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Abstract: In this paper, we compared maze generation algorithms. The nature of maze generation algorithms is analyzed, and the best 

amongst them is determined. The algorithms studied are Prim's algorithm, Kruskal's algorithm, DFS algorithm (Depth First Search), 

Ellers algorithm, Wilson's Algorithm, Hunt and Kill algorithm, and Aldous-Broder algorithm. The performance evaluation of the 

algorithms is determined by two parameters: the time taken by the algorithm to generate the maze and the space complexity of the maze. 

Evaluations are done based on the number of variables, including the number of intersections and dead ends visited, along with the 

overall steps taken by the agents, to determine how tough a maze is to navigate. The maze-generating algorithms are scored based on the 

performance of the agents. The algorithms' performance determines the most effective algorithms. The outcome is laid out analytically 

and graphically, showing a detailed analysis report of the algorithms' advantages and disadvantages. This report can be helpful in the 

field of gaming development, AI training, robotics, and automation. Such detailed comparative analyses have yet to be carried out on 

maze generation. Our research has bridged this research gap on maze generation algorithms and provided a detailed comparative analysis 

of maze generation algorithms. 

Keywords: Artificial Intelligence,  Maze Generation,  robot, maze, and genetic algorithms. 

1. Introduction 

Mazes are related to labyrinths, which have existed since 

antiquity. Typically, they are constructed using materials 

that are found in nature. They originally had a religious 

connotation [1]. Their significant goal later was 

amusement. Mazes have gained interest among scientists 

in more recent times, particularly mathematicians. 

Existing maze generation algorithms face several 

challenges that researchers and developers have been 

working to address. Current challenges include - Bias 

and predictability, scalability, path complexity, and dead 

ends. 

Path-finding algorithms, robotics, and game creation are 

artificial intelligence disciplines that rely heavily on 

maze-generation methods.[8] There are many maze-

creation algorithms, each with specific advantages and 

disadvantages. This paper intends to provide a thorough 

investigation and comparative analysis of numerous 

well-known artificial intelligence (AI) maze-generating 

systems. The algorithms’ characteristics will be 

specifically examined to decide the best. Prim's 

algorithm, Kruskal's algorithm, DFS (Depth First 

Search), Ellers method, Wilson's Algorithm, Hunt and 

Kill algorithm, and Wilson's Algorithm are the 

algorithms examined in this study. The length of time it 

takes to generate the maze and the maze's spatial 

complexity will be used to rate each algorithm. Three 

path-finding agents that solve mazes have been created 

to evaluate the algorithms' effectiveness. These agents 

use DFS, BFS, and Dijkstra algorithms, respectively, and 

will be used to report the findings to evaluate and rank 

maze-creating methods. The data collected by these 

agents will be analyzed to determine which maze-

generation algorithm is the most effective for various 

applications.  

To perform a quantitative analysis of each algorithm to 

understand their technical and engineering aspects. 

Calculating and comparing each algorithm’s time and 

space complexity and assessing how well it performs 

when applied to difficult maze-generating challenges 

will be entailed. To achieve this, each algorithm will be 

programmed and tested on mazes of various sizes and 

difficulties. How long it takes for each method to 

generate a maze will be timed, and how intricate the 

mazes’ spatial layouts are will be kept track of. By 

performing simulations with the three agents developed 

for this project, the precision and effectiveness of each 

method in clearing the maze will also be assessed. 

The evaluation of the efficiency and complexity of each 

algorithm is a crucial component of our research. It will 

be necessary to evaluate the trade-offs between time and 
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space complexity and ascertain which algorithms offer 

the best compromise between the two. Performance 

optimization strategies for each algorithm, such as 

parallelization, pruning, and other tools, will also be 

examined. 

The main objective of this study work is to offer 

insightful information on the most effective labyrinth 

generation algorithms for particular applications. The 

optimal solutions for various use cases can be found by 

comparing the scalability and performance of various 

algorithms. Our results can help algorithm developers 

create new and enhanced algorithms for artificial 

intelligence maze creation challenges that are more 

effective and efficient. 

