

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(2s), 37–47 | 37

An Extensive Comparative Analysis on Different Maze Generation

Algorithms

Deepak Mane1, Rajat Harne2, Tanmay Pol3, Rashmi Asthagi4, Sandip Shine5, Bhushan Zope6

Submitted: 18/07/2023 Revised: 04/09/2023 Accepted: 25/09/2023

Abstract: In this paper, we compared maze generation algorithms. The nature of maze generation algorithms is analyzed, and the best

amongst them is determined. The algorithms studied are Prim's algorithm, Kruskal's algorithm, DFS algorithm (Depth First Search),

Ellers algorithm, Wilson's Algorithm, Hunt and Kill algorithm, and Aldous-Broder algorithm. The performance evaluation of the

algorithms is determined by two parameters: the time taken by the algorithm to generate the maze and the space complexity of the maze.

Evaluations are done based on the number of variables, including the number of intersections and dead ends visited, along with the

overall steps taken by the agents, to determine how tough a maze is to navigate. The maze-generating algorithms are scored based on the

performance of the agents. The algorithms' performance determines the most effective algorithms. The outcome is laid out analytically

and graphically, showing a detailed analysis report of the algorithms' advantages and disadvantages. This report can be helpful in the

field of gaming development, AI training, robotics, and automation. Such detailed comparative analyses have yet to be carried out on

maze generation. Our research has bridged this research gap on maze generation algorithms and provided a detailed comparative analysis

of maze generation algorithms.

Keywords: Artificial Intelligence, Maze Generation, robot, maze, and genetic algorithms.

1. Introduction

Mazes are related to labyrinths, which have existed since

antiquity. Typically, they are constructed using materials

that are found in nature. They originally had a religious

connotation [1]. Their significant goal later was

amusement. Mazes have gained interest among scientists

in more recent times, particularly mathematicians.

Existing maze generation algorithms face several

challenges that researchers and developers have been

working to address. Current challenges include - Bias

and predictability, scalability, path complexity, and dead

ends.

Path-finding algorithms, robotics, and game creation are

artificial intelligence disciplines that rely heavily on

maze-generation methods.[8] There are many maze-

creation algorithms, each with specific advantages and

disadvantages. This paper intends to provide a thorough

investigation and comparative analysis of numerous

well-known artificial intelligence (AI) maze-generating

systems. The algorithms’ characteristics will be

specifically examined to decide the best. Prim's

algorithm, Kruskal's algorithm, DFS (Depth First

Search), Ellers method, Wilson's Algorithm, Hunt and

Kill algorithm, and Wilson's Algorithm are the

algorithms examined in this study. The length of time it

takes to generate the maze and the maze's spatial

complexity will be used to rate each algorithm. Three

path-finding agents that solve mazes have been created

to evaluate the algorithms' effectiveness. These agents

use DFS, BFS, and Dijkstra algorithms, respectively, and

will be used to report the findings to evaluate and rank

maze-creating methods. The data collected by these

agents will be analyzed to determine which maze-

generation algorithm is the most effective for various

applications.

To perform a quantitative analysis of each algorithm to

understand their technical and engineering aspects.

Calculating and comparing each algorithm’s time and

space complexity and assessing how well it performs

when applied to difficult maze-generating challenges

will be entailed. To achieve this, each algorithm will be

programmed and tested on mazes of various sizes and

difficulties. How long it takes for each method to

generate a maze will be timed, and how intricate the

mazes’ spatial layouts are will be kept track of. By

performing simulations with the three agents developed

for this project, the precision and effectiveness of each

method in clearing the maze will also be assessed.

