

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4), 422–430 | 422

Enhancing Software Effort Estimation Through Stacked Deep Learning

Models

Beesetti Kiran Kumar1, Saurabh Bilgaiyan2, Bhabani Shankar Prasad Mishra3

Submitted: 05/05/2023 Revised: 15/07/2023 Accepted: 04/08/2023

Abstract: Software effort estimation is essential to efficiently managing risks, resource allocation, and project planning in software

projects. Despite the widespread usage of traditional estimating approaches, their accuracy frequently needs to be improved due to

software development's intricate and dynamic nature. Deep learning methods are now being investigated for software effort estimation

due to their outstanding promise in many fields. However, data heterogeneity and noise can constrain the prediction performance of a

single deep-learning model. We thoroughly investigate the use of deep learning stacking algorithms for software effort estimation in this

research. Stacking, an ensemble learning strategy, uses the combined predictive strength of various base models to balance out individual

flaws and improve accuracy overall. Our study focuses on this method's ability to handle problems with software effort estimates and its

potential to deliver cutting-edge predictive performance. We assess how well individual deep-learning models perform compared to

stacked ensembles and conventional estimation methods. This research thoroughly examines stacking deep learning algorithms for

software effort estimates, highlighting their effectiveness in enhancing forecast accuracy and resilience. The conclusions have essential

ramifications for managing software projects, enabling better resource allocation, risk avoidance, and more fruitful software development

endeavors.

Keywords: Deep Learning, Stacking, Model Ensembling, Ensemble Learning, Meta-Learner

1. Introduction

The effective planning and execution of software

development projects depend heavily on accurate software

effort estimation [1][2][3]. The ability to make educated

judgments about resource allocation, project scheduling,

and risk management is made possible by accurate

projections [4][5][6]. To increase estimation accuracy,

researchers and practitioners have investigated various

strategies over time, from basic statistical models to more

complex machine learning algorithms [7][8]. In recent

years, deep learning algorithms have become a potent

method for resolving complicated issues in multiple fields.

They have shown promising results in tasks like image

recognition, natural language processing, and speech

synthesis thanks to their capacity to learn complex patterns

and representations from large-scale data [9]. Because

software development is dynamic and complicated, deep

learning algorithms present an alluring way to improve

software work estimation [10]. Deep learning algorithms'

promise for software effort estimation was first

demonstrated in the fundamental work by Rahman and

Devadoss. Their study produced optimistic results by

employing separate deep-learning models to forecast

software development efforts [11]. However, the

performance of individual models may be constrained by

inherent difficulties in software development, such as data

heterogeneity and noise [12]. We suggest a unique

ensemble learning approach employing stacking for

software effort estimates to address these drawbacks

further and improve forecast accuracy. Using ensemble

learning approaches, several base models are combined to

produce a more reliable and precise predictive model [13].

We want to overcome the constraints of individual models

and give more accurate work estimates by utilizing the

collective intelligence of various deep learning algorithms,

each designed to capture distinctive parts of software

project data. In-depth research on the efficacy of stacking

deep learning models for software effort estimation is

presented in this publication. We compare the

effectiveness of distinct deep learning models to stacked

ensembles while considering critical criteria like prediction

accuracy, robustness, and generalization. We also examine

the interpretability of the stacked models to guarantee

decision-making is transparent and to reveal the key

factors affecting effort estimations.

The work is organized as follows: Section 2 offers a survey

of the literature summarizing the most recent developments

in ensemble learning methodology, deep learning

algorithms, and software effort estimation techniques. The

 1PhD Scholar, KIITs Deemed to be University, India
1Assistant Professor, Department of IT, ANITS, India

ORCID ID: 0000-0002-4872-0483
2Assistant Professor, School of Computer Engineering, KIIT Deemed to be
University, Bhubaneswar, Odisha, India.

