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Abstract: In the technological world, health care systems play essential role in extending the human age through early detection. The 

grooming of Artificial Intelligence technology and deep learning enlighten many smart surgical devices and aid knowledge in disease 

diagnosis and planning. In particular, the brain disease diagnosis process embraces several devices, such as Magnetic Resonance (MR) 

machines etc. and software. Most of the brain disease diagnosis includes brain extraction (skull stripping) as the pre-processing step. 

Brain portion extraction from its non-brain tissues from MR image is a tedious process and takes 40 to 60 minutes per patient in manual 

process and the earlier model lacked accuracy. In the age of deep learning, accurate brain tissue detection using deep learning is essential 

and accounts for good results. This paper proposes a modified Unit for skull stripping from 2D MR images and comparing it with other 

deformable and deep learning models such as BET2, RoBEX and UNet3D. The proposed model provides good competency results, such 

as a 98 % Dice score and 1% higher than the UNet3D model. 
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1. Introduction 

A patient is placed into a tunnel that has a magnetic field 

inside of it in order to obtain an MR image of them. As a 

result, the quantum spins of all the protons in the body 

'align' to the same value. Then, to prevent this alignment, 

an oscillating magnetic field pulse is applied. An 

electromagnetic wave is emitted by the protons as they 

reach equilibrium. Different images will be produced 

depending on the amount of fat there the chemical 

makeup, and most critically the sort of stimulation (i.e., 

sequences) utilised to disrupt the protons. T1 weighted, 

the contrast enhanced T1 (T1C), T2, and Fluid 

Attenuation Inversion Recovery is the four commonly 

acquired sequences (FLAIR).  

Skull removal known as skull stripping is a must for 

further procedures including volume estimation and 

disease pathology diagnosis. Experts must complete the 

time-consuming operation of creating gold standard data. 

To create a deep model, the majority of skull stripping 

data sets are quite modest in size. The image must go 

through a number of pre-processing stages that call for 

domain-specific information before being sent to the 

model. It's nice to build a model and have decent 

precision. A very good model, however, typically 

performs very poorly with data from the real world. 

When the model observes entirely different data than 

what it was trained on, this results from data drift. It 

might occur because of distinctions. Hence, several 

researches have been conducted on the skull stripping 

and segmentation work.  

Several earlier and current researches have described 

various skull removal models. [1] Classified the methods 

into four groups: morphology, intensity, deformable 

surface- and at last based methods. The job of skull 

removal from brain MR images utilised morphological 

erosion and dilation operations that were suggested by 

[2]. A new edge detection operator called the Marr-

Hildreh operator was employed along with the 

morphological operators to extract brain images from the 

skull [3]. The morphological methods are very sensitive 

to small intensity variations. Hence, the methods have 

challenges in finding proper thresholding and edge 

detection. 

A deformable model was involved in the process of brain 

and non-brain tissue separation [4]. On those days, BET 

and BET 2 were utilised for T1 and T2 weighted MR 

brain images, which generated better results [5-7] used 

atlas-based methods. Recently, a robust skull stripping 

method has proposed by [8] that used a multi-contrast 

brain stripping method which uses sparse patch. The 

methods depend on image modalities and image 

qualities. Atlas-based methods suffer from multi 

parametric MR images. In pathological images with 

diseases or brain tumours, the techniques are not 

appropriate.  
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Deep learning has become common in several fields over 

the past year as a result of advancements in computer 

hardware and the accessibility of big data., like image 

analysis, computer vision [9], and natural language 

processing. Subsequently, deep learning methods can be 

applied in human organ related image analysis, which 

includes skull stripping [10-11], brain segmentation [12], 

brain tumour classification [13]. Thus, the proposed 

method deals with the brain extraction process using a 

deep learning model. It utilises the U-Net model and has 

produced some changes in the algorithm and layer 

utilisation. The remaining part of the paper deals with the 

data set description, proposed method, result, and 

discussion 

2. Data Set 

Data from 125 people, aged 21 to 45, exhibiting a range 

of clinical and subclinical brain disorders are available in 

the NFBS collection. Each volume contains the raw 

images, images of the skull sripped, and images of the 

brain mask shown in Fig. 1. The repository has structural 

T1-weighted, single-channel MR images for every 

volume. The ground truth, or brain mask, is the brain's 

equivalent of an image mask. It is obtained by applying 

manual edits by subject-matter experts to remove non-

brain tissue using the Beast (brain extraction based on 

nonlocal segmentation) approach. Fig. 1 shows three 

images: the original raw image, the skull stripped image, 

and a mask respectively. The first image in Fig. 1 is the 

original raw image, the second image is a stripped-down 

skull scan that only reveals the brain, and the third image 

is a mask with computer and human annotations. Fig 1 

shows that Sample images from NFBS dataset. a) brain 

image with skull, b) brain extracted from its surrounding 

and c) brain mask. 

 

Fig 1: Sample images from NFBS dataset. a) brain image with skull, b) brain extracted from its surrounding and c) brain 

mask 

3. Proposed Method 

The presented method includes two stages, such as pre-

processing and skull removal (brain extraction). The 

detailed structural design of this work is described in Fig. 