The evaluation of the efficiency and complexity of each

algorithm is a crucial component of our research. It will

be necessary to evaluate the trade-offs between time and

1,2,3,4,5Vishwakarma Institute of Technology, Pune-411037,

Maharashtra, India
5Symbiosis Institute of Technology, Lavale, Pune412115,

Maharashtra, India
1dtmane@mail.com
2rajatharne@gmail.com
3tanmay.pol20@vit.edu
4rashmiashtagi@gmail.com
5sandeep.shinde@vit.edu
6bhushan.zope@hotmail.com

mailto:1dtmane@mail.com
mailto:2rajatharne@gmail.com
mailto:tanmay.pol20@vit.edu
mailto:rashmiashtagi@gmail.com
mailto:sandeep.shinde@vit.edu
mailto:bhushan.zope@hotmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(2s), 37–47 | 38

space complexity and ascertain which algorithms offer

the best compromise between the two. Performance

optimization strategies for each algorithm, such as

parallelization, pruning, and other tools, will also be

examined.

The main objective of this study work is to offer

insightful information on the most effective labyrinth

generation algorithms for particular applications. The

optimal solutions for various use cases can be found by

comparing the scalability and performance of various

algorithms. Our results can help algorithm developers

create new and enhanced algorithms for artificial

intelligence maze creation challenges that are more

effective and efficient.

The majority of these algorithms' maze-creation

applications have been documented, but there has yet to

be a known comparative study for the stated issue.

Section II describes the past studies done so far on maze

generation algorithms. Section III described the

methodology used for comparison through subsections -

algorithms, flowcharts, and path-finding agents used.

Section IV shows the detailed comparisons of all the

algorithms used for generating mazes in the form of

graphs, tables, etc., in the form of experiment results.

Section V defines the conclusion of the survey done in

this research paper.

2. Literature Review

The research focuses on a comparison of three

algorithms - A* (A star), backtracking algorithm, and

genetic algorithm (GAPP) -in order to find the quickest

way across a maze. The algorithms are evaluated based

on two criteria - path length and time taken to find the

path. The study includes mazes of varying sizes and

obstacle densities. The results of the study are presented

both analytically and graphically. This literature review

highlights the focus, methods, and key findings of the

paper[2]. Several games employ maze generation to

create maps, environments, and other graphical elements.

They previously employed expanding tree algorithms,

spanning tree techniques, and so on. However,

predefined matrices were utilized and limitations were

imposed on the design of the mazes by the techniques. A

straightforward method for creating arbitrary-shaped

mazes through the assembly of mazes is suggested in this

study. The ultimate large labyrinth is likely to be a

customised one because mazes can be combined in a

specific way based on user desire. The technology can

instantly create any new labyrinth if a database of mazes

with players' playing histories or preferences is available.

In addition, it may help players design fresh, challenging

mazes for user-generated content.[3]

In this research, a novel genetic algorithm-based

approach for creating video game levels is presented.

Gene pool incorporates learning is the name of the

suggested approach. This technique is useful in feature

selection because it is broad enough to be used in a

variety of game genres. This study looks for valuable

patterns in certain training data and saves them all in a

gene pool. The genetic algorithm is then used to discover

the pattern combination that will produce the best results.

The gene pool also maintains track of the quality of each

gene to comprehend the most commonly observed

pattern at various levels. In contrast to previous research,

this study develops a novel testing game with

complicated rules that are difficult to define using a

simple 2D array. The outcome of this study demonstrates

that the approach is capable of producing several

intricate layers at once. In comparison to the dataset,

levels created using this approach generally need roughly

three times as many steps to solve[4].

In this study, they run the aforementioned program using

some input text. For instance, Fig. 1 displays the

outcome of executing text 1. The upper left corner of the

maze indicated the starting point, while the bottom right

corner indicated the ending location. One generation was

meant to consist of 100 people. The tree-structured

programmes' depth was specified to be between 1 and 8.

There were 58 generations of the maze, with a generation

period of around 7 seconds. The primary path's

beginning and ending points and its length matched the

provided information, allowing for the construction of

the necessary maze. It is also possible to represent the

typical curvature of the maze.It is thought that more

individuals are required to build a labyrinth of higher

size. We also discovered that some text input structures

are, in theory, unable to fill the grid of the rectangular

labyrinth completely[5]. This paper suggests building

new maze representations using the DFS algorithm. This

method fulfils the criteria for creating lengthy labyrinth

routes. DFS can only create trees as a maze generator,

making it possible to quickly use a variety of current

algorithms used in game design, such as A*, to inspect

the graph[6].