ORCID ID: 0000-0003-0276-0014

Email id: saurabh.bilgaiyanfcs@kiit.ac.in
3 Professor, School of Computer Engineering, KIIT Deemed to be

University, Bhubaneswar, Odisha, India

* Corresponding Author Email: kirankumar224@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4), 422–430 | 423

rationale for ensemble stacking and the decision to use

deep learning architectures as basis models are explained

in Section 3 of the proposal. The experimental setup,

including dataset preparation, model training, and

assessment measures, is presented in Section 4.

Conclusions are provided in Section 5, which also

summarises the results and describes how to move the field

of software effort estimation using deep learning ensemble

approaches forward.

2. Literature Review

Practical software effort estimation has long been a

problem in software engineering. To deal with this issue,

many strategies and techniques have been investigated. We

thoroughly analyze related literature in this section, with a

particular emphasis on methods for estimating software

effort, deep learning algorithms, and ensemble learning.

2.1 Software Effort Estimation Techniques

Expert judgment, analogy-based estimation, and regression

models are examples of conventional methods for

estimating software effort. Expert judgment draws on

software engineers and project managers' knowledge and

skills when evaluating efforts based on historical data and

subject-matter knowledge [14]. Analogical estimating

makes estimations by drawing on parallels between

ongoing and previous initiatives. Regression models use

statistical methods to find connections between project

variables and effort. Although these techniques have been

widely employed, they frequently have drawbacks,

including subjectivity, reliance on past data, and a failure

to recognize intricate patterns in the data [15]. Advanced

and data-driven methodologies are required as software

development projects become more complicated and

varied.

2.2 Deep Learning Algorithms

Deep learning has shown notable success across various

applications, especially those involving complicated data

patterns. The neural networks used in deep learning

algorithms include numerous layers, which enables them to

learn hierarchical representations from data. Convolutional

Neural Networks (CNN), created for recognizing spatial

patterns, Long Short-Term Memory (LSTM) networks

[16], noted for their capacity to represent temporal

dependencies; and Transformer-based models, capable of

capturing contextual information, are some notable deep

learning architectures [17]. Deep learning has been used in

software engineering to complete tasks, including code

completion, defect prediction, and bug discovery. It is a

strong choice for software effort estimation due to its

potential for capturing complex correlations in software

development data.

2.3 Ensemble Learning and Stacking

The goal of ensemble learning approaches is to combine

multiple models to increase the accuracy and reliability of

predictions. A common ensemble technique called stacking

involves fusing the outcomes of various base models using

a meta-learner. Stacking can result in more precise and

trustworthy predictions by taking advantage of the

complementary capabilities of distinct models [18].

Stacking has been effectively used in many industries,

including finance, image identification, and natural

language processing. Its potential for estimating software

work still needs to be tapped, though. By stacking various

deep learning models, it may be possible to get around the

drawbacks of individual models and produce effort

estimates that are more precise and trustworthy.

2.4 Gap in the Literature

There needs to be more research exploring the possibilities

of ensemble techniques, mainly stacking, in this domain,

even though individual deep learning models have shown

promise in software effort estimation. The benefits of

merging deep learning models for improved estimation

accuracy and resilience can be better understood if this gap

is filled. By examining the efficacy of stacking deep

learning models for software effort estimation, the

proposed research intends to close this gap. We anticipate

increased prediction accuracy and more accurate effort

estimates by utilizing the collective intelligence of many

base models, ultimately growing the state-of-the-art in

software effort estimation methodologies. A detailed

assessment of software effort estimating research,

including both established methods and novel ideas, is

provided by Boehm and Sullivan. The report emphasizes

the difficulties in precise estimating and offers information

on the shortcomings of conventional approaches. Although

deep learning algorithms are not discussed in this paper, it

provides the framework for the requirement to investigate

alternate methods for estimating software effort [14].

Shepperd, M.; Menzies, T. centered on estimating software

work comparable to predicting software flaws. The

significance of using cutting-edge machine learning

methods, such as deep learning algorithms, to boost

predictive accuracy is highlighted in the article. For the

incorporation of deep learning in software effort estimation

research, it offers helpful context [15]. Rahman and

Devadoss investigate using deep learning techniques for

estimating software labor. Their research shows the

capability of deep learning models to capture intricate

patterns and surpass conventional estimating methods.