2. The pre-processing step involves strengthening the 

edges around the brain. Further, the brain extraction 

process is done with the U-Net model to finely label the 

brain tissues. Fig 2 shows that Architecture of the 

proposed method 
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Fig 2: Architecture of the proposed method 

 

Stage 1: Pre-processing 

In MR images, the skull appears dark in T1-w images 

[14]. However, it accounts for high differences with its 

neighbouring pixels, as demonstrated in Fig. 3. In Fig. 3, 

column 1 explains the original MR images, column 2 be 

evidence for the differences among its neighbours, and 

column 3 shows the brain portion. The image provided in 

row 1 is only the skull and meningeal tissues and is taken 

at the end of the image volume. The image provided in 

row 2 contains very few brain tissues. The intensity 

differences among its neighbours are high and given in 

column 2, which is a binary image. Hence, the presented 

method takes derivatives of a pixel from each of its eight 

neighbours. Compares the differences and increases the 

pixel intensity values that have the largest differences. 

Thus, strengthening the boundary of the brain portion. 

Further, this method uses an enhanced non-local means 

filter to smooth the image. This filter uses a dynamic 

window to search for similar pattern pixels and ensure 

window size by using mean absolute deviation error. The 

window size is enlarged based on the error measure. The 

method provides contrast enhanced images and retains 

brain structure [15]. 

 

Fig 3: Pixel intensity in MR images. Column 1 shows the scanned images; column 2 shows the intensity difference of skull 

with neighbouring pixels and column 3 shows the brain mask 

Stage 2: Brain Extraction 

3.1  Convolution Neural Network 

In this network, the fully connected layer employing the 

soft max function is often coupled with the convolution 

and subsampling layers. A set of many convolutional 

layers extract characteristics with increasing fineness at 

each layer as they move from the architecture's input to 

output layers. The completely linked layers that do 

classification are placed after the convolution layers. A 

subsampling or pooling layer often comes after every 
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convolution layer. The kernels or filters, which are 

collections of 2D neurons, make up each layer. When 

compared to other neural networks, a 2D, n-by-n-pixel 

picture only receives by CNN as input. The neurons 

gathered in the feature extraction layer of the network 

are not interconnected with the neurons in the 

neighboring levels. Instead, they are solely related to the 

fixed-size spatially mapped neurons; the layer above has 

partially overlapping neurons. The Local Receptive Field 

is the name given to the input region. (LRF). Due to the 

fewer connections, over-fitting is less likely and training 

time is reduced. Every neuron in a filter must be attached 

to the same quantity of neurons in the preceding input 

layer and have the same weights and biases (or feature 

map). These components facilitate learning and trim 

down the memory usages of the network. As a result, the 

neuron in a certain filter looks for the same pattern in 

several places throughout the provided image. The sub-

sampling layers reduce the size of the network. Using the 

maximum or mean pooling, the sub-sampling layer 

lowers the size of the neurons. Fig 3 shows that Pixel 

intensity in MR images. Column 1 shows the scanned 

images; column 2 shows the intensity difference of skull 

with neighboring pixels and column 3 shows the brain 

mask 

U-Net architecture is familiar with therapeutic image 

processing. The architecture of this model is very simple 

and has skip connections. It works with the encoder and 

feature map to help redirect the flow and improve 

training. The net model has a narrowing path and an 

immediate getting bigger path. Skip connection 

preserves the loss from the previous layers and 

strengthens the net. The final convolution layer has a 

single filter to confine the pixel class. The pooling 

process reduces the size of the image, which employs 

Max pooling to reduce the image size since the skull area 

is represented by a high intensity value. 

The U-Net model consists of several layers, which are 

organised in the order of input, encoder, decoder and an 

output layer. In Fig. 2, each convolution block holds a 

pair of convolutional layers confined by the ReLu 

activation function. The left-side layers reduce the size 

of the image and are called the encoder block. It has five 

pairs of convolutional layers. The first pair of layers has 

32 filters, which are 3 by 3. The following pooling 

process reduces the three by three pixels by one pixel 

and returns the maximum value among the nine pixels. 

The convolution layer 2 holds 64 filters in 3 by 3 sizes. 

Following that, layers 3, 4, and 5 contain 128, 256, and 

512 filters, respectively. The right-side convolution 

blocks act as decoders and increase the image size; they 

hold the same order of filters in each convolution layer. 

The output has three labels that represent three classes, 

such as background, brain, and skull. The model 

classifies each pixel into the provided classes. 

4. Results and Discussion 

This section first shares the details about the data set and 

parameters. Second, reveal the quantitative measures, 

and then investigate the performance of the proposed 

model and computers with other methods. The data set 

was taken from the NFBS website, which contains the 

images as raw images jinni format. T1-weighted images 

with the skull stripped and the manually adjusted gold 

standard constitute each subject's data. Each voxel is 1 × 

1× 1 mm3 in size, and each scan is 256 × 256 × 192 in 

size. The first two dimensions 256 × 256 represent the 

size of a slice, and the third dimension 192 accounts for 

total number of slices in the3D dataset taken for the 

experiment. Micro software is employed to convert the 

3D images into 2D slices of 1 × 1 mm pixel thickness in 

.tif compression format. 