The majority of these algorithms' maze-creation 

applications have been documented, but there has yet to 

be a known comparative study for the stated issue. 

Section II describes the past studies done so far on maze 

generation algorithms. Section III described the 

methodology used for comparison through subsections - 

algorithms, flowcharts, and path-finding agents used. 

Section IV shows the detailed comparisons of all the 

algorithms used for generating mazes in the form of 

graphs, tables, etc., in the form of experiment results. 

Section V defines the conclusion of the survey done in 

this research paper. 

2. Literature Review 

The research focuses on a comparison of three 

algorithms - A* (A star), backtracking algorithm, and 

genetic algorithm (GAPP) -in order to find the quickest 

way across a maze. The algorithms are evaluated based 

on two criteria - path length and time taken to find the 

path. The study includes mazes of varying sizes and 

obstacle densities. The results of the study are presented 

both analytically and graphically. This literature review 

highlights the focus, methods, and key findings of the 

paper[2].  Several games employ maze generation to 

create maps, environments, and other graphical elements. 

They previously employed expanding tree algorithms, 

spanning tree techniques, and so on. However, 

predefined matrices were utilized and limitations were 

imposed on the design of the mazes by the techniques. A 

straightforward method for creating arbitrary-shaped 

mazes through the assembly of mazes is suggested in this 

study. The ultimate large labyrinth is likely to be a 

customised one because mazes can be combined in a 

specific way based on user desire. The technology can 

instantly create any new labyrinth if a database of mazes 

with players' playing histories or preferences is available. 

In addition, it may help players design fresh, challenging 

mazes for user-generated content.[3] 

In this research, a novel genetic algorithm-based 

approach for creating video game levels is presented. 

Gene pool incorporates learning is the name of the 

suggested approach. This technique is useful in feature 

selection because it is broad enough to be used in a 

variety of game genres. This study looks for valuable 

patterns in certain training data and saves them all in a 

gene pool. The genetic algorithm is then used to discover 

the pattern combination that will produce the best results. 

The gene pool also maintains track of the quality of each 

gene to comprehend the most commonly observed 

pattern at various levels. In contrast to previous research, 

this study develops a novel testing game with 

complicated rules that are difficult to define using a 

simple 2D array. The outcome of this study demonstrates 

that the approach is capable of producing several 

intricate layers at once. In comparison to the dataset, 

levels created using this approach generally need roughly 

three times as many steps to solve[4]. 

In this study, they run the aforementioned program using 

some input text. For instance, Fig. 1 displays the 

outcome of executing text 1. The upper left corner of the 

maze indicated the starting point, while the bottom right 

corner indicated the ending location. One generation was 

meant to consist of 100 people. The tree-structured 

programmes' depth was specified to be between 1 and 8. 

There were 58 generations of the maze, with a generation 

period of around 7 seconds.  The primary path's 

beginning and ending points and its length matched the 

provided information, allowing for the construction of 

the necessary maze. It is also possible to represent the 

typical curvature of the maze.It is thought that more 

individuals are required to build a labyrinth of higher 

size. We also discovered that some text input structures 

are, in theory, unable to fill the grid of the rectangular 

labyrinth completely[5]. This paper suggests building 

new maze representations using the DFS algorithm. This 

method fulfils the criteria for creating lengthy labyrinth 

routes. DFS can only create trees as a maze generator, 

making it possible to quickly use a variety of current 

algorithms used in game design, such as A*, to inspect 

the graph[6]. 

3. Proposed Architecture 

Each algorithm’s time and space complexity will be 

checked individually and analyzed further. Later on, the 

best fit would be checked with our three AI agents. The 

proposed architecture consists of a score generator based 

on three parameters: time complexity, space complexity, 

and suitability with path-finding agents, as shown in Fig 

1. below. 