Although the research is primarily concerned with

individual deep-learning models, it also provides the

groundwork for future research into stacking methods for

improved predictive accuracy [11]. Cao, J., Zhang, L., and

Liu, C. examines the application of Long Short-Term

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4), 422–430 | 424

Memory (LSTM) neural networks for estimating

development effort. The modeling of temporal

relationships by LSTM is highlighted, and its efficacy in

enhancing estimation accuracy is shown. The influence of

stacking LSTM models for software effort estimation will

need to be studied further because the study does not

examine ensemble strategies like stacking [16]. Wang et al.

describe a method for effort estimation based on

convolutional neural networks (CNN) for software

projects. Their research demonstrates CNN's capability to

identify geographical patterns in software development

data.

Similar to earlier studies, the stacking of CNN models is

not examined. The investigation of stacking CNN models

for better software effort estimates is motivated by this

publication [17]. In their study, Jin et al. explore the

application of Transformer-based models for estimating

software labor. Transformers are an excellent choice to

address software effort estimation issues since they have

successfully gathered contextual information. Ensemble

approaches should be examined in the study. The

exploration of stacking Transformer-based models to

increase estimation accuracy is motivated by this work

[19]. Zhou and Zhang thoroughly analyze software effort

estimates that compare several estimation methods. While

deep learning is only partially covered, the review offers a

thorough overview of the current approaches and their

shortcomings. This survey provides valuable context for

incorporating knowledge in software effort estimation

research, mainly stacking.

Overall, the literature review shows an increasing interest

in using deep learning algorithms for software effort

estimation, such as LSTM, CNN, and Transformer-based

models. However, much research still needs to be done on

using stacking approaches to enhance predictive

performance. This work evaluates the effectiveness of

stacking deep learning algorithms for this crucial task to

bridge this gap and advance software effort estimation

methodologies.

3. Proposed Approach - Stacking Deep Learning

Models for Software Effort Estimation

In this, we outline a suggested strategy for enhancing

software effort estimation by stacking ensemble learning

with deep learning models. We want to combine the

predictive capabilities of various deep learning

architectures, including LSTM, CNN, and Transformer-

based models, to build a more reliable and accurate

estimating model. The essential elements of our suggested

strategy are outlined in the following subsections.

Fig 1: Block diagram of the proposed Model

Pseudocode: Stacking Deep Learning Models

Step 1: Data Preprocessing

• Load and preprocess the dataset

• Encode categorical variables (if necessary)

• Normalize numerical features

• Split the data into training, validation, and test sets

Step 2: Model Selection

• Implement deep learning architectures for individual

models (e.g., LSTM, CNN, Transformer)

• Specify hyper parameters and compile each model

Step 3: Stacking Ensemble Configuration

• Create a list of tuples for base models, where each tuple

contains a unique identifier and the corresponding deep

learning model

• Initialize the meta-learner (e.g., Linear Regression,

Neural Network)

Step 4: Model Training and Evaluation

• For each base model:

• Train the deep learning model on the training set

• Evaluate the model on the validation set using

evaluation metrics (e.g., MAR, RMSE)

• Train the stacking ensemble using the predictions

of base models as features and actual effort values

as target

• Evaluate the stacking ensemble on the validation

set using evaluation metrics

Step 5: Interpretability Analysis

• Perform interpretability analysis on the stacking

ensemble using techniques such as SHAP

(Shapley Additive explanations)

• Visualize feature importance and partial

dependence plots to understand critical attributes

influencing effort estimates

3.1 Data Preprocessing

We will meticulously preprocess the software project

datasets to assure the viability of deep learning models for

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4), 422–430 | 425

development work estimation. Data preparation is essential

for dealing with missing values, normalizing

characteristics, and correcting data imbalances. To derive

valuable representations from the data, we will also

investigate methods for dealing with categorical variables

and feature engineering. The proposed models were

evaluated in this work using the ISBSG release 11 [20]

dataset. According to Jorgensen and Sheppard [3],

employing a legitimate, real-world project in SEE

increases the trustworthiness of the study. Over 5,000

industrial projects developed in various programming

languages and following multiple software development

life cycles are included in the collection. The new or

improved development categories include the projects.