3. Proposed Architecture

Each algorithm’s time and space complexity will be

checked individually and analyzed further. Later on, the

best fit would be checked with our three AI agents. The

proposed architecture consists of a score generator based

on three parameters: time complexity, space complexity,

and suitability with path-finding agents, as shown in Fig

1. below.

A. Flowchart

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(2s), 37–47 | 39

Fig 1. Flowchart of the ranking system

Fig 1. Shows, the ranking criteria for the maze

Algorithms and then later these Maze generation

algorithms are tested with the Path finding agents and

analysis of their behaviour.

B. Algorithms

In figures 2 to 8, the green box is the source and the

yellow box is the goal, while pink is the path of the

algorithm and the orange box is the head of the path

algorithms which would be looked into are as follows:

1. Prim’s Generation Algorithm

a. Pick any vertex at random from G (the graph).

b. Two sets

i.Those who are already part of the maze's graph

ii.Those vertices (border) that are close to all of the related

vertices

c. Select the edge in the frontier set with the least

weight to connect to another labyrinth vertex.

d. Add the neighbours of the edge to the (border) and

the edge to the minimum spanning tree (maze).

e. Points c and d would be in a single loop.

f. Visually expands forth from a location in the

labyrinth.

Fig 2. The initial stage of Prism’s Algorithm

In Fig 2. Prism’s Algorithm selects a random cell and

then keeps searching adjacent cells to generate the maze.

2. Kruskal’s algorithm

a. Pull all vertices into separate, disjoint sets

starting with the graph's edges.

b. Select the edge with the lowest G weight. Join

the trees together if the edge links two separate trees.

Otherwise, discard that edge.

c. Repeat this until only one disconnected

collection or tree remains.

d. Creates the labyrinth visually using numerous

locations all across

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(2s), 37–47 | 40

Fig 3. The initial stage of Kruskal’s Algorithm

In Fig 3. Krusakal’s Algorithm, a grid of cells and walls

are first built via Kruskal's algorithm. When the cells on

either side of the wall are in distinct sets, the wall is

removed, the sets are merged, and the deleted wall is

added to a list of removed walls. Next, walls are

randomly selected. This procedure is repeated until all of

the walls have been examined and taken down and there

is just one set of cells remaining, which represents the

finished maze.

2. Ellers algorithm

a. Initialise each cell in the first row to be in a

separate disjoint set.

b. Only if they are not in the same set, randomly link

neighbouring cells. Between the two joined cells, add

an edge.

c. Randomly establish at least one downward vertical

link and an edge for each set. Regardless of whatever

set it is in, the cells in the following row must link to

this one.

d. Create separate, disjoint sets for each of the

remaining cells in the row.

e. Continue till the final row. Join all cells on the last

row that don't belong to a set and don't have vertical

connections that point downward.

Fig 4. The initial stage of Eller’s Algorithm

In Fig 4. Eller’s Algorithm creates a single row of cells,

each of which is in a separate set following that, the

algorithm iterates through each cell in the row, choosing

at random whether to connect the cell to its neighbour on

the right or to create a new set for the cell. After that, the

algorithm descends to the subsequent row and continues

the procedure. Each set, however, has a chance to link up

with the sets underneath it when advancing to the

subsequent row. Until every cell can be reached from

every other cell, the sets are connected at random.

3. Wilson’s Algorithm

a. Select a vertex, then include it in the visited set.

b. Generate an edge (path) between the random walk

and the visited set after executing a random walk on a

randomly picked vertex until it encounters a vertex

from the visited set.

c. If the random walk collides with itself, move the

walk forward rather than creating an edge.

d. Continue till the visiting set is finished.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(2s), 37–47 | 41

Fig 5. The initial stage of Wilson’s Algorithm

In Fig 5. Wilson’s Algorithm, it moves to an unvisited

neighbouring cell that is at random from the current cell.

