performance on Particular Domains: Conducting 

domain-specific research to assess the performance of the 

stacking ensemble on various software development 

domains might offer insights and recommendations that are 

specific to that domain. 

• Hybrid Approaches: Researching hybrid approaches, 

incorporating ensemble learning with additional methods 

like conventional statistical models or domain-specific 

heuristics, may produce even more reliable and precise 

effort-estimating models. 

As a result of our research, it has been shown that stacking 

deep learning models can be more effective than using 

individual models or conventional methods for estimating 

software work. The study's findings can help project 

managers and software development teams make better 

decisions, allocate resources more efficiently, and 

complete projects successfully. We aim to stimulate 

additional research and innovation in software effort 

estimates using deep learning ensemble approaches by 

addressing the gaps in the literature and providing valuable 

implications. 
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