Additionally, utilizing industry standards like IFPUG,

COSMIC, etc., the software size of each project was

determined in function points. Therefore, only projects

with IFPUG-adjusted function points were considered to

ensure uniformity throughout the research. Each project in

the collection has more than 100 attributes, including the

project's number, completion date, program size, etc. The

ISBSG also assigns grades to the project data quality, from

"A" to "D," with "A" standing for the highest-quality

projects, followed by "B," and so on. Even though various

projects had comparable program sizes, the dataset

analysis showed that effort varied significantly between

them. The productivity ratio measures how much software

effort and output is compared to software size, which is the

primary input. We saw a sizable difference in productivity

ratios for projects with similar software sizes. For the same

adjusted function point (AFP), productivity (effort/size)

varied from 0.2 to 300. The substantial variety in the

production ratio contributes to the dataset's diversity.

Therefore, applying the same paradigm to all projects

proved unfeasible. To solve this issue, projects were

grouped according to productivity ratios, improving the

dataset’s uniformity.

The productivity of the initiatives in each smaller dataset

varied relatively slightly when the primary dataset was

divided into smaller datasets [21]. For this investigation,

the dataset was divided into three different datasets as

follows:

• Dataset 1: small productivity ratio (P), where 0.2 ≤ P <

10;

• Dataset 2: medium productivity projects where 10 ≤ P <

20;

• Dataset 3: high productivity (P ≥ 20).

Fig 2: Box plot for Table 1 attributes with median, Q1 and

Q3

The first three datasets were combined into a fourth dataset

to examine the effects of grouping projects with different

production levels. Dataset 3's productivity ranged from 20

to 330, making it less homogeneous than the first two. The

1is dataset was used to examine how data

heteroscedasticity affects how effective fuzzy logic models

are. Given the ISBSG, as mentioned earlier, dataset

attributes, the dataset must be filtered using a set of project

selection rules. The following characteristics were chosen

for examination:

• Adjusted function points (AFP): a measure of

programme size

• Software effort: the number of hours put in by people

• Team size: is a measure of how many people are on each

development team.

• Development Type: If the project is a new development,

an enhancement, or a redevelopment, the development type

will be indicated.

• Resource level: This categorizes the groups that

contributed to the creation of this project, including the

development team, the development support team; the

computer operations support team, and the end users or

clients.

When estimating software development, nonfunctional

needs should be considered separate from functional

requirements [16]. All of the qualities mentioned above,

except for Resource level, which is a category variable, are

continuous. There are 5052 projects total in the original

raw dataset. The datasets were filtered using the following

criteria, which were used to choose projects:

Data quality: The dataset size was reduced to 4,474

projects by choosing only projects with data quality A and

B, as advised by ISBSG.

• The size of the software in function points

• One output variable: software effort;

• Inputs: Team size, development type, AFP, and resource

level.

• Only new development projects were counted; any

enhancement, redevelopment, or other sorts of projects

were disregarded, bringing the total to 1,805 projects.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4), 422–430 | 426

• Missing data: removing all the rows with missing data

from the dataset, leaving just 468 completely detailed

projects

• Making three separate datasets and a consolidated one

by dividing the datasets into groups based on productivity,

as previously mentioned.

• Dividing each dataset into testing and training datasets

(70% training and 30% testing)

Finally, the following datasets are produced:

• Dataset 1: with productivity 0.2 P 10 consisted of 245

projects, of which 172 were for testing and 73 were for

training;

• Dataset 2: with productivity 10 P 20 consisted of 116

projects, of which 81 were for testing and 35 were for

training; and

• Dataset 3: with productivity higher than or equal to 20

(P 20) consisted of 107 projects, of which 75 were for

testing and 32 were for

• Dataset 4 comprised of 468 projects, including 328

projects for training and 140 projects for testing, after

integrating projects from the first three datasets.