A. Flowchart 
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Fig 1. Flowchart of the ranking system 

Fig 1. Shows, the ranking criteria for the maze 

Algorithms and then later these Maze generation 

algorithms are tested with the Path finding agents and 

analysis of their behaviour. 

B. Algorithms 

In figures 2 to 8, the green box is the source and the 

yellow box is the goal, while pink is the path of the 

algorithm and the orange box is the head of the path 

algorithms which would be looked into are as follows: 

1. Prim’s Generation Algorithm 

a. Pick any vertex at random from G (the graph). 

b. Two sets 

i.Those who are already part of the maze's graph 

ii.Those vertices (border) that are close to all of the related 

vertices 

c. Select the edge in the frontier set with the least 

weight to connect to another labyrinth vertex. 

d. Add the neighbours of the edge to the (border) and 

the edge to the minimum spanning tree (maze). 

e. Points c and d would be in a single loop. 

f. Visually expands forth from a location in the 

labyrinth.

 

Fig 2. The initial stage of Prism’s Algorithm 

In Fig 2. Prism’s Algorithm selects a random cell and 

then keeps searching adjacent cells to  generate the maze. 

2. Kruskal’s algorithm 

a. Pull all vertices into separate, disjoint sets 

starting with the graph's edges. 

b. Select the edge with the lowest G weight. Join 

the trees together if the edge links two separate trees. 

Otherwise, discard that edge. 

c. Repeat this until only one disconnected 

collection or tree remains. 

d. Creates the labyrinth visually using numerous 

locations all across 
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Fig 3. The initial stage of Kruskal’s Algorithm 

In Fig 3. Krusakal’s Algorithm, a grid of cells and walls 

are first built via Kruskal's algorithm. When the cells on 

either side of the wall are in distinct sets, the wall is 

removed, the sets are merged, and the deleted wall is 

added to a list of removed walls. Next, walls are 

randomly selected. This procedure is repeated until all of 

the walls have been examined and taken down and there 

is just one set of cells remaining, which represents the 

finished maze. 

2. Ellers algorithm 

a. Initialise each cell in the first row to be in a 

separate disjoint set. 

b. Only if they are not in the same set, randomly link 

neighbouring cells. Between the two joined cells, add 

an edge. 

c. Randomly establish at least one downward vertical 

link and an edge for each set. Regardless of whatever 

set it is in, the cells in the following row must link to 

this one. 

d. Create separate, disjoint sets for each of the 

remaining cells in the row. 

e. Continue till the final row. Join all cells on the last 

row that don't belong to a set and don't have vertical 

connections that point downward. 

 

Fig 4. The initial stage of Eller’s Algorithm 

In Fig 4. Eller’s Algorithm creates a single row of cells, 

each of which is in a separate set following that, the 

algorithm iterates through each cell in the row, choosing 

at random whether to connect the cell to its neighbour on 

the right or to create a new set for the cell. After that, the 

algorithm descends to the subsequent row and continues 

the procedure. Each set, however, has a chance to link up 

with the sets underneath it when advancing to the 

subsequent row. Until every cell can be reached from 

every other cell, the sets are connected at random. 

3. Wilson’s Algorithm 

a. Select a vertex, then include it in the visited set. 

b. Generate an edge (path) between the random walk 

and the visited set after executing a random walk on a 

randomly picked vertex until it encounters a vertex 

from the visited set. 

c. If the random walk collides with itself, move the 

walk forward rather than creating an edge.  

d. Continue till the visiting set is finished.



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(2s), 37–47 |  41 

 

Fig 5. The initial stage of Wilson’s Algorithm 

In Fig 5. Wilson’s Algorithm, it moves to an unvisited 

neighbouring cell that is at random from the current cell. 

Include the new cell in the random walk by marking it. 

