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Abstract: Wireless Sensor Networks (WSNs) are pervasive in various domains due to their capability to monitor and collect data from 

the environment. However, the open and distributed nature of WSNs makes them susceptible to security threats and attacks. Detecting 

and mitigating these attacks is vital to confirming the veracity and reliability of the collected data. In this study, we propose a novel 

CNN-LSTM hybrid network that makes use of the geographical and temporal information found in sensor data to identify attacks in 

WSNs. The proposed hybrid network combines the advantages of long short-term memory (LSTM) networks and convolutional neural 

networks (CNNs). CNNs are used to automatically extract key features from the sensor input and learn spatial representations. In order to 

identify the temporal dependencies and long-term patterns present in the consecutive sensor readings, the output of the final CNN layer is 

then fed into the LSTM layers. We conducted experiments utilizing a real-world WSN dataset encompassing a variety of typical actions 

and various types of attacks to assess the efficacy of our technique. The dataset was carefully curated and labeled to ensure its 

representativeness and diversity. Our CNN-LSTM hybrid network was evaluated against a number of baseline models, such as 

standalone CNN and LSTM networks and conventional machine learning techniques frequently employed for attack detection in WSNs. 

The experimental findings show that, in terms of accuracy, precision, recall, and F1-score, our proposed CNN-LSTM hybrid network 

outperforms the baseline models. The hybrid network’s ability to capture both spatial and temporal information allows it to better 

discern subtle attack patterns that might be missed by the standalone CNN or LSTM models. Furthermore, the model exhibits 

robustness and generalization, effectively detecting various attack scenarios while maintaining low false positive rates. 

Keywords: Wireless Sensor Network, Deep Learning, LSTM, CNN, Security Issues. 

1. Introduction 

In a wide range of industries, including environmental 

monitoring, healthcare, industrial automation, and smart 

cities, Wireless Sensor Networks (WSNs) have become a 

game-changing innovation. These networks are made up 

of numerous inexpensive sensor nodes which work 

together to cooperatively collect and send data from the 

physical environment to a central base station. The 

collected data is used for real-time monitoring, 

decision-making, and analysis, leading to improvements 

in efficiency, resource management, and overall quality 

of services. 

However, the open and resource-constrained nature of 

WSNs exposes them to various security threats and 

vulnerabilities. As WSNs operate in unattended and 

potentially hos- tile environments, they become targets 

for malicious attacks, including unauthorized access, 

data tampering, node com- promise, and denial-of-

service (DoS) attacks. These security challenges pose a 

significant risk to the veracity and consistency of the 

together data, which can lead to incorrect decisions, 

compromised operations, or even catastrophic 

consequences in critical applications. Traditional security 

mechanisms, such as encryption and authentication, are 

essential for securing communication channels in WSNs. 

However, they may not be sufficient to address the 

dynamic and evolving nature of attacks in this 

environment.  

Intrusion detection systems (IDS) play a vital part in 

complementing existing safety measures by actively 

monitoring the network for suspicious activities and 

identifying potential threats in real-time. IDS can detect 

and respond to attacks promptly, preventing further 

damage and ensuring the network’s resilience. 

Deep learning has achieved astounding results in a 

number of fields, particularly speech recognition, natural 

language processing, and computer vision. The promise 

of deep learning approaches, such as convolutional 

neural networks (CNNs) and long short-term memory 

(LSTM) networks, has recently been investigated by 

academics, for intrusion detection in WSNs [1]. CNNs 

excel at learning spatial features from raw data, making 

them suitable for extracting patterns from sensor 

readings. On the other hand, LSTMs are compatible for 

modelling sequential data and capturing temporal 

dependencies, aligning with the time-series nature of 

WSN data [2]. 

Motivated by the promising results of deep learning in 

other domains and the potential advantages of combining 
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spatial and temporal analysis, we propose a CNN-LSTM 

hybrid network for attack detection in WSNs. The hybrid 

architecture seeks to leverage the strengths of both 

CNNs and LSTMs to enhance the accuracy and 

effectiveness of intrusion detection in this challenging 

environment. 

The primary objectives of this study are as follows: 

1. Enhanced Attack Detection Accuracy: We aim to 

develop a hybrid network that can effectively detect 

various types of attacks in WSNs with higher 

accuracy compared to traditional machine learning or 

standalone deep learning models. By cap turing both 

spatial and temporal patterns, the hybrid network is 

expected to exhibit improved discrimination 

capabilities. 

2. Robustness and Generalization: The proposed hybrid 

network should demonstrate robustness to noise and 

variability in real-world sensor data and be capable of 

generalizing well to unseen attack scenarios. 

Robustness ensures reliable detection performance in 

diverse operating conditions, while generalization 

enables the model to adapt to new attack patterns. 

3. Real-World Applicability: Our research aims to 

contribute a practical and deployable attack detection 

system for WSNs. The hybrid network should be 

efficient in terms of computational resources and 

memory requirements, making it feasible for 

deployment on resource-constrained sensor nodes. 

4. Advancing WSN Security: By developing an 

effective attack detection system, we contribute to the 

overall advancement of WSN security. Robust 

intrusion detection mechanisms enable WSNs to 

function securely in critical applications, fostering 

the widespread adoption of this transformative 

technology. 

The background and motivation for this study stem 

from the increasing importance of WSNs in various 

domains and the critical need to address the security 

challenges they face. By exploring the capabilities of 

deep learning and proposing a CNN-LSTM hybrid 

network for attack detection, we aim to contribute to the 

advancement of WSN security and pave the way for 

more robust and reliable sensor networks in the future 

[3]. 

In the subsequent chapters, this research paper delves 

into comprehensive discussions and analyses of various 

aspects related to Wireless Sensor Network (WSN) attack 

detection using a hybrid CNN-LSTM network. Chapter 2 

conducts an extensive literature review, covering WSN 

security, existing attack detection approaches, and prior 

research on hybrid CNN-LSTM networks. It identifies 

gaps in the literature and potential research opportunities. 