Table 1: Description of Effort attribute on all datasets

Datas

et

N

Me

an

 St.

dev

M

in

Ma

x

Med

ian

Skew

ness

Kurt

osis

Datas

et-1

2

4

5

88

3.6

148

6 12

146

54 397 5.23

37.1

7

Datas

et-2

1

1

6

64

3

887.

3 31

441

1 280 2.28 5

Datas

et-3

1

0

7

36

7 391 11

214

3 254 2.47 6.9

Datas

et-4

4

6

8

70

6

119

4 11

146

56 310 5.8 50.5

 3.2 Selection of Deep Learning Architectures

In this subsection, we will review the decision to use deep

learning architectures as the foundational models for our

stacking ensemble. We'll look at LSTM networks, which

are great at detecting temporal correlations in sequential

data; CNNs, renowned for their ability to spot patterns in

space; and Transformer-based models, intended for

processing context-rich data. To create a baseline level of

prediction performance, each chosen deep learning

architecture will be individually trained on the

preprocessed data.

3.3 Stacking Ensemble

We will put the stacking ensemble approach into practice

in this phase. An additional neural network or a basic

linear regression model called a meta-learner will be used

to incorporate the predictions made by the trained deep-

learning models. The meta-learner will develop the ability

to balance each base model's predictions, maximizing their

strengths and minimizing their flaws. To assess model

diversity's effect on the ensemble's overall performance,

we will investigate alternative ensemble configurations,

such as stacking models with various combinations of base

learners [23].

3.4 Evaluation Metrics

We will use a set of evaluation measures frequently used in

software effort estimating studies to evaluate the efficacy

of our suggested strategy. The Mean Absolute Error

(MAE), Root Mean Squared Error (RMSE), and Mean

Absolute Percentage Error (MAPE) are some of these

measurements. By performing cross-validation trials, we

will also consider model robustness and generalization

metrics [24][25].

3.5 Experimental Setup

We will use real-world software project datasets from

openly accessible repositories or business partners to

evaluate thoroughly. The tests will be run on a platform

with the proper hardware and enough computational power

to ensure accurate findings.

3.6 Significance and Contributions

The suggested method uses a great deal of advanced

software effort estimation. Unlike individual models or

conventional methods, we expect to achieve more accurate

and dependable effort estimations by stacking deep

learning architectures. Our research's conclusions can help

with better project planning, resource allocation, and

decision-making, ultimately resulting in more effective and

successful software development projects.

4. Results and Discussion

The tests that were done to determine whether the

suggested method of stacking deep learning models for

software effort estimation was effective are presented in

this part. We thoroughly evaluate the stacking ensemble's

performance compared to standalone deep learning models

and conventional estimation methods. We also review the

data's implications and deduce the advantages and

disadvantages of the suggested strategy.

4.1 Performance Comparison

We compare how well the stacking ensemble and

individual deep-learning models perform. The accuracy

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4), 422–430 | 427

and precision of effort estimation are evaluated using the

evaluation metrics Mean Absolute Residual (MAR), Root

Mean Squared Error (RMSE) as shown in equation (1) and

(2). The results will be presented in tabular and graphic

representations to make straightforward interpretation

possible. Additionally, we assess how well the stacking

ensemble performs compared to more conventional

estimating methods, including expert judgment, analogy-

based estimation, and regression models. This comparison

will shed light on the possible advancements using deep

learning ensemble approaches to estimate software effort.

Table 2 and table 3 shows that our proposed approach is

better than standalone deep learning techniques such as

LSTM, CNN and ResNets.

MAR =
|𝐸𝑎−𝐸𝑝|

𝑛
 (1)

Here, Ea is the actual effort, Ep is the predicted effort and n

is the number of observations.

RMSE =√
1

𝑛
∑ (𝑌 − 𝑌′)𝑛
𝑖=1

2 (2)

Y and Yꞌ are the original and predicted values and n is the

total number of predictions.

