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Abstract: Due to its applications in a variety of fields, including healthcare, surveillance, and e-commerce, content-based image 

retrieval (CBIR) has recently attracted a lot of attention. By introducing an effective multidomain feature analysis engine that includes 

incremental learning and continuous feedback operations, this paper introduces a novel method for CBIR. The suggested framework 

combines a variety of feature extraction methods, such as Fourier, Entropy, Color Map, S, Z, Laplace, GRU, and LSTM, to extract key 

visual characteristics from images and samples. By effectively maximizing feature variance levels, an Elephant Herding Optimizer 

(EHO) is used to increase the discriminative power of the chosen features. The automatic selection of the most informative features is 

made possible by the EHO algorithm, improving retrieval performance levels. The use of a Vector Autoregressive Moving Average 

(VARMA) model, which successfully captures the temporal dependencies and correlations within the image dataset, further enhances 

the CBIR process. This model greatly improves retrieval accuracy levels and makes it easier to predict relevant images using the 

extracted features. Additionally, correlation learning operations are used to incorporate feedback learning, which enables the CBIR 

system to change and advance over time in response to user feedback. As a result of the system's use of the feedback data, the retrieval 

process has been improved, yielding better precision, recall, and accuracy values for different datasets & samples. These include 

ImageNet, MIRFLICKR, and CIFAR-10 as well as various real-world image samples were used in the experimental evaluations. The 

findings show that the suggested approach outperforms current CBIR models with precision of 0.98, recall of 0.985, and MAP of 0.97 

for different use cases. Further, the proposed system achieves superior accuracy scores and displays lower delay values for real-time 

scenarios. The increasing demand for accurate and effective image retrieval systems across a variety of applications drives the 

necessity for this work under real-time scenarios. The proposed framework addresses the limitations of existing CBIR models by 

combining multiple feature extraction techniques, optimizing feature variance, utilizing temporal dependencies, and incorporating 

continuous feedback learning process. The potential applications of this research are diverse and include retrieval of medical images 

for diagnosis and treatment, effective image analysis through surveillance systems, and personalized product recommendations 

through e-commerce platforms. The proposed approach has several advantages over current CBIR models, including improved 

retrieval accuracy, adaptability to shifting user preferences, and improved performance levels. 
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1. Introduction 

The field of computer vision and image processing has 

seen a significant advancement in the research of 

content-based image retrieval (CBIR). Healthcare, 

surveillance, e-commerce, and multimedia analysis are 

just a few of the industries that stand to benefit greatly 

from the ability to search and retrieve images based on 

their visual content. Large image databases cannot be 

effectively and efficiently searched using conventional 

text-based retrieval systems. Contrarily, CBIR makes 

use of the inherent visual qualities of images to enable 

more precise and user-friendly retrieval sets [1, 2, 3]. 

Over the years, a variety of CBIR techniques have been 

put forth, each with their own set of advantages and 

disadvantages. These methods rely heavily on feature 

extraction, wherein representative features are taken 

from images and used to index and retrieve related 

images. The selection of features has a significant 

impact on how well CBIR systems perform because they 

need to capture the discriminative data that best 

describes the visual content of the images [4, 5, 6]. 

The difficulties presented by current methods are 

addressed in this paper by a novel CBIR approach. To 

increase accuracy and efficiency in image retrieval tasks, 

our suggested framework combines an effective 

multidomain feature analysis engine, incremental 

learning, continuous feedback operations, and advanced 

retrieval models. 

As it combines several feature extraction techniques, 

including Fourier, Entropy, Color Map, S Transform, Z 

Transform, Laplace Transform, GRU, and LSTM, the 

feature analysis engine is a key component of our 

framework. Our system can capture various facets of the 

visual content by utilizing a variety of feature extraction 
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techniques, resulting in a more thorough representation 

of the images. The Elephant Herding Optimizer (EHO) 

algorithm, which maximizes the levels of feature 

variance, is used to optimize the feature selection. As a 

result, the retrieval performance levels are improved due 

to the high discriminatory power of the chosen features. 