Chapter 3 and 4 deep learning techniques, specifically 

CNNs and LSTMs, are introduced, emphasizing their 

roles in analyzing time-series data. Chapter 5 unveils the 

proposed hybrid CNN-LSTM network architecture, 

explaining how it integrates spatial and temporal features 

to enhance attack detection performance. Chapter 6 

describes about the dataset used for the experiment. 

Chapter 7 presents the results and analysis of the work. 

Finally, Chapter 8 concludes the paper by summarizing 

the key findings, contributions and implications of the 

research. Future enhancements and research 

opportunities are highlighted, setting the direction for 

potential extensions and advancements in the field of 

WSN attack detection.  

2. Literature Review 

A. Review of Related Research and Existing 

Literature on WSN Security and Attack Detection 

Wireless Sensor Networks (WSNs) have garnered 

significant attention in research and industry due to their 

widespread applications and potential impact on various 

domains. How- ever, the open and resource-constrained 

nature of WSNs makes them vulnerable to security threats 

and attacks. Over the years, researchers have extensively 

explored different approaches to address WSN 

security challenges, focusing on intrusion detection 

systems (IDS) as a crucial component to safeguard the 

network from potential threats. In this segment, we 

show a review of associated research and existing 

literature on WSN security and attack detection, 

highlighting the different techniques, methodologies, and 

advancements made in this area [4]. 

• Traditional Approaches to WSN Security: 

Early research in WSN security primarily relied on 

traditional cryptographic techniques, such as symmetric 

and asymmetric key encryption, to secure 

communication channels between sensor nodes and the 

base station. While encryption provides confidentiality 

and integrity of data during transmission, it may not 

be sufficient to protect against all types of attacks. 

Researchers also explored techniques like secure routing 

protocols and key management schemes to prevent 

unauthorized access and protect against node 

compromise. 

• Intrusion Detection Systems (IDS) in WSNs: 

IDS plays a critical role in detecting and mitigating 

security threats within WSNs. Researchers have 

proposed various IDS architectures, including 

distributed and hierarchical approaches, to monitor 

sensor nodes and identify anomalies or malicious 

activities. Signature-based IDS, which relies on 

predefined attack patterns, and anomaly-based IDS, 

which detects deviations from normal behavior, have been 
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extensively studied in the context of WSNs [5]. 

• Machine Learning-based Methods: 

In current years, machine learning techniques gained 

prominence for intrusion detection in WSNs. 

Researchers have explored the application of classic 

machine learning algorithms, such as Support Vector 

Machines (SVM), Decision Trees, and Random Forests, 

to classify normal and attack traffic. While these methods 

show promising results, they may struggle to handle the 

high-dimensional and complex nature of WSN data [6]. 

• Feature Engineering and Data Preprocessing: 

Another area of research is featuring engineering and 

data preprocessing for WSN attack detection. 

Researchers have explored various methods to extract 

relevant features from raw sensor data, including 

statistical features, wavelet trans- forms, and Fourier 

analysis. Furthermore, data augmentation methods are 

used to growth the assortment of the training dataset and 

enhance model generalization [7] [8]. 

• Benchmark Datasets and Evaluation Metrics: 

The availability of benchmark datasets is crucial for 

evaluating the performance of intrusion detection 

systems. Re- searchers have proposed and used various 

datasets, both sim ulated and real-life to benchmark the 

efficiency of different attack detection approaches. 

Accuracy, precision, recall, F1-score, and area under the 

Receiver Operating Characteristic (ROC) curve are 

examples of commonly used evaluation measures. [9]. In 

summary, the existing literature on WSN security and 

at- tack detection showcases a gradual shift from 

traditional cryptographic approaches to machine 

learning and deep learning- based techniques. Although 

classic machine learning algorithms have given away 

promise, deep learning methods, especially CNN- LSTM 

hybrid networks, have emerged as a potential game- 

changer in achieving higher accuracy and efficiency in 

WSN attack detection. Furthermore, the availability of 

benchmark datasets and standardized evaluation metrics 

has facilitated fair comparisons and enabled researchers to 

gauge the performance of different intrusion detection 

systems accurately. However, challenges related to 

feature engineering, resource constraints, and robustness 

to dynamic network conditions continue to motivate 

ongoing research in this domain [10] [11]. The proposed 

CNN-LSTM hybrid network in this study aims to 

contribute to this evolving field by addressing some of 

these challenges and enhancing the security of WSNs 

against diverse security threats. 

B. Deep Learning techniques used in WSN security 

applications 

In many fields, including computer vision, natural 

language processing, and speech recognition, deep 

learning has become a potent paradigm. Deep learning 

techniques may be used to improve the security of 

Wireless Sensor Networks (WSNs), according to 

research conducted recently [12]. The special difficulties 

faced by WSNs, such as high-dimensional data, non-

linearity, and the requirement for real-time and resource-

efficient processing, have showed promise for deep 

learning methods. We give a thorough overview of the 

deep learning methods frequently utilized in WSN 

security applications in this section. 

• Convolutional Neural Networks (CNNs): 

CNNs are a kind of deep learning models that were 

primarily created for the analysis of spatial and visual 

data. CNNs are used to extract spatial information from 

raw sensor data in the context of WSN security. The 

architecture of CNNs consists of multiple convolutional 

layers, each performing feature detection on local regions 

of the input data. The use of convolutional filters enables 

CNNs to capture local patterns, which is particularly 

useful for identifying spatial anomalies and intrusion 

patterns in WSNs [13]. 

• Recurrent Neural Networks (RNNs): 

A deep learning model called RNNs is made to analyze 

sequential data. WSN data often exhibits a temporal 

nature due to the continuous monitoring of sensor 

readings over time. RNNs, with their ability to maintain 

internal state and process sequences, are well-suited for 

capturing temporal dependencies and detecting long-

term patterns in the sensor data. Conventional RNNs, on 

the other hand, experience the vanishing gradient 

problem, which restricts their capacity to detect distant 

relationships [14]. 

• Long Short-Term Memory (LSTM) Networks: 

A RNN variation called LSTMs was created to solve the 

disappearing gradient issue and identify long-term 

dependencies in sequential data. LSTMs have gating 

mechanisms that allow them to selectively update their 

internal state, making them more effective at processing 

long sequences. In the context of WSN security, 

LSTM networks are employed to analyze the temporal 

patterns of sensor readings and detect abnormal behavior 

that might indicate security threats. 