Table 2: Comparison of MAR values with proposed

approach

Datasets
LSTM CNN ResNets

Proposed

Approach

Dataset-1 1527 1479 1265 1124

Dataset-2 1042 944 667 544

Dataset-3 1039 1021 650 512

Dataset-4 1321 1121 590 501

Fig 3: Comparison of MAR values with proposed

approach

Table 3: Comparison of RMSE values with proposed

approach

Dataset

LSTM CNN ResNets Proposed

Approach

Dataset-1 39.07 38.45 35.46 33.52

Dataset-2 32.25 30.72 26.01 23.32

Dataset-3 32.23 31.95 25.49 22.62

Dataset-4 36.54 33.48 24.28 22.38

Fig 4: Comparison of RMSE values with proposed

approach

4.2 Robustness and Generalization

We perform cross-validation studies to evaluate the

stacking ensemble's robustness and generalizability. We

can determine the ensemble's performance under various

circumstances by assessing it on numerous subsets of the

data. Figure 5 and Figure 6 will show how the ensemble

can handle variances in software project parameters and

maintain consistent performance across several data

partitions.

Fig 5: MAR interval Box-plot showing robustness of our

proposed approach.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4), 422–430 | 428

Fig 5: RMSE interval Box-plot showing robustness of our

proposed approach.

4.3 Interpretability Analysis

The interpretability analysis sheds light on the variables

affecting the stacking ensemble's effort estimation. We

present a feature importance analysis by highlighting the

relative importance of input variables in the estimate

process. The link between various input variables and the

anticipated effort is also shown using partial dependence

charts. As shown in Table 4, we used statistical tests to

look at the statistical properties of the estimated values

emerging from the models in order to confirm the

correctness of the results. To determine if each pair of the

suggested models is statistically distinct based on the

absolute residuals, we used the nonparametric Wilcoxon

test. The Anderson-Darling test verified that the absolute

residuals were not normally distributed, which was the

justification for using the nonparametric test. The

following theory was examined:

H0: Model (i) and model (j) do not significantly differ from

one another.

H1: Model (i) and model (j) differ significantly from each

other, according to hypothesis.

Table 4: Wilcoxon test results

 P value at 95% Confidence Interval (CI)

Dataset LSTM vs.

Proposed

approach

CNN vs

Proposed

approach

ResNets vs

Proposed

approach

Dataset-

1

0.0432 0.0442 0.33

Dataset-

2

0.0562 0.05526 0.0124

Dataset-

3

0.0168 0.0111 0.0012

Dataset-

4

0.0 0.0012 0.0009

The null hypothesis cannot be disproved if the resulting P

value is higher than 0.05, proving that there is no

statistically significant difference between the two models.

The null hypothesis is disproved, however, if the P value is

less than 0.05. Table 4 presents the Wilcoxon test findings,

with test results less than 0.05 denoted in bold.

5. Conclusion and Future Directions

The conclusions of our research on stacking deep learning

models for software effort estimation are presented in this

part, along with a summary of its contributions. We take

stock of the outcomes obtained and discuss the bigger-

picture implications of our findings. We also provide

prospective directions for future research to develop deep

learning ensemble techniques in software effort estimates.

5.1 Conclusion

Our study aimed to investigate the potential of stacking

deep learning models for estimating software work, taking

advantage of different architectures' benefits to improve

prediction accuracy and robustness. We have shown that

the suggested stacking ensemble strategy is effective

through a thorough experimental examination.

The findings show that the stacking ensemble delivers

more precise and trustworthy effort estimates than

individual deep-learning models and conventional

estimation methods. The ensemble is a valuable tool for

software development teams and project managers because

it can combine the varied knowledge acquired by many

base models to produce superior prediction performance.

Additionally, the interpretability study has illuminated the

key factors affecting effort estimations, promoting

openness and confidence in decision-making. Stakeholders

can use the information from the interpretability analysis to

help them plan resource allocation and project

management methods.

5.2 Contributions

This research's main contributions can be summed up as

follows:

• An innovative approach for estimating software effort

was developed by us, combining deep learning models and

stacking ensemble learning. The ensemble's enhanced

estimation accuracy and robustness came from integrating

many base models.