We present the Vector Autoregressive Moving Average 

(VARMA) model, which takes into account temporal 

dependencies and correlations within the image dataset. 

The VARMA model facilitates predictive retrieval based 

on these relationships by capturing the dynamic 

relationships between the extracted features. Our system 

can make more accurate and contextually relevant image 

recommendations by taking the temporal context into 

account. 

Additionally, our framework includes Q learning 

operations for continuous feedback. By adapting and 

learning from user feedback, the CBIR system can 

improve the retrieval process over time. The retrieval 

model is updated using user feedback to increase the 

system's precision, recall, and Mean Average Precision 

(MAP) values. User feedback includes relevance 

judgments and preferences. With the help of this 

feedback-driven methodology, retrieval can be 

personalized and adaptively catered to the unique 

requirements and preferences of different users. 

On benchmark datasets like ImageNet, MIRFLICKR, 

and CIFAR-10 as well as actual image samples, the 

proposed framework was thoroughly assessed. The 

experimental results, which achieved a precision of 0.98, 

recall of 0.985, and MAP of 0.97, show the superior 

performance of our approach. In addition, our system 

outperforms current CBIR models in terms of Mean 

Average Precision at K (MAP@K) scores and 

Normalized Discounted Cumulative Gain (NDCG) 

values. Additionally, our system exhibits a lower 

retrieval delay, ensuring situations for quick and 

effective image retrieval. 

The increasing need for precise and effective image 

retrieval systems across a variety of domains drives the 

necessity for this work. Our framework overcomes the 

drawbacks of existing CBIR techniques by incorporating 

multidomain feature analysis, incremental learning, 

continuous feedback operations, and advanced retrieval 

models. Improved retrieval accuracy, adaptability to 

shifting user preferences, and improved performance in 

terms of precision, recall, MAP, NDCG, and MAP@K 

levels are all benefits of our approach. 

In conclusion, this paper offers a thorough and novel 

framework for CBIR, addressing the issues with current 

models. Our suggested method shows the effectiveness 

of combining various feature extraction techniques, 

optimizing feature variance, utilizing temporal 

dependencies, and including continuous feedback 

learning scenarios. The experimental findings 

demonstrate how effective our strategy is at retrieval of 

different image sets. We think that our work advances 

CBIR systems across a wide range of applications and 

offers useful insights for image retrieval researchers and 

practitioners. 

Motivation of this paper 

Existing content-based image retrieval (CBIR) models 

present a number of limitations and difficulties that 

inspired this research. Despite the fact that CBIR has 

garnered considerable attention and has been widely 

implemented in a variety of domains, there are still 

significant gaps that must be addressed to enhance 

retrieval precision, efficiency, and adaptability. This 

paper seeks to overcome these limitations and provide a 

comprehensive solution that improves CBIR 

performance by integrating novel techniques and 

methods [7, 8, 9]. 

The need for more effective feature extraction methods 

in CBIR is one of the primary impetuses for this work. 

Traditional CBIR models frequently rely on a single 

technique for feature extraction, which may not 

adequately capture the diverse visual characteristics of 

images. By combining multiple feature extraction 

techniques, such as Fourier, Entropy, Color Map, S 

Transform, Z Transform, Laplace Transform, GRU, and 

LSTM, our proposed framework aims to extract a wider 

variety of visual features. This multidomain feature 

analysis engine enables a more comprehensive 

representation of images, thereby enhancing retrieval 

precision levels. 

In CBIR systems, there is also a need for continuous 

learning and adaptation. User preferences and the 

relevance of images retrieved may change over time, 

necessitating a system that can adapt and improve in 

response to user input. Our framework enables the CBIR 

system to dynamically adjust its retrieval efficiency 

incorporating incremental learning [10, 11, 12, 13] and 

continuous feedback operations. Utilizing Q learning 

operations enables the system to learn from user 

feedback and improve the retrieval procedure. This 

feedback-driven strategy improves the system's 

precision, recall, and Mean Average Precision (MAP), 

resulting in a more individualized and precise image 

retrieval process. 

Contributions of this paper 

This work's contributions can be summarized as follows: 

Multidomain Feature Analysis Engine Our framework 

presents a novel multidomain feature analysis engine 
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that combines multiple feature extraction techniques. 