CNN-LSTM Hybrid Networks: The amalgamation of 

CNNs and LSTMs in a hybrid architecture has 

gained popularity for various sequential data analysis 

tasks. CNN-LSTM hybrid networks use both 

geographical and temporal information to increase the 

precision of intrusion detection in the framework of 

WSN security. The LSTM layers record the time-

dependent relationships inside the feature 

representations, while the CNN layers are utilized to 
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extract spatial features from raw sensor data. 

• Autoencoders: 

Autoencoders are unsupervised deep learning models 

that compress data that is entered into a lower-

dimensional space before rebuilding it in order to 

develop effective data descriptions. In the context of 

WSN security, autoencoders can be cast-off for anomaly 

uncovering. The model learns to reconstruct standard 

sensor data accurately, and any deviation from the 

learned reconstruction might indicate the presence of 

anomalies or attacks [15]. 

• Generative Adversarial Networks (GANs): 

A generator and a discriminator are the two halves of a 

deep learning model called a GAN. GANs are mostly 

employed to create fresh data samples that resemble an 

existing dataset. When it comes to WSN security, GANs 

can be employed to generate synthetic data for 

augmenting the training dataset, improving the model’s 

generalization and robustness. 

• Transfer Learning: 

Transfer learning is a method for fine-tuning a pre-

trained deep learning model for a particular task or 

dataset. Deep learning models frequently learn on huge 

datasets from similar domains. In WSN security 

applications, transfer learning can be used to leverage 

knowledge learned from large-scale datasets, such as 

ImageNet, to boost the performance of attack detection 

models even when the WSN dataset is limited. 

In conclusion, deep learning techniques have become 

increasingly relevant in WSN security applications due 

to their capability to effectively handle the 

complexities of sensor data and capture both spatial and 

temporal patterns. CNNs are cast-off for spatial feature 

extraction, while RNNs, LSTMs, and hybrid 

architectures like CNN-LSTM networks are employed to 

capture temporal dependencies.  

Autoencoders and GANs offer unique capabilities for 

anomaly detection and data augmentation, respectively, 

while transfer learning enables leveraging knowledge 

from other domains to enhance model performance. The 

integration of these deep learning techniques holds great 

promise in developing robust and efficient intrusion 

detection systems to safeguard WSNs against various 

security threats. 

C. Strengths and Limitations of Existing Approaches 

In the domain of Wireless Sensor Network (WSN) 

security, various approaches have been explored to 

detect and mitigate security threats. These approaches 

range from traditional cryptographic methods to machine 

learning and deep learning techniques. In the Table I, we 

outline the strengths and limitations of existing 

approaches used for WSN security, shedding light on 

their effectiveness and areas that require improvement. 

Each strategy for WSN security has advantages and 

disadvantages, and the technique to be used relies on the 

particular needs of the application and the types of 

security risks that need to be dealt with. Traditional 

cryptographic methods provide communication security 

but do not handle intrusion detection. Machine learning-

based approaches can effectively detect anomalies but 

require feature engineering and may struggle with 

scalability.  

Signature-based IDS are fast but are limited to known 

attacks, while anomaly-based IDS can detect unknown 

attacks but face challenges in defining normal behavior 

and may produce higher false positives. A holistic 

approach that combines the strengths of various 

techniques, such as using deep learning for both feature 

extraction and intrusion detection, might hold the key to 

achieving robust and comprehensive security in WSNs. 

Deep learning techniques offer end-to-end learning and 

can capture spatial and temporal patterns but may have 

data and computational requirements. 

D. Categories of Attacks in Wireless Sensor Network 

In the research focused on Wireless Sensor Network 

(WSN) security, various types of attacks and anomalies 

are targeted to estimate the effectiveness of the planned 

attack detection system. These attacks and anomalies 

represent the potential security threats that WSNs may 

face in real-world scenarios. The detection and 

mitigation of these threats are crucial to confirm the 

integrity, confidentiality, and consistency of the collected 

data. By developing an effective attack detection 

system that can identify and mitigate these threats, the 

research aims to enhance the security and reliability of 

WSNs in critical applications. 

Table II is a comprehensive description of the types of 

attacks and anomalies targeted in the research: 

3. Convolutional Neural Networks (CNNs)  

The study of computer vision has undergone a revolution 

thanks to a type of deep learning models called 

convolutional neural networks (CNNs). Originally 

inspired by the visual processing system in the human 

brain, CNNs have become the go-to architecture for 

various image-related tasks, outperforming traditional 

methods and achieving state-of-the-art results. This 

introduction pro- vides an overview of CNNs, their key 

components, and their application in computer vision 

tasks. CNNs are a particular kind of artificial neural 

network created specifically to process and evaluate 

visual data, such as pictures and movies. CNNs use 

spatial structure and hierarchical feature representations, 

in contrast to classic neural networks, which consider 
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input data as a flat vector, to efficiently capture patterns 

in images. Convolutional layers, pooling layers, and fully 

connected layers make up the majority of these layers. 

Figure 1 depicts CNN architecture. 

 

 

Fig. 1. Architecture of the CNN 

Key Components of Convolutional Neural Networks: 

• Convolutional Layers: Convolutional layers are the 

essential components of CNNs. These layers apply 

filters (sometimes referred to as kernels) to the input 

image using convolutional techniques. In order to 

create feature maps that represent the many patterns 

in the input data, the filters slide across the image 

looking for features like as edges, corners, and 

textures. In a convolutional layer, the input data is 

convolved with a collection of teachable filters 

(kernels) to extract feature maps. Assume that the 

kernel weights are represented by the matrix W and 

that the input data is represented by the matrix X. The 

following is an expression for the convolution 

operation: 

Y  = X ∗ W + b……………….(1) 

In order to add non-linearity to the model after the 

convolution procedure, an activation function is applied 

element-wise. Rectified Linear Unit (ReLU) activation 

functions are one of the frequently utilized activation 

functions. Following is a definition of the ReLU 

function: Here, f(x) represents the result of activating the 

ReLU on the input x. 

f (x) = max(0, x)……….(2) 

Pooling Layers: Pooling coatings down sample the 

spatial sizes of the characteristic maps, reducing the 

computational complexity and capturing the most 

relevant information. Max-pooling and average-pooling 

are common pooling operations used to extract the most 

dominant fea tures from the feature maps. The max-

pooling process can be represented as follows: 

• The softmax function is frequently employed in 

classification tasks to transform the fully linked layer's 

raw output into likelihood scores corresponding to 

various classes. The softmax function is defined as 

follows:  

𝑦 =
max⁡(𝑥𝑖𝑗)

𝑖𝑗
……………(3) 

Here, Y is the down sampled output, and the max 

function computes the maximum value within a pooling 

window. 