Include the new cell in the random walk by marking it.

The algorithm goes back along the random walk until it

reaches the first cell that was visited if the new cell has

already been visited. The method breaks down the

barriers separating the cells in the random walk during

this trace-back phase, essentially joining them. If the new

cell has not yet been visited, the algorithm repeats steps

1-3 of the random walk starting from the new cell.

4. Hunt and Kill algorithm.

a. Identical to DFS, Picks a root vertex and proceeds to

explore new vertices as far as feasible before turning

around.

b. Switch to "Hunt" mode rather than going back. Find

a cell that hasn't been visited that is close to one that

has. Make a route (edge) connecting the two vertices.

c. Repeat up until there are no more unvisited cells.

Fig 6. The initial stage of Hunt and Kill Algorithm

In Fig 6. the Hunt and Kill algorithm is shown creating a

maze that begins with a single random cell and

subsequently constructs the labyrinth by randomly

chopping tunnels from visited cells to unvisited cells.

The algorithm operates by continually going through two

phases: a "hunt" phase in which it looks for an unvisited

cell close to a visited cell, and a "kill" phase in which it

creates a route to the unvisited cell and uses it as the new

starting point for the hunt phase.

5. Aldous-Broder algorithm

a. Pick any vertex at random from G (the graph).

b. Go to a random vertex that is the current vertex's

neighbour. Add the travelled edge to the spanning

tree if the neighbour hasn't already been there.

c. Repeat the loop until each vertex has been reached.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(2s), 37–47 | 42

Fig 7. The initial stage of Aldous-Broder’s Algorithm

In Fig 7. Aldous-Broder’s Algorithm starts at a random

cell in the grid. Choose a random neighbouring cell that

has not yet been visited and move to it. If the chosen cell

has not been visited before, carve a passage between the

current cell and the chosen cell.

6. DFS algorithm (Depth First Search)

a. chooses a root vertex and proceeds to the maximum

extent feasible before turning around.

b. A stack controls backtracking

c. Vertices are considered "new" if they have never

been examined (or visited). Continually kept in a

visited list

Fig 8. The initial stage of DFS’s Algorithm

By observing Fig 8. in DFS, the algorithm starts at a

randomly selected cell and moves on to haphazardly

explore the neighbouring cells until it encounters a dead

end, at which time it turns around and moves back to the

last cell with unexplored neighbours.

C. Path Finding Agents

1. DFS Solver

Pathfinding in a graph may be accomplished using the

graph traversal method known as DFS (Depth-First

Search). The DFS algorithm visits all the nodes that may

be reached from a beginning node given a graph and a

starting node by travelling along all potential paths until

it reaches the end node.[2]

The DFS algorithm for pathfinding is as follows:

a. Create a stack from scratch to hold the visited nodes.

b. Slide the first node up the stack.

c. Create a set from scratch to hold the visited nodes.

d. Pop the top node out of the stack while it is still full.

i. Mark the node as visited and add it to the set if it

hasn't already been.

ii. Return the route if the node is the end node.

iii. Move all of the node's unvisited neighbours onto

the stack.

e. Return "no path found" if the final node cannot be

located.[10]

2. BFS Solver

A well-liked approach for determining the shortest path

between two nodes in a network is called Breadth-First

Search (BFS). The BFS method for path finding

functions as follows:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(2s), 37–47 | 43

a. Create a queue from scratch and add the initial

node to it.

b. Create a visited set from scratch and include the

initial node in it.

c. Dequeue the front node from the queue while it

is still full.

i.Return the route if the front node is the goal node.

ii.Alternatively, for each of the front node's neighbours:

iii.Add the neighbour to the visited set and enqueue it if it

hasn't already.

iv.Note the route taken from the origin node to the

destination node.

d. There is no path if the objective node cannot be

located.

e. The time complexity of BFS is O(V + E), where

V is the count of nodes in the graph and E is the number

of edges.