Through the utilization of Fourier, Entropy, Color Map, 

S Transform, Z Transform, Laplace Transform, GRU, 

and LSTM, our system captures a wide variety of visual 

characteristics. This exhaustive feature representation 

improves the system's discriminative ability and retrieval 

precision. 

We employ an Elephant Herding Optimizer (EHO) 

algorithm to optimize the selection of features. The EHO 

algorithm optimizes feature variance to select the most 

informative and discriminative features. This 

optimization process improves the system's retrieval 

performance by emphasizing the characteristics with the 

greatest discriminatory power. 

The integration of a Vector Autoregressive Moving 

Average (VARMA) MMSN [15]ddresses temporal 

dependencies and correlations within the image dataset. 

Our system enables predictive retrieval based on the 

temporal context by capturing the dynamic relationships 

between extracted features. This incorporation of 

temporal information improves the relevance and 

context of the images retrieved. 

Our framework incorporates continuous feedback 

operations based on Q learning. This enables the CBIR 

system to continually adapt and learn from user 

feedback. Taking into account the relevance judgments 

and preferences of the user, the system dynamically 

updates the retrieval model, thereby enhancing 

precision, recall, and MAP values. This feedback-driven 

strategy improves the CBIR system's customization and 

adaptability. 

Extensive experimental evaluations are conducted on 

benchmark datasets, such as ImageNet, MIRFLICKR, 

and CIFAR-10, in addition to real-world image samples. 

The results demonstrate that our proposed framework 

offers superior performance. Existing CBIR models are 

outperformed by our 0.98 precision, 0.985 recall, and 

0.97 MAP. In addition, our system achieves superior 

Normalized Discounted Cumulative Gain (NDCG) 

values and Mean Average Precision at K (MAP@K) 

ratings. The evaluation highlights the benefits of our 

strategy in terms of retrieval precision and efficiency. 

This work makes a number of substantial contributions 

to the field of CBIR. Our framework improves retrieval 

precision, adaptability, and efficiency by incorporating 

multidomain feature analysis, incremental learning, 

continuous feedback operations, and advanced retrieval 

models. The experimental evaluations validate the 

efficacy of our proposed approach and provide valuable 

insights for image retrieval and related applications 

researchers and practitioners. 

2. Review of Existing CBIR Models 

In recent years, Content-Based Image Retrieval (CBIR) 

has seen significant advancements due to the growing 

demand for efficient and accurate image search and 

retrieval systems. Researchers have proposed a number 

of novel models and techniques to address the 

difficulties inherent in conventional CBIR approaches. 

In this review, we examine some of the most recent 

CBIR models like Multi-Modal Siamese Network  

(MMSNs) and highlight their most important 

contributions, benefits, and limitations [14, 15, 16, 17]. 

CNNs have revolutionized the field of computer vision, 

including CBIR. 1. Convolutional Neural Networks 

(CNNs) and Deep Learning-based Models like Global-

Aware Ranking Deep Metric Learning (GAR DML) 

process [18, 19, 20]. In feature extraction and image 

representation learning, deep learning-based models 

such as AlexNet, VGGNet, GooGLeNet, and ResNet 

have demonstrated superior performance. These models 

extract hierarchical and distinguishing features from 

images, allowing for precise retrieval process. They are 

capable of capturing intricate patterns, textures, and 

semantic information, resulting in improved retrieval 

precision levels. For training and inference, however, 

they require large-scale labeled datasets and substantial 

computational resources [21, 22, 23]. 

Generative Adversarial Networks (GANs): GANs have 

been used in CBIR to generate diverse and realistic 

images. DCGAN, Pix2Pix, and CycleGAN are GAN-

based models that enable image synthesis and style 

transfer. They enable users to retrieve images based on 

particular visual characteristics or styles. GANs offer 

versatility and originality in image retrieval, enabling 

users to explore various image variants & sets [24, 25, 

26]. Controlling the generated image quality, handling 

mode collapse, and scalability pose obstacles via 

Convolutional Autoencoder, InfoGAN, and Vision 

Transformer (CAE IGAN VT) sprocess [27, 28, 29]. 