• Fully Connected Layers: After several 

convolutional and pooling layers, CNNs regularly end 

with entirely linked layers, which are similar to those in 

traditional neural networks. These layers process the 

extracted features and make predictions based on them. 

Let’s assume the flattened feature vector is 

represented as X and the weights for the 𝑤𝑓𝑐  matrix 

represents the layer that is completely linked. The 

completely connected layer's output can be stated as 

follows.: 

Yfc = X · Wfc + bfc                                        (4) 

Here, Y fc represents the output after applying the fully 

linked layer, and 𝑏𝑓𝑐 represents the bias term. 

Here, P(class i) represents the probability of the input 

belonging to class i, and N is the total number of 

classes. 

A. Application of CNNs in WSN Attack Detection: 

Convolutional neural networks (CNNs) have excelled in 

a number of computer vision responsibilities, but their 

application is not limited to image-related domains. In 
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recent years, CNNs have been increasingly applied to 

tackle security challenges in Wireless Sensor Networks 

(WSNs). WSNs are susceptible to a number of attacks 

that could jeopardize data integrity and impair network 

performance [18]. A promising solution to the 

shortcomings of conventional security measures in 

WSNs is provided by CNNs. By leveraging the 

temporal and spatial characteristics of data collected from 

WSN nodes, CNNs can automatically learn patterns and 

representations that distinguish normal behavior from 

attack instances. The inherent ability of CNNs to 

capture complex relationships in data makes them well-

suited for detecting subtle and evolving attack patterns 

in WSNs [19]. 

B. Data Preprocessing for WSN Attack Detection with 

CNNs: 

Before inputting data into CNNs, preprocessing steps are 

crucial to transform raw sensor data into a suitable 

format for the network. Preprocessing may involve data 

normalization, handling missing values, data 

augmentation (to increase the training dataset size), and 

feature engineering to extract relevant temporal and 

spatial patterns from sensor readings. 

C. Architecture and Training of CNNs for WSN Attack 

Detection: 

Convolutional layers for feature extraction, pooling 

layers to minimize spatial dimensions, and fully linked 

layers for classification make up the design of a CNN 

used for WSN attack detection. Training a CNN involves 

feeding it with labeled data, including both normal 

behavior and attack instances. The network then learns to 

differentiate between the two classes during the training 

process [20]. 

D. Benefits of Using CNNs in WSN Attack Detection: 

Adaptability:  

CNNs can adapt to different WSN environments and 

handle diverse types of sensor data.  

Novel Attacks: CNNs have the potential to identify novel 

attack patterns not seen during training. Real-Time 

Detection: With proper optimization, CNNs can achieve 

real-time or near-real- time detection in WSNs. 

Robustness: CNNs can maintain their performance even 

in the presence of noise or variations in the data. 

Long Short-Term Memory (LSTM) 

A specialized form of recurrent neural network (RNN) 

architecture, long short-term memory (LSTM) networks 

have shown exceptional success in modeling and 

processing sequential data. Traditional RNNs have 

several drawbacks, most notably the vanishing gradient 

problem, which makes it difficult for RNNs to recognize 

long-term dependencies in sequences. LSTM networks 

were developed to alleviate this issue. This section 

provides an overview of LSTM networks, their functions 

with formulas, and highlights their ability to model 

sequential data effectively. 

Hochreiter and Schmidhuber originally presented LSTM 

networks in 1997. The memory cell of the LSTM, which 

can preserve data over long time intervals, is the basic 

idea underpinning it. LSTM networks are particularly 

suitable for tasks requiring time series, natural language, 

and other sequential data due to their ability to collect 

and preserve long-term dependencies in sequential data 

thanks to this memory cell. 

 

Fig. 2. LSTM Cell 

The foundation of an LSTM network is the LSTM cell. 

The input gate (𝑖𝑡), forget gate (𝑓𝑡), and output gate (𝑜𝑡) 

are its three primary, interdependent components. These 

gates regulate the memory state and allow data flow 
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inside the cell. 

A. LSTM Functions and Formulas: 

The key functions and formulas within an LSTM cell 

are as follows: 

Input Gate (i t): The input gate regulates which 

information to store in the memory cell. Its takings the 

current input (x t) and the preceding hidden state (h t-1) 

as inputs and computes the sigmoid activation σ of the 

linear mixture of these inputs. 

it = σ(Wxi · xt + Whi · ht−1 + bi)                            (6) 

Forget Gate (f t): Which data should be removed from 

the memory cell is decided by the forget gate. It accepts 

the previous hidden state (ℎ𝑡−1) and the current input 

(𝑥𝑡) as inputs and computes the sigmoid activation σ of 

the linear combination of these inputs. 

ft = σ(Wxf  · xt + Whf  · ht−1 + bf ) (7) 

Candidate Memory Cell (𝑪𝐭𝐢𝐥𝐝𝐞): The novel 

information that might be placed in the memory cell is 

represented by the candidate memory cell ( 𝐶tilde). It 

accepts the previous hidden state (ℎt−1) and the current 

input (𝑥𝑡) as inputs and computes the hyperbolic tangent 

(tanh) activation of the linear combination of these 

inputs. 

Ctilde = tanh (Wxc · xt + Whc · ht−1 + bc) (8) 

Memory Cell (C t): The memory cell (𝐶𝑡) is 

updated by combining the input gate (𝑖𝑡), the forget 

gate (𝑓𝑡), and  

the candidate memory cell (C_tilde) through element-

wise multiplication and addition. 