3. Dijkstar Solver

A well-liked approach for determining the shortest path

between two nodes in a network is Dijkstra's algorithm.

It operates by incrementally extending a search frontier

from the beginning node, taking into account every

nearby node and adjusting those nodes' estimated

distances from the starting node as necessary. Until the

destination node is reached or all reachable nodes have

been visited, the algorithm keeps extending the frontier.

As long as there are no negative edge weights, this

technique promises to locate the shortest route between

any two accessible nodes in the graph. Use the Bellman-

Ford method in place of the other algorithm if there are

negative edge weights. [7]

4. Experiment Results

The complexity of the mazes created by the six

aforementioned generating algorithms is examined in

this section. The difficulty of mazes is assessed by

examining their characteristics and the outcomes of

solving agents. For completeness’ sake, an experimental

analysis of how well algorithms perform over time is

also conducted.

A. Maze Generation Time Complexity

An experimental investigation of the time complexity of

algorithms was conducted rather than a formal one. The

focus was on the quality of the output that algorithms

create, not on their flawless application. Hence, the study

of temporal complexity was not given much attention.

How long maze-generating algorithms take to run is

examined with respect to the size of the maze. The

number of nodes in the maze, which would be a real

metric, was not taken into account. Only the square grid

graph’s side length was utilised since the relationships

between the performances of various algorithms are of

interest. The final outcome is displayed in Figure 9.

In Table 1., Wilson’s and Prim’s algorithm takes more

time in the 100x100 - 200x200 and 500x500-1000-1000

maze respectively and DFS take less time in every

composition of the maze. In 1000x1000, around 2GB or

less was consumed. We did not include 95+% memory

consumption (10Gigabyte) in our observation since it

would slow outcomes for 5,000x5,000.

Grid DFS H&K A-B Wilson’s Prim’s Kruskal;’s Eller’s

100x100 0.064 1.330 1.135 4.661 0.143 1.673 0.067

200x200 0.236 19.274 6.728 52.600 0.589 0.589 30.92

500x500 1.471 NA NA NA NA NA NA

1000x10

00

6.481 NA NA NA NA NA NA

Table 1: Time Taken by Grid

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(2s), 37–47 | 44

Fig. 9. Running time of the maze generating algorithms with respect to the maze size.

In terms of performance, certain algorithms stand out.

They either move really slowly or a lot slower than

anticipated: Kruskal is the sluggishest.

Wilson is quite ignorant and exhibits erratic behaviour,

which slows things down once again.

The Aldous-Broder algorithm, on the other hand, is

unexpectedly effective and fast. It is straightforward and

makes use of primitives rather than advanced data

structures.

B. Maze Generation Complexity

The data structures used to describe the maze and

monitor the algorithm's status determine the space

complexity of maze creation algorithms. The space

complexity, for instance, would be O(n2) if the labyrinth

were represented as a 2D array, where n is the number of

cells in the maze. This is necessary because we must

keep a cell value (wall or passage) for every maze cell.

However, some cells might need to store extra data, such

as connection to other cells or visited status, which can

complicate the available space. The Aldous-Broder

method is most likely the best algorithm for labyrinth

generation in terms of space complexity. The amount of

memory required by this technique is independent of the

size of the labyrinth since it has a space complexity of

O(1) per cell. Using a random path through the maze, the

Aldous-Broder algorithm visits each cell precisely once

while creating a tunnel to a nearby, unvisited cell on

each step. When every cell has been visited, the

algorithm comes to an end.