• Experimental Evaluation: Using datasets from actual

software projects, we carried out extensive experiments

and provided a detailed study of the performance of the

stacking ensemble in comparison to individual models and

conventional methods.

• Analysis of Interpretability: To increase the

transparency of the suggested strategy, our research

included an interpretability analysis to comprehend the

variables influencing effort estimations.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4), 422–430 | 429

5.3 Moving Forward

Although our research has made substantial advancements

in software effort estimation by utilizing deep learning

ensemble approaches, several directions can be

investigated for future research:

• Model Explainability: Future research could improve the

stacking ensemble's interpretability to give stakeholders

more understandable and practical insights.

• Handling Uncertainty: Researching methods to measure

and manage uncertainty in effort estimation might help

software development projects make better decisions and

control risks.

• Transfer Learning: When data is few, it may be

advantageous to investigate the use of transfer learning to

modify previously trained deep learning models for

software work estimation.

• Performance on Particular Domains: Conducting

domain-specific research to assess the performance of the

stacking ensemble on various software development

domains might offer insights and recommendations that are

specific to that domain.

• Hybrid Approaches: Researching hybrid approaches,

incorporating ensemble learning with additional methods

like conventional statistical models or domain-specific

heuristics, may produce even more reliable and precise

effort-estimating models.

As a result of our research, it has been shown that stacking

deep learning models can be more effective than using

individual models or conventional methods for estimating

software work. The study's findings can help project

managers and software development teams make better

decisions, allocate resources more efficiently, and

complete projects successfully. We aim to stimulate

additional research and innovation in software effort

estimates using deep learning ensemble approaches by

addressing the gaps in the literature and providing valuable

implications.

Author contributions

Saurabh Bilgaiyan: Conceptualization, Methodology,

Software, Field study Kiran Kumar Beesetti: Data

curation, Writing-Original draft preparation, Software,

Validation, Field study BSP Mishra: Visualization,

Investigation, Writing-Reviewing and Editing.

Conflicts of interest

The authors declare no conflicts of interest.

References

[1] Boehm, B. W. (1981). Software Engineering

Economics. Prentice-Hall.

[2] Jørgensen, M., & Shepperd, M. (2007). A Systematic

Review of Software Development Cost Estimation

Studies. IEEE Transactions on Software Engineering,

33(1), 33-53.

[3] Jørgensen, M., & Shepperd, M. (2007). A Systematic

Review of Software Development Cost Estimation

Studies. IEEE Transactions on Software Engineering,

33(1), 33-53.

[4] Bilgaiyan, S., Mishra, S., & Das, M. (2016, January).

A review of software cost estimation in agile

software development using soft computing

techniques. In 2016 2nd international conference on

computational intelligence and networks (CINE) (pp.

112-117).IEEE.

[5] Bilgaiyan, S., Sagnika, S., Mishra, S., & Das, M.

(2017).A Systematic Review on Software Cost

Estimation in Agile Software Development.Journal of

Engineering Science & Technology Review, 10(4).

[6] Molokken, K., & Jorgensen, M. (2003, September). A

review of software surveys on software effort

estimation. In 2003 International Symposium on

Empirical Software Engineering, 2003. ISESE 2003.

Proceedings. (pp. 223-230). IEEE

[7] Bilgaiyan, S., Aditya, K., Mishra, S., & Das, M.

(2018). Chaos-based modified morphological genetic

algorithm for software development cost estimation.

In Progress in Computing, Analytics and Networking

(pp. 31-40).Springer, Singapore..

[8] Sharma, P., & Singh, J. (2017, December).

Systematic literature review on software effort

estimation using machine learning approaches. In

2017 International Conference on Next Generation

Computing and Information Systems (ICNGCIS) (pp.

43-47). IEEE.

[9] Varshini, A. P., Kumari, K. A., Janani, D., &

Soundariya, S. (2021, February). Comparative

analysis of Machine learning and Deep learning

algorithms for Software Effort Estimation. In Journal

of Physics: Conference Series (Vol. 1767, No. 1, p.

012019). IOP Publishing.