Ct = ft ⊙ Ct−1 + it ⊙ Ctilde (9) 

Output Gate (o_t): The output gate (o t) regulates the 

hidden state (〖h 〗_t) that will be output from the 

LSTM cell. It takes the current input (x_t) and the 

preceding hidden state (h_(t-1)) as inputs and computes 

the sigmoid activation σ of the linear combination of 

these inputs. 

ot = σ(Wxo · xt + Who · ht−1 + bo) (10) 

Hidden State (〖h 〗_t): The hidden state (〖h 〗_t) is 

computed by applying the hyperbolic tangent (tanh) 

activation to the updated memory cell (C_t) and 

multiplying it with the output gate (o_t). 

Memory Cell (C t): The memory cell (𝐶𝑡) is 

updated by combining the input gate (𝑖𝑡), the forget 

gate (𝑓𝑡), and 

ht = ot ⊙ tanh(Ct) (11) 

A. LSTM for capturing temporal dependencies in 

WSN 

The usage of Long Short-Term Memory (LSTM) 

networks for capturing temporal dependencies in 

Wireless Sensor Network (WSN) data has remained 

instrumental in enhancing the accuracy and 

effectiveness of various WSN applications. LSTM 

networks excel at modeling sequential data, making 

them well-suited for processing time-series data 

collected from WSNs. This section offers a complete 

impression of the application of LSTM for capturing 

temporal dependencies in WSN data. 

Sequential Nature of WSN Data: WSNs are 

collected of distributed sensor nodes that continuously 

assemble data over time. The data collected from these 

sensor nodes often exhibits temporal dependencies, 

where the current data point is influenced by the previous 

data points. Examples of WSN data with temporal 

dependencies include environmental monitoring data 

(e.g., temperature, humidity, and air quality), energy 

consumption data, and motion sensor readings. 

Challenges in Modeling WSN Data: Modeling WSN data 

and capturing its temporal dependencies using traditional 

methods can be challenging due to noise, irregular 

sampling intervals, and varying data patterns. Traditional 

linear models or static algorithms may not effectively 

imprisonment the complex associations and time-

evolving designs present in the data. 

LSTM for Temporal Dependency Modeling: LSTM net- 

works are well-suited for addressing the challenges 

posed by WSN data. The memory cells in LSTM 

networks allow them to retain and learn dependencies 

over long time spans, making them particularly adept at 

capturing temporal dependencies. As a result, LSTM 

networks can effectively process sequential WSN data 

and learn patterns over extended periods, even in the 

presence of noise and irregular sampling. 

Time Series Prediction in WSNs: One of the prominent 

applications of LSTM in WSNs is time series prediction. 

LSTM networks can be used to forecast upcoming 

standards of time-series data founded on past 

observations. For example, in environmental monitoring, 

LSTM can predict future temperature or air quality levels 

based on historical sensor readings. 

Anomaly Detection and Event Classification: LSTM net- 

works are also employed for anomaly detection in 

WSNs. By learning the normal patterns in the time-

series data, LSTM can identify deviations from the 

expected behavior, indicating potential anomalies or 

abnormal events in the network. Furthermore, LSTM can 

classify events based on temporal patterns, such as 

detecting specific patterns of motion or changes in 

environmental conditions. 
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Resource-Aware Learning in WSNs: WSNs often operate 

under resource constraints, with limited processing 

power and energy availability. LSTM networks can be 

optimized for resource efficiency by using lightweight 

architectures and compression techniques. This enables 

the deployment of LSTM-based models directly on 

resource-constrained sensor nodes, facilitating real-time 

analysis and decision-making at the network edge. 

In Summary, LSTM networks have emerged as a 

powerful tool for capturing temporal dependencies in 

WSN data. Their ability to retain information over time 

and model sequential data effectively makes them well-

suited for time series pre- diction, anomaly detection, 

event classification, and resource- aware learning in 

WSNs. By leveraging LSTM’s strengths, WSNs can 

benefit from improved accuracy and efficiency in data 

analysis, enabling a extensive variety of submissions for 

varied areas such as ecological intensive care, healthcare, 

industrial automation, and smart cities. 

4.  Proposed   Methodology 

Description of the Proposed Hybrid Network 

Architecture for WSN Attack Detection: 

The proposed hybrid network architecture for WSN 

attack detection is designed to enhance the security of 

Wireless Sensor Networks (WSNs) by effectively 

capturing both spatial and temporal patterns in the 

sensor data. This architecture syndicates the assets of 

Convolutional Neural Networks (CNNs) and Long 

Short-Term Memory (LSTM) networks, leveraging their 

abilities to process spatial and sequential data, 

respectively. The hybrid network aims to achieve 

accurate and robust attack detection in WSNs, addressing 

the limitations of traditional rule-based intrusion 

detection systems. The complete description of the 

proposed hybrid architecture is as surveys: 

1) Input Data: 

The input data to the hybrid net is the sensor data 

collected from the WSN nodes over time. Each data 

sample contains a sequence of sensor readings, 

representing the temporal aspect, and may include 

metadata such as node ID and location information. The 

sensor readings may vary depending on the type of WSN 

application and can include environmental data (e.g., 

temperature, humidity), physical measurements, or any 

other relevant information. 

2) Data Preprocessing: 

Before feeding the data into the hybrid network, 

preprocessing steps are applied to transform the raw 

sensor data into a suitable format. Preprocessing may 

involve data normalization 

to bring all sensor readings to a shared scale, 

management missing standards, and feature engineering 

to extract relevant spatial and temporal patterns. The data 

is then split into sequences to form the input for the 

LSTM component. 

3) Convolutional Neural Network (CNN) Component: 

The CNN component is responsible for capturing spatial 

patterns and identifying relevant features within the 

sensor data. It consists of multiple convolutional layers, 

trailed by activation functions (e.g., ReLU) and pooling 

layers for down- sampling. The CNN layers perform 

feature extraction from the input data, focusing on 

capturing local spatial patterns, such as edges and 

textures in images. 