The algorithm goes back along the random walk until it 

reaches the first cell that was visited if the new cell has 

already been visited. The method breaks down the 

barriers separating the cells in the random walk during 

this trace-back phase, essentially joining them. If the new 

cell has not yet been visited, the algorithm repeats steps 

1-3 of the random walk starting from the new cell. 

4. Hunt and Kill algorithm. 

a. Identical to DFS, Picks a root vertex and proceeds to 

explore new vertices as far as feasible before turning 

around. 

b. Switch to "Hunt" mode rather than going back. Find 

a cell that hasn't been visited that is close to one that 

has. Make a route (edge) connecting the two vertices. 

c. Repeat up until there are no more unvisited cells.

 

 

Fig 6. The initial stage of Hunt and Kill Algorithm 

In Fig 6. the Hunt and Kill algorithm is shown creating a 

maze that begins with a single random cell and 

subsequently constructs the labyrinth by randomly 

chopping tunnels from visited cells to unvisited cells. 

The algorithm operates by continually going through two 

phases: a "hunt" phase in which it looks for an unvisited 

cell close to a visited cell, and a "kill" phase in which it 

creates a route to the unvisited cell and uses it as the new 

starting point for the hunt phase. 

5. Aldous-Broder algorithm 

a. Pick any vertex at random from G (the graph). 

b. Go to a random vertex that is the current vertex's 

neighbour. Add the travelled edge to the spanning 

tree if the neighbour hasn't already been there.  

c. Repeat the loop until each vertex has been reached.
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Fig 7.  The initial stage of Aldous-Broder’s Algorithm 

In Fig 7.  Aldous-Broder’s Algorithm starts at a random 

cell in the grid. Choose a random neighbouring cell that 

has not yet been visited and move to it. If the chosen cell 

has not been visited before, carve a passage between the 

current cell and the chosen cell. 

6. DFS algorithm (Depth First Search) 

a. chooses a root vertex and proceeds to the maximum 

extent feasible before turning around. 

b. A stack controls backtracking 

c. Vertices are considered "new" if they have never 

been examined (or visited). Continually kept in a 

visited list   

 

Fig 8.  The initial stage of DFS’s Algorithm 

By observing  Fig 8. in DFS, the algorithm starts at a 

randomly selected cell and moves on to haphazardly 

explore the neighbouring cells until it encounters a dead 

end, at which time it turns around and moves back to the 

last cell with unexplored neighbours. 

C. Path Finding Agents 

1. DFS Solver 

Pathfinding in a graph may be accomplished using the 

graph traversal method known as DFS (Depth-First 

Search). The DFS algorithm visits all the nodes that may 

be reached from a beginning node given a graph and a 

starting node by travelling along all potential paths until 

it reaches the end node.[2] 

The DFS algorithm for pathfinding is as follows: 

a. Create a stack from scratch to hold the visited nodes. 

b. Slide the first node up the stack. 

c. Create a set from scratch to hold the visited nodes. 

d. Pop the top node out of the stack while it is still full. 

i. Mark the node as visited and add it to the set if it 

hasn't already been. 

ii. Return the route if the node is the end node. 

iii. Move all of the node's unvisited neighbours onto 

the stack. 

e. Return "no path found" if the final node cannot be 

located.[10] 

2. BFS Solver 

A well-liked approach for determining the shortest path 

between two nodes in a network is called Breadth-First 

Search (BFS). The BFS method for path finding 

functions as follows: 
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a. Create a queue from scratch and add the initial 

node to it. 

b. Create a visited set from scratch and include the 

initial node in it. 

c. Dequeue the front node from the queue while it 

is still full. 

i.Return the route if the front node is the goal node. 

ii.Alternatively, for each of the front node's neighbours: 

iii.Add the neighbour to the visited set and enqueue it if it 

hasn't already. 

iv.Note the route taken from the origin node to the 

destination node. 

d. There is no path if the objective node cannot be 

located. 

e. The time complexity of BFS is O(V + E), where 

V is the count of nodes in the graph and E is the number 

of edges. 