[10] Khan, M. S., Jabeen, F., Ghouzali, S., Rehman, Z.,

Naz, S., & Abdul, W. (2021). Metaheuristic

algorithms in optimizing deep neural network model

for software effort estimation. Ieee Access, 9, 60309-

60327.

[11] Rahman, M. M., & Devadoss, S. (2017). Effort

estimation in software development using deep

learning. Proceedings of the International Conference

on Machine Learning and Data Science, 50-56.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4), 422–430 | 430

[12] Pospieszny, P., Czarnacka-Chrobot, B., &

Kobylinski, A. (2018). An effective approach for

software project effort and duration estimation with

machine learning algorithms. Journal of Systems and

Software, 137, 184-196.

[13] Hidmi, O., & Sakar, B. E. (2017). Software

development effort estimation using ensemble

machine learning. Int. J. Comput. Commun. Instrum.

Eng, 4(1), 143-147.

[14] Boehm, B. W., & Sullivan, K. J. (2000). Software

effort estimation research. IEEE Transactions on

Software Engineering, 26(8), 630-639.

[15] Menzies, T., & Shepperd, M. (2012). Special issue on

"predicting software defects". Empirical Software

Engineering, 17(4-5), 541-543.

[16] Zhang, L., Cao, J., & Liu, C. (2019). Software

development effort estimation based on LSTM neural

network. Proceedings of the IEEE International

Conference on Software Quality, Reliability, and

Security Companion, 449-455.

[17] Wang, S., Xu, C., Wu, D., & Xu, L. (2021). Software

development effort estimation using convolutional

neural networks. Information and Software

Technology, 134, 106496.

[18] Jin, Y., Wang, S., Gao, X., & Liu, Y. (2022).

Transformer-based effort estimation for software

projects. Journal of Systems and Software, 182,

111238.

[19] Zhou, H., & Zhang, M. (2019). A survey on software

effort estimation. Information and Software

Technology, 105, 95-109.

[20] ISBSG. International software benchmarking

standards group. [Online]. Available:

http://www.isbsg.org/.

[21] V. Cheng, C.-H. Li, J. T. Kwok, and C.-K. Li,

“Dissimilarity learning for nominal data,” Pattern

Recognition, vol. 37, no. 7, pp. 1471–1477, 2004.

[22] M. Kassab, Non-Functional Requirements: Modeling

and Assessment. Germany: VDM Verlag, 2009.

[23] Low, C. Y., Park, J., & Teoh, A. B. J. (2019).

Stacking-based deep neural network: deep analytic

network for pattern classification. IEEE Transactions

on Cybernetics, 50(12), 5021-5034.

[24] Brassington, G. (2017, April). Mean absolute error

and root mean square error: which is the better metric

for assessing model performance? In EGU General

Assembly Conference Abstracts (p. 3574).

[25] Robiolo, G., Badano, C., & Orosco, R. (2009,

October). Transactions and paths: Two use case based

metrics which improve the early effort estimation. In

2009 3rd International Symposium on Empirical

Software Engineering and Measurement (pp. 422-

425). IEEE.

[26] Prema, K. ., & J, V. . (2023). A Novel Marine

Predators Optimization based Deep Neural Network

for Quality and Shelf-Life Prediction of Shrimp.

International Journal on Recent and Innovation

Trends in Computing and Communication, 11(3s),

65–72. https://doi.org/10.17762/ijritcc.v11i3s.6156

[27] Paul Garcia, Ian Martin, .Diego Rodríguez, Alejandro

Perez, Juan Martinez. Optimizing Adaptive Learning

Environments using Machine Learning. Kuwait

Journal of Machine Learning, 2(2). Retrieved from

http://kuwaitjournals.com/index.php/kjml/article/view

/178

[28] Rohokale, M.S., Dhabliya, D., Sathish, T., Vijayan,

V., Senthilkumar, N. A novel two-step co-

precipitation approach of CuS/NiMn2O4

eterostructured nanocatalyst for enhanced visible

light driven photocatalytic activity via efficient

photo-induced charge separation properties (2021)

Physica B: Condensed Matter, 610, art. no. 412902, .