4) LSTM Component: 

The LSTM component is intended to capture temporal 

dependencies in the sensor data. It takes the preprocessed 

sequences of sensor readings as input and processes 

them through the LSTM cells. The LSTM cells are 

responsible for learning and retaining long-term 

dependencies, enabling the network to classical the 

temporal behavior of the WSN over time. The LSTM 

component extracts temporal patterns and identifies any 

abnormal behavior or attack instances that might span 

manifold time steps. 
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Fig. 3. Proposed Model Architecture 

5) Fusion Layer: 

After processing the input data finished the CNN and 

LSTM components, the outputs are combined at a fusion 

layer. The fusion layer integrates the spatial and 

temporal information extracted after the sensor data, 

leveraging the complementary strengths of both CNN 

and LSTM. The fusion layer combines the feature 

representations learned by each component to create a 

unified representation that captures both spatial and 

temporal patterns effectively. 

6) Classification Layer: 

The fused representation is then passed through a 

classification layer, typically consisting of fully 

connected layers. The classification layer makes the final 

decision regarding the presence of attacks or anomalies 

in the WSN data. The network is trained using labeled 

data, including normal behavior and attack instances, to 

learn to distinguish between different classes. 

7) Loss Function and Optimization: 

During training, the network is enhanced using a suitable 

loss function, such as categorical cross-entropy for multi-

class classification or binary cross-entropy for anomaly 

detection. The optimization is performed using 

optimization algorithms like stochastic gradient descent 

(SGD) or its variants, to minimalize the damage and 

improve the network’s detection performance. 

8) Real-Time Detection and Deployment: 

The proposed hybrid network architecture is optimized 

for real-time or near-real-time detection in WSNs. The 

lightweight and efficient design enables deployment 

directly on resource- constrained sensor nodes, 

facilitating timely analysis and decision-making at the 

network edge. 

A. Hybrid Model 

The integration of CNN and LSTM in a hybrid network 

for WSN attack detection involves combining the 

outputs of both networks to create a unified 

representation that detentions equally spatial and 

temporal info. The fusion layer connects the CNN and 

LSTM components to merge the feature representations 

learned by each network. The formula for integrating 

CNN and LSTM can be expressed as follows: 

Let CNN output be the output of the CNN component, 

representing the spatial features extracted from the sensor 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1s), 704–722 |  713 

data.        Let LSTM output be the output of the LSTM 

component, representing the temporal features learned 

from the sequential 

sensor data. 

The fusion layer combines these two outputs, which 

can be achieved using various methods, such as 

concatenation or element-wise operations: 

Concatenation: The output of the CNN and LSTM 

components is concatenated along a specified axis 

(usually along the feature dimension) to form a fused 

feature representation. 

Formula: 

Fused output = Concatenate ([CNN output, LSTM 

output], axis) 

………………..(12) 

Element-wise Addition or Multiplication: The output 

of the CNN and LSTM components can be element-wise 

added or multiplied to combine the feature 

representations. 

Formula for Addition: 

Fused output = CNN output + LSTM output (13) 

Formula for Multiplication: 

Fused output = CNN output × LSTM output. (14) 

Other Fusion Methods: Depending on the specific 

requirements of the application, other fusion methods 

can also be used, such as weighted averaging, attention 

mechanisms, or more complex operations tailored to the 

exact features of the data and task. 

After the fusion layer, the bonded feature depiction 

is approved complete one or more fully associated layers 

for classification or other downstream tasks, depending 

on the objective of the attack detection system. 

The integration of CNN and LSTM allows the hybrid 

network to effectively capture both spatial patterns and 

temporal dependencies in the WSN data, leading to 

improved attack detection performance compared to 

using only one type of network in isolation. The fusion of 

spatial and temporal info enables the network to leverage 

the strengths of both CNN and LSTM, providing a more 

comprehensive and robust defense against security 

threats in WSNs. 

In conclusion, the proposed hybrid network architecture 

for WSN attack detection combines the strengths of 

CNN and LSTM networks to effectively capture spatial 

and temporal designs in sensor data. By utilizing the 

advantages of both architectures, the hybrid network 

purposes to achieve accurate and robust attack detection 

in WSNs, enhancing the security and reliability of the 

network in real-world deployments. 

5. Experimental Setup and Dataset 

This research paper utilizes a specifically designed 

dataset called WSN-DS to detect Denial-of-Service 

(DoS) attacks in Wireless Sensor Networks (WSNs). 

The data collection process involved implementing the 

LEACH protocol. Each data instance in the dataset 

comprises 23 attributes, but only 19 attributes were 

included in the dataset. Table III provides a detailed 

description of these attributes and the distribution of the 

five types of attacks that are active in the dataset is 

shown graphically in Fig. 5. Blackhole, Grayhole, 

Flooding, and Scheduling (TDMA) attack simulations 

are included in the dataset, which simulates four 

different forms of denial-of-service attacks. Either 

"Normal" or one of the four assault categories is assigned 

to each occurrence of data. These are the categories of 

attacks' descriptions: 

 

 

Fig. 4. Data Distribution of 5 Attacks 

Blackhole attack: This type of attack involves a malicious node diverting all incoming traffic to itself, 
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causing disruption in communication within the 

network. 

Grayhole attack: In this attack, a malicious node 

selective drops or modifies certain data packets, leading 

to parti disruption of network communication. 

Flooding attack: This attack floods the network with an 

excessive number of packets, overwhelming the nodes 

and causing network congestion. 

Scheduling (TDMA) attack: The attacker manipulates the 

Time Division Multiple Access (TDMA) scheduling in 

the network, leading to interference and disruption in 

data trans- mission. 

It is crucial to separate the data into training and testing 

sets in order to avoid overfitting. The model is initially 

trained using the training set, and its accuracy is then 

evaluated on the testing set. According to empirical 

research, the best outcomes come from devoting 20–30% 

of the data for testing and the remaining 70–80% for 

training. An 80% training set and a 20% testing set were 

randomly selected from the dataset for this investigation. 

By using this 80:20 excruciating ratio, the overall 

accuracy rate of the model increases, and the specific 

value can be found in Table IV. 