3. Dijkstar Solver 

A well-liked approach for determining the shortest path 

between two nodes in a network is Dijkstra's algorithm. 

It operates by incrementally extending a search frontier 

from the beginning node, taking into account every 

nearby node and adjusting those nodes' estimated 

distances from the starting node as necessary. Until the 

destination node is reached or all reachable nodes have 

been visited, the algorithm keeps extending the frontier. 

As long as there are no negative edge weights, this 

technique promises to locate the shortest route between 

any two accessible nodes in the graph. Use the Bellman-

Ford method in place of the other algorithm if there are 

negative edge weights. [7] 

4. Experiment Results 

The complexity of the mazes created by the six 

aforementioned generating algorithms is examined in 

this section. The difficulty of mazes is assessed by 

examining their characteristics and the outcomes of 

solving agents. For completeness’ sake, an experimental 

analysis of how well algorithms perform over time is 

also conducted. 

A. Maze Generation Time Complexity  

An experimental investigation of the time complexity of 

algorithms was conducted rather than a formal one. The 

focus was on the quality of the output that algorithms 

create, not on their flawless application. Hence, the study 

of temporal complexity was not given much attention. 

How long maze-generating algorithms take to run is 

examined with respect to the size of the maze. The 

number of nodes in the maze, which would be a real 

metric, was not taken into account. Only the square grid 

graph’s side length was utilised since the relationships 

between the performances of various algorithms are of 

interest. The final outcome is displayed in Figure 9. 

In Table 1., Wilson’s and Prim’s algorithm takes more 

time in the 100x100 - 200x200 and 500x500-1000-1000 

maze respectively and DFS take less time in every 

composition of the maze. In 1000x1000, around 2GB or 

less was consumed. We did not include 95+% memory 

consumption (10Gigabyte) in our observation since it 

would slow outcomes for 5,000x5,000.

 

Grid DFS H&K A-B Wilson’s Prim’s Kruskal;’s Eller’s 

100x100 0.064 1.330 1.135 4.661 0.143 1.673 0.067 

200x200 0.236 19.274 6.728 52.600 0.589 0.589 30.92 

500x500 1.471 NA NA NA NA NA NA 

1000x10

00 

6.481 NA NA NA NA NA NA 

Table 1:  Time Taken by Grid 
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Fig. 9.  Running time of the maze generating algorithms with respect to the maze size. 

In terms of performance, certain algorithms stand out. 

They either move really slowly or a lot slower than 

anticipated: Kruskal is the sluggishest. 

Wilson is quite ignorant and exhibits erratic behaviour, 

which slows things down once again. 

The Aldous-Broder algorithm, on the other hand, is 

unexpectedly effective and fast. It is straightforward and 

makes use of primitives rather than advanced data 

structures. 

B. Maze Generation Complexity 

The data structures used to describe the maze and 

monitor the algorithm's status determine the space 

complexity of maze creation algorithms. The space 

complexity, for instance, would be O(n2) if the labyrinth 

were represented as a 2D array, where n is the number of 

cells in the maze. This is necessary because we must 

keep a cell value (wall or passage) for every maze cell. 

However, some cells might need to store extra data, such 

as connection to other cells or visited status, which can 

complicate the available space. The Aldous-Broder 

method is most likely the best algorithm for labyrinth 

generation in terms of space complexity. The amount of 

memory required by this technique is independent of the 

size of the labyrinth since it has a space complexity of 

O(1) per cell. Using a random path through the maze, the 

Aldous-Broder algorithm visits each cell precisely once 

while creating a tunnel to a nearby, unvisited cell on 

each step. When every cell has been visited, the 

algorithm comes to an end. 