The algorithm's space complexity is very minimal since

it only has to keep data for the current cell and the

preceding cell (i.e., two cells at most) at any one

moment. Because of this, it produces huge mazes on

systems with little memory, such as embedded systems

or microcontrollers. The Aldous-Broder method may

take a lot of steps to produce a labyrinth of decent

quality, and it is important to keep in mind that it is not

as time-efficient as some other algorithms. The selection

of a maze-generating method is based on the

requirements and limitations of the application, just like

with any other algorithm. The Table 2. Given below

represents the space complexity of each maze generation

algorithm. Where n is the number of labyrinth cells and

m is the number of graph edges. Few of the algorithms

have space complexity as O(m+n) because these

algorithms need to maintain a priority queue of edges

and a set of visited cells. Aldous-Broder (A-B) has

complexity O(1)per cell because this algorithm only

needs to store information about the current cell and the

previous cell at any given time, and does not depend on

the size of the maze.

 DFS H&K A-B Wilson's Prim's Kruskal's Eller's

Space

Complexity

O(n) O(n) O(1) per

cell

O(n+m) O(n+m) O(n+m) O(n)

Table 2: Space Complexity of all algorithms

In Table 3. Given below, the values given for each cell,

represent the % for a normal maze generation. For a 100

x 100 Maze. These values show the complexity of each

maze generated based on the number of dead ends,

junctions, crossroads and Straight-aways present in the

maze.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(2s), 37–47 | 45

 DFS H&

K

A-B Wilso

n's

Prim'

s

Krus

Kal's

Eller'

s

Dead-

Ends%

10.0 9.32 29.3 30.0 35.5 30.6 28.2

Straigh

t-

Away

%

30.5 31.2 17.2 16.5 15.6 15.9 24.3

Turns

%

49.6 50.2 27.6 27.2 19.5 26.9 22.5

Junctio

ns%

9.67 9.29 22.1 22.4 23.4 22.8 21.6

CrossR

oads%

.172 ~0 3.58 3.78 6.06 3.90 3.30

Table 3: Generation results

The following properties are considered to analyse the

difficulty of a maze:

1. size s

2. number of intersections ni ; intersections are vertices

with more than two neighbours.

3. a number of dead ends nde; dead ends are vertices

with only one neighbour.

The bigger ni the more difficult is the maze. The same

goes for dead ends. One thousand mazes (of size 100 ×

100) of each type were generated and the number of

intersections and dead ends was calculated. The average

results are shown in Table 4.

Algorithms ni nde Rank

Prim’s 2937 3538 1

Kruskal’s 2657 3067 2

Aldous-Broder 2576 2979 3

Wilson’s 2574 2937 4

Hunt and Kill 926 934 5

Eller’s 768 793 6

DFS 647 659 7

Table 4: Average number of intersections and dead ends of the mazes.

The algorithms were ranked in accordance with the standards. The final difficulty ranking is shown in Table

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(2s), 37–47 | 46

5 as a result of assigning algorithm rankings for each metric and calculating the average of all the ranks.

Rank Algorithms

1 Aldous-Broder

2 Eller’s

3 Kruskal’s

4 Wilson’s

5 Prim’s

6 DFS

7 Hunt and Kill

Table 5: Ranks of algorithms by the level of the difficulty.

5. Conclusion

Our research findings concluded on applying DFS to

produce mazes quickly. If you need particularly large

mazes (more than 1000 * 1000), choose a faster language

like C/C++. In general, speed is frequently given up for

organization while creating mazes. DFS was the fastest

approach for solving mazes on average; simplicity is also

not a negative thing for these size mazes. The more

complicated the technique, the more interesting the

mazes could be. Depending on the data structures you

use in your maze and algorithms or other languages, you

can obtain different results. This analysis would help in

better training of path-finding bots. The future scope of

our study would be to have Generative AI determine the

fastest maze-generation algorithm trained on our

researched data.

References

[1] Gailand Macqueen. The spirituality of mazes

andlabyrinths. Wood Lake Publishing Inc., 2005.

[2] M. Karova, I. Penev and N. Kalcheva,

"Comparative analysis of algorithms to search for

the shortest path in a maze," 2016 IEEE

International Black Sea Conference on

Communications and Networking (BlackSeaCom),

Varna, Bulgaria, 2016, pp. 1-4, doi:

10.1109/BlackSeaCom.2016.7901597.