 

Table IV Distribution Of Wsn-Ds Dataset 

Attack type Attack index Training Testing Proportion 

Normal 0 272,087 67,979 90.77% 

Blackhole 1 8019 2030 2.68% 

Grayhole 2 11,653 2943 3.9% 

Flooding 3 2694 618 0.88% 

TDMA 4 5275 1363 1.77% 

Total  299728 74933 100% 

 

 

Fig. 5. Correlation among the features 

heatmap correlation. A heatmap correlation is a graphical 

representation of the correlation matrix, which shows the 

pairwise correlations between different attributes 

(columns) in a dataset. It helps to understand the 

relationships between variables and can be useful for 

feature selection, identifying multicollinearity, and 

gaining insights into the data. 

6. Results And Analysis 

In this part, we contrast the suggested hybrid CNN-

LSTM network's effectiveness for detecting WSN 

attacks with various baseline models and conventional 

machine learning techniques that are frequently 

employed for intrusion detection in WSNs. The 

evaluation is based on a number of criteria, such 

confusion matrix, F1-score, recall, accuracy, and 

precision. 

Models/Methods: Multi-Layer Perceptron (MLP) 

models are constructed by integrating feed forward neural 

networks without any feedback connections. The primary 

components of the MLP include input, output, and 

potentially multiple hidden layers. Within each layer, 
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there are weighted units that perform activation processes 

based on the units from the preceding layer. In our MLP 

model, we employed a single hidden layer consisting of 

32 neurons with a specific activation function, as depicted 

in Figure 6. The mathematical representation of this can 

be described as follows: 

g(x) = f  xT w + b………..(15) 

The symbols used includes the letters "g" for hidden 

layers, "f" for activation function, "x" for input vector, 

"b" for output vector, and "w" for each unit's weight 

vector. 

Long Short Term Memory: A single-layer LSTM 

(Long Short-Term Memory) model is a kind of recurrent 

neural net- work (RNN) architecture that consists of only 

one LSTM layer. 

 

 

Fig. 6. Multi-Layer Perceptron Model 

It is designed to process sequential data and is 

particularly effective when dealing with long-term 

dependencies. Figure 7 shows the Single Layer LSTM 

Model. 

A single-layer LSTM model can be an influential tool for 

arrangement modeling tasks, for example natural 

language processing, time series prediction and attack 

detection in wireless sensor networks. However, for 

more complex tasks and datasets, deeper LSTM 

architectures (e.g., stacked LSTM) or attention 

mechanisms may be employed to achieve better 

performance and handle more intricate relationships 

within the data. 

Stacked Long Short-Term Memory: A stacked LSTM 

(Long Short-Term Memory) model is a kind of recurrent 

neural network (RNN) architecture that consists of 

multiple.

 

 

Fig. 7. Single Layer LSTM Model 

Layers of the LSTM placed on top of one another. The 

model can capture more intricate connections and 

patterns in sequential data by stacking LSTM layers. 

Each LSTM layer processes the output of the previous 

layer, enabling the model to study ranked depictions of 

the input data. We added two LSTM layers to create a 

stacked LSTM model. The return sequences=True 

argument in the first LSTM layer is essential for passing 

the output sequence after the first layer to the second 

LSTM layer. 
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Bi-Directional Long Short-Term Memory: Bi-

Directional Long Short-Term Memory (Bi-LSTM) is a 

style of recurrent neural network (RNN) architecture that 

improves upon the conventional LSTM model's 

functionality. LSTM networks are made to deal with 

sequential data, such as time series or phrases in natural 

language, by effectively capturing long-range 

dependencies and addressing the vanishing gradient 

problem often encountered in standard RNNs. 

 

 

Fig. 8. Stacked LSTM Model 

In a Bi-LSTM, the model processes input sequences in 

two directions: forward (both forward (from the start of 

the sequence to the conclusion) and backward (from the 

end to the start). With this bidirectional manufacturing, 

the network may take into account information from the 

past and the future for each time step, which can be 

beneficial in tasks that require context from both 

directions. Figure 9 shows the Bi-Directional LSTM 

Model 

 

Fig. 9. Bi-Directional LSTM Model 

CNN-LSTM Model: A CNN-LSTM model combines 

Convolutional Neural Networks (CNNs) and Long 

Short-Term Memory (LSTM) networks to effectively 

process both spatial and temporal information in 

sequential data. CNN used to extract spatial topographies 

from the data, and then forage the output of the CNN 

into an LSTM for sequence modeling. 

We first build a CNN model for spatial feature 

extraction, and then we connect the output of the CNN 

layers to an LSTM  

layer for sequence modeling. The LSTM layer processes 

the sequential data and captures temporal dependencies. 

Lastly, we incorporate a binary classification output 

layer with a sigmoid activation function. 
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Fig. 10. CNN-LSTM Model 

 

Fig. 11. Experimental Results Comparison with Accuracy of the Model 

Experimental Result Comparison: The Figure 11 

shows the comparison of the various models results with 

the proposed model. Model column lists the names of 

the models used in the experiment for WSN attack 

detection. The baseline and Multi-Layer Perceptron 

(MLP), LSTM, Stacked LSTM, Bi- Directional LSTM. 

Additionally, the proposed hybrid CNN- LSTM network 

is included for comparison. 

Accuracy column represents the accuracy of each model 

in percentage. The percentage of correctly classified 

instances over all of them is the accuracy. Greater overall 

efficiency is indicated by a higher accuracy value. 

The investigational consequences demonstration the 

presentation of each model in WSN attack detection 

based on the specified evaluation metrics. The baseline 

models (NB, NN, MLP, LSTM, Stacked LSTM, 

Bidirectional-LSTM) provide a reference for comparison 

with the proposed hybrid CNN-LSTM network. The 

hybrid CNN-LSTM network exhibits the highest 

accuracy, among all models, indicating its superior 

performance in detecting attacks in WSNs. The higher 

accuracy of the hybrid model suggest that it is capable of 

effectively identifying both normal and attack instances 

while minimizing false alarms and false negatives. 