In the coding experiments, the training data frame 

contains 1500 images that are randomly selected from 

the 125 volumes of images. As a result, the training data 

frame was 1500 images long, the test data frame was 600 

images long, and validation required 500 images from 

randomly selected volumes. During the training process, 

the average height and width of the image are selected to 

fix the image size. Because large images necessitate 

more layers and channels, In the 1500 training images, 

500 images are mid-slice ranges from 92 to 98; 500 

images are end slides, which only contain the skull 

without the brain portion; 500 images are slice ranges 

from 50 to 60; and 170 to 160 slices, which contain a 

very small number of brain tissues compared to non-

brain tissues. The Adam optimizer is widely used for 

image processing and was used here with 0.001 as initial 

learning rate. The proposed use is implemented using 

Google Colab. 

4.1 Evaluation Parameters 

The quantitative validation only ensures the quality of 

work in machine vision. This work evaluated with the 

measures dice, precision, recall and accuracy.  

𝐷𝑖𝑐𝑒 =  
𝑇𝑃

2𝑇𝑃+𝐹𝑁+𝐹𝑃
    

                    (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
    

                    (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
     

                                 (3) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝐹𝑃

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
    

                                 (4) 
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𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                 (5) 

Dice measures the similarity ranges from to 1, 1 repress 

higher similarity. The precision indicates the relevant 

positive predictions. Recall is called as sensitivity; it 

represents how good a test is predicting correctly. The 

TP and FP stands for true positive and false positive 

respectively. TN and FN represents true negative and 

false negative. The measures are described in Fig 4. 

Fig 4: Relationship with actual and predicted values 

4.2 Discussion 

During training, training and validation loss, training and 

validation accuracy, and training and F1 score are 

depicted in Fig. 5. The training and validation loss are 

given in Fig. 5 (a). The loss is higher in training but 

lower when working with the validation dataset. The loss 

value is reduced for subsequent epochs. This chart 

confirmed that 10 epochs are enough. Fig. 5 (b) 

represents the accuracy during the training and validation 

processes. From the first epoch, the training accuracy 

ranges from 0.6 to 0.99 at the ninth epoch. The F1 score 

is high during training at the 7th epoch, which is 

illustrated in Fig. 5 (c) though the F1 score in the 

validation data set is high at the 9th epoch. At the 9th 

epoch, all parameter values were saved and used for the 

testing process.  

 

 

                                     (a)                                  (b)                                                   (c) 

Fig 5: Relation between loss and epochs. (a) Training, validation loss and epochs, (b) Accuracy measure in training data 

and validation data and (c) F1 score 

The comparative results of presented method with other 

methods which done the similar task is essential to 

ensure the strength and weaknesses of the proposed 

method.  In the same way, for the comparison three 

previously stated methods are taken. They are called 

Brain Extraction Tool (BET) [4], Robust Learning-Based 

Brain Extraction (RoBEX) [10], and UNet3D [11]. The 

results of the existing methods are extracted from 

[13].  Dice value of the presented method with other 

early stated methods are depicted in Fig 6(a), which 
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reveals that the BET achieves less than 90%, RoBEX 

obtains a 95% dice score, the UNet3D and proposed 

methods get almost equal values, and the proposed 

method obtains a higher value than the UNet3D; the 

standard deviation of RoBEX is 0.0179, and the standard 

deviation of the proposed method is 0.0163. The 

proposed method attains a higher precision value, as 

given in Fig. 6 (b). The true value prediction of the 

proposed methods is higher than that of other methods. 

The sensitivity of the proposed method is 98%, 1% more 

than the UNet3D model, and 5% more than the RoBEX 

method. The overall result of the proposed method is 

higher than the other methods, ensuring outperformance 

of the proposed method. The proposed and UNet3D 

models follow the same architecture with less variation, 

though the pre-processing methods are different, and the 

latter provides the highest result of the proposed method. 

As per the discussion in [16] the RoBEX and UNet3D 

models have been using 100s of epochs to deal with the 

abnormal and normal images, but the proposed method is 

using the NFBS dataset alone and results in 9 epochs. 

[17-18]. 

  

 

                                              (a)                                                                                            (b) 

 

                                 (c) 

Fig 6: Quantitative charts. (a) Dice Score, (b) Precision and (c) Recall 

5. Conclusion 

In this work, we suggest an updated U Net-based deep 

learning method for brain extraction. It uses a completely 

automated computer-assisted process. Additionally, the 

proposed strategy produces a robust trained model. It can 

be used for tough multi center data as well as internal 

private data. The proposed method provides the good 

results when evaluate to the outcomes of the previously 

proposed methods. In addition, we first compare the effect 

of different techniques work for skull stripping using 

quantitative measures. We intend to expand the multi-

cantered dataset used as training data in the future and 

create a sophisticated deep learning model for brain 

extraction. 
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