[3] -m. Bae, E. K. Kim, J. Lee, K. -J. Kim and J. -C.

Na, "Generation of an arbitrary shaped large maze

by assembling mazes," 2015 IEEE Conference on

Computational Intelligence and Games (CIG),

Tainan, Taiwan, 2015, pp. 538-539, doi:

10.1109/CIG.2015.7317901.

[4] K. Susanto, R. Fachruddin, M. I. Diputra, D.

Herumurti and A. A. Yunanto, "Maze Generation

Based on Difficulty using Genetic Algorithm with

Gene Pool," 2020 International Seminar on

Application for Technology of Information and

Communication (iSemantic), Semarang, Indonesia,

2020, pp. 554-559, doi:

10.1109/iSemantic50169.2020.9234216.

[5] K. Okano and K. Matsuyama, "A Method for

Generating Mazes with Length Constraint using

Genetic Programming," 2020 Nicograph

International (NicoInt), Tokyo, Japan, 2020, pp. 39-

42, doi: 10.1109/NicoInt50878.2020.00014.

[6] Kozlova, J. A. Brown and E. Reading,

"Examination of representational expression in

maze generation algorithms," 2015 IEEE

Conference on Computational Intelligence and

Games (CIG), Tainan, Taiwan, 2015, pp. 532-533,

doi: 10.1109/CIG.2015.7317902.

[7] K. Wei, Y. Gao, W. Zhang and S. Lin, "A Modified

Dijkstra’s Algorithm for Solving the Problem of

Finding the Maximum Load Path," 2019 IEEE 2nd

International Conference on Information and

Computer Technologies (ICICT), Kahului, HI,

USA, 2019, pp. 10-13, doi:

10.1109/INFOCT.2019.8711024.

[8] X. He, Y. Wang and Y. Cao, "Researching on AI

path-finding algorithm in the game development,"

2012 International Symposium on Instrumentation

& Measurement, Sensor Network and Automation

(IMSNA), Sanya, China, 2012, pp. 484-486, doi:

10.1109/MSNA.2012.6324627.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(2s), 37–47 | 47

[9] Jain, "Evacuation map generation using maze

routing," 2013 Fourth International Conference on

Computing, Communications and Networking

Technologies (ICCCNT), Tiruchengode, India,

2013, pp. 1-6, doi:

10.1109/ICCCNT.2013.6726648.

[10] S. Hidayatullah, A. N. Jati and C. Setianingsih,

"Realization of depth first search algorithm on line

maze solver robot," 2017 International Conference

on Control, Electronics, Renewable Energy and

Communications (ICCREC), Yogyakarta,

Indonesia, 2017, pp. 247-251, doi:

10.1109/ICCEREC.2017.8226690.

[11] Agnesia, and Wirawan Istiono, "Wall Pattern

Detection with Prim�S Algorithm to Create

Perfect Random Maze" Journal of Theoretical and

Applied Information Technology 101, no.9.(2023)

[12] V. Bellot, M. Cautrès, J-M. Favreau, M. Gonzalez-

Thauvin, P. Lafourcade, K. Le Cornec, B. Mosnier,

S. Rivière-Wekstein, “How to generate perfect

mazes?” Information Sciences, Volume 572, 2021,

pp. 444-459

[13] Andrew Hernandez, Stephen Wright, Yosef Ben-

David, Rodrigo Costa, David Botha. Optimizing

Resource Allocation using Machine Learning in

Decision Science. Kuwait Journal of Machine

Learning, 2(3). Retrieved from

http://kuwaitjournals.com/index.php/kjml/article/vi

ew/195

[14] Timande, S., Dhabliya, D. Designing multi-cloud

server for scalable and secure sharing over web

(2019) International Journal of Psychosocial

Rehabilitation, 23 (5), pp. 835-841.

.