The algorithm's space complexity is very minimal since 

it only has to keep data for the current cell and the 

preceding cell (i.e., two cells at most) at any one 

moment. Because of this, it produces huge mazes on 

systems with little memory, such as embedded systems 

or microcontrollers. The Aldous-Broder method may 

take a lot of steps to produce a labyrinth of decent 

quality, and it is important to keep in mind that it is not 

as time-efficient as some other algorithms. The selection 

of a maze-generating method is based on the 

requirements and limitations of the application, just like 

with any other algorithm. The Table 2. Given below 

represents the space complexity of each maze generation 

algorithm. Where n is the number of labyrinth cells and 

m is the number of graph edges. Few of the algorithms 

have space complexity as O(m+n) because these 

algorithms need to maintain a priority queue of edges 

and a set of visited cells. Aldous-Broder (A-B) has 

complexity O(1)per cell because this algorithm only 

needs to store information about the current cell and the 

previous cell at any given time, and does not depend on 

the size of the maze. 

 

    DFS H&K A-B Wilson's Prim's Kruskal's Eller's 

Space 

Complexity 

O(n) O(n) O(1) per 

cell 

O(n+m) O(n+m) O(n+m) O(n) 

Table 2:  Space Complexity of all algorithms 

In Table 3. Given below, the values given for each cell, 

represent the % for a normal maze generation. For a 100 

x 100 Maze. These values show the complexity of each 

maze generated based on the number of dead ends, 

junctions, crossroads and Straight-aways present in the 

maze. 
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 DFS H&

K 

A-B Wilso

n's 

Prim'

s 

Krus

Kal's 

Eller'

s 

Dead-

Ends% 

10.0  9.32  29.3 30.0 35.5 30.6 28.2 

Straigh

t-

Away

% 

30.5 31.2 17.2 16.5 15.6 15.9 24.3 

Turns

% 

49.6  50.2 27.6 27.2 19.5 26.9 22.5 

Junctio

ns% 

9.67  9.29 22.1 22.4 23.4 22.8 21.6 

CrossR

oads% 

.172 ~0  3.58 3.78 6.06 3.90 3.30 

Table 3:  Generation results  

The following properties are considered to analyse the 

difficulty of a maze: 

1. size s 

2. number of intersections ni ; intersections are vertices 

with more than two neighbours. 

3. a number of dead ends nde; dead ends are vertices 

with only one neighbour. 

The bigger ni  the more difficult is the maze. The same 

goes for dead ends. One thousand mazes (of size 100 × 

100) of each type were generated and the number of 

intersections and dead ends was calculated. The average 

results are shown in Table 4. 

 

Algorithms ni   nde Rank 

Prim’s 2937 3538 1 

Kruskal’s 2657 3067 2 

Aldous-Broder 2576 2979 3 

Wilson’s 2574 2937 4 

Hunt and Kill 926 934 5 

Eller’s 768 793 6 

DFS 647 659 7 

Table 4:  Average number of intersections and dead ends of the mazes. 

The algorithms were ranked in accordance with the standards. The final difficulty ranking is shown in Table 
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5 as a result of assigning algorithm rankings for each metric and calculating the average of all the ranks.

Rank Algorithms 

1 Aldous-Broder 

2 Eller’s 

3 Kruskal’s 

4 Wilson’s 

5 Prim’s 

6 DFS 

7 Hunt and Kill 

Table 5: Ranks of algorithms by the level of the difficulty. 

5. Conclusion 

Our research findings concluded on applying DFS to 

produce mazes quickly. If you need particularly large 

mazes (more than 1000 * 1000), choose a faster language 

like C/C++. In general, speed is frequently given up for 

organization while creating mazes. DFS was the fastest 

approach for solving mazes on average; simplicity is also 

not a negative thing for these size mazes. The more 

complicated the technique, the more interesting the 

mazes could be. Depending on the data structures you 

use in your maze and algorithms or other languages, you 

can obtain different results. This analysis would help in 

better training of path-finding bots. The future scope of 

our study would be to have Generative AI determine the 

fastest maze-generation algorithm trained on our 

researched data. 
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