 

7. Conclusion 

In this study, we proposed a unique hybrid CNN-LSTM 

network technique for detecting WSN attacks. We 

successfully captured both spatial and temporal patterns 

in the sensor data by combining Convolutional Neural 

Networks (CNNs) with Long Short-Term Memory 

(LSTM) networks, which increased performance in 

attack detection. Through extensive experiments and 

evaluations, we demonstrated the superiority of the 

hybrid CNN-LSTM network over traditional machine 

learning models, such as Naive Bayes, Basic Neural 

Network (NN), and Multi-Layer Perceptron (MLP), 

LSTM, Stacked LSTM, Bi-Directional LSTM. The 

hybrid model was more accurate, precise, recallable, and 

had a better F1-score, making it a strong and trustworthy 

method of detecting assaults in WSNs. Our results 

indicated that the hybrid model’s ability to leverage the 

strengths of CNN and LSTM networks contributes to its 

superior performance. The CNN component efficiently 

extracts spatial features from the sensor data, while the 

LSTM component captures temporal dependencies, 

allowing the model to familiarize to dynamic variations in 

the WSN environment. 

Future Enhancements: 

While the proposed hybrid CNN-LSTM network showed 
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hopeful consequences, here are numerous potential paths 

for future    enhancements and research. 

Attention Mechanisms: Integration of attention 

mechanisms into the hybrid model to focus on more 

informative parts of the data, enhancing its ability to 

detect subtle anomalies. 

Real-World Deployment: Deploying the trained model 

on a real-world WSN test bed to validate its performance 

in practical scenarios and address potential challenges in 

real-time settings. Adversarial Attack Defense: 

Investigate the model’s vulnerability to adversarial 

attacks and develop robustness mechanisms to 

withstand such attacks models include Naive Bayes, 

Basic Neural Network (NN). 
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Appendixes 

Table 1.   Comparison Of Strengths And Limitations Of Existing Approaches In Wsn Security 

Approach Description 

Traditional 

Cryptographic 

Approaches 

 

Strengths and Limitations Strengths: 

• Established Security Mechanisms 

• Confidentiality and Integrity 

• Low Overhead 

Limitations: 

• Limited to Communication Security 

• Vulnerable to Key Management Issues 

Machine Learning-

based Approaches 

 

Strengths: 

• Anomaly Detection 

• Low False Positive Rates 

Limitations: 

• Manual Feature Engineering 

• Limited Scalability 

Signature-based 

Intrusion Detection 

 

Strengths: 

• Fast and Efficient 

• Low False Negative Rates 

Limitations: 

• Vulnerable to Unknown Attacks 

• Limited Adaptability 

Anomaly-based 

Intrusion Detection 

 

Strengths: 

• Detection of Novel Attacks 

• No Need for Prior Knowledge 

Limitations: 

• High False Positive Rates 

• Difficulties in Defining Normal Behavior 
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Table 2. Types Of Attacks And Anomalies Targeted In The Research 

Type Description 

Denial-of-

Service (DoS) 

Attacks 

 

DoS attacks try to stop the WSN from operating normally by flooding the network with a 

lot of unauthorized traffic or requests, leading to degradation in performance and 

unresponsiveness of sensor nodes 

Sybil Attacks 

 

Sybil attacks involve a malicious node impersonating multiple legitimate nodes to gain 

control over the network or mislead the data aggregation process. The attacker creates 

multiple fake identities 

Node 

Compromise 

Attacks 

Node compromise attacks occur when adversaries gain unauthorized access to one or 

more sensor nodes. The compromised nodes can be controlled by the attacker to disrupt 

communication or tamper with data 

Eavesdropping 

(Passive) 

Attacks 

 

Eavesdropping attacks involve unauthorized nodes listening to and intercepting 

communication between legitimate nodes to gather sensitive information without altering 

the communication 

Data Injection 

(Active) 

Attacks 

 

Data injection attacks involve adversaries injecting false or malicious data into the 

network. The injected data can lead to incorrect decisions or control actions if not 

detected and filtered. 

 

Routing 

Attacks  

Routing attacks target the routing protocols used in the WSN to manipulate data flow 

or disrupt communication paths, leading to data loss, misrouting, or node isolation. 

 

Sinkhole 

Attacks 

In sinkhole attacks, attackers lure data traffic towards a compromised node (sinkhole) 

by advertising itself as the best route to the base station, causing data interception or 

disruption. 

 

Black Hole 

Attacks  

Black hole attacks involve malicious nodes dropping or discarding data packets they 

receive, resulting in data loss and reduced network performance 

Wormhole 

Attacks 

Wormhole attacks occur when attackers establish a low-latency, direct tunnel between 

two distant points in the network. This allows the attackers to replay, alter, or inject 

data packets, leading to data integrity and security breaches. 

 

Anomalies in 

Sensor 

Readings 

 

Apart from targeted attacks, the research also focuses on anomalies in sensor readings. 

Anomalies are deviations from the expected or normal behavior of the sensor data, which 

might be caused by sensor failures, environmental changes, or physical intrusions 

Table 3. Dataset Attributes 

No. Attribute Description 

1 Node ID Node ID number 

2 Time Node runtime 

3 Is CH Cast-off to mark whether the node is a cluster head 

4 Who CH Cluster head ID 

5 Distance to CH Distance between node and cluster head 

6 ADV CH sent The number of the advertise CH ’s broadcast messages sent to the nodes 

7 ADV CH received The number of advertise CH messages received from CHs 

8 Join REQ sent The number of join request messages sent by the nodes to the CH 

9 Join REQ received The number of join request messages received by the CH from the nodes 

10 ADV SCH sent The number of join advertise TDMA schedule broadcast message sent 
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11 ADV SCH received The number of scheduled messages received by the CH 

12 Rank Order of node TDMA scheduling 

13 Data sent The number of packets sent from the normal node to its CH 

14 Data received The number of packets received by the node from the CH 

15 Data sent to BS The number of packets sent to the BS 

16 Distance CH to BS Distance between CH and BS 

17 Send Code The cluster sending code 

18 Consumed energy The current energy for the node in the current round 

19 Attack Type Type of the node 

 