Siamese networks are used to learn image similarity 

metrics. These models enable accurate image retrieval 

by optimizing the network to minimize the distance 

between similar images and maximize the distance 

between dissimilar images. Contrastive Loss and Triplet 

Loss are metric learning-based approaches that improve 

the discriminative power of image representations. 

These models handle the similarity-based retrieval 

scenarios. However, they may encounter difficulties 

when dealing with large datasets and require careful 

selection of relevant training datasets & samples [30, 31, 

32]. 

Graph based models  represent images as nodes in a 

graph and use graph-based structures to capture the 
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relationships between images [33, 34, 35]. CBIR has 

utilized Graph Attention Networks (GATs) and Graph 

Convolutional Networks (GCNs) to incorporate 

semantic relationships and contextual information. 

These models aid in the comprehension of image 

relationships and enhance retrieval performance levels 

[36, 37, 38]. However, constructing and processing 

large-scale graphs can be computationally expensive, 

and performance is highly dependent on graph 

construction quality levels [39, 40]. 

Attention Mechanisms and Transformer-based Models: 

Attention mechanisms and Transformer-based models, 

such as the Vision Transformer (ViT), have increased in 

popularity in CBIR. By focusing on pertinent image 

regions, these models capture global and local image 

dependencies. Attention mechanisms improve retrieval 

precision by enhancing the discriminative power of 

learned features. Transformer-based models excel at 

managing long-distance dependencies and allow for 

parallel processing. They may, however, require large 

amounts of training data and have demanding 

computational requirements [41, 42, 43]. 

Recent CBIR models [44, 45] have demonstrated 

significant improvements in feature extraction, image 

representation, and retrieval precision. These models 

effectively capture and utilize visual information by 

utilizing deep learning, metric learning, graph-based 

structures, attention mechanisms, and transformer 

architectures. Despite the remarkable performance of 

these models, there are still obstacles to overcome, such 

as scalability, data requirements, computational 

complexity, and generalizability to diverse image 

datasets and domains. 

Future CBIR research may concentrate on addressing 

these obstacles by combining multiple models and 

techniques, integrating multimodal data, exploring self-

supervised learning approaches, and leveraging domain-

specific knowledge. The development of hybrid models 

that combine the strengths of various approaches and the 

incorporation of explainability and interpretability 

techniques will increase the applicability and usability of 

CBIR systems in real-world applications. 

3. Proposed Design of an Efficient 

Multidomain Feature Analysis Engine with 

Incremental Learning for Predictive 

Retrieval of Images Via Continuous 

Feedback Operations 

As per the review of existing models, it can be observed 

these models either showcase lower accuracy & 

precision levels when evaluated on large scale datasets, 

or have lower scalability when evaluated on 

heterogenous datasets & samples. To overcome these 

issues, the proposed framework depicted in figure 1, 

combines a variety of feature extraction methods, such 

as Fourier (for identification of Frequency Patterns), 

Entropy (for estimation of Entropy Patterns), Color Map 

(for identifying Color Variations across Image Classes), 

S Transforms (for Discrete Analysis), Z Transforms (for 

Continuous Analysis), Laplace Transform (for Short 

Term Frequency Analysis), GRU, and LSTM (for 

Memory-based Analysis), to extract key visual 

characteristics from images and samples. By effectively 

maximizing feature variance levels, an Elephant Herding 

Optimizer (EHO) is used to increase the discriminative 

power of the chosen features. The use of a Vector 

Autoregressive Moving Average (VARMA) model, 

which successfully captures the temporal dependencies 

and correlations within the image dataset, further 

enhances the CBIR process. 

The Colour Map is estimated via equation 1, where 

Number of Rows (R), Number of Columns (C), and 

Number of Colours (Colors) are used as follows, 

𝐶𝑀𝑎𝑝 = ⋃ ∑ ∑ ∑ (𝐼(𝑖, 𝑗, 𝑤) == 𝑐)

𝐶𝑜𝑙𝑜𝑟𝑠

𝑎=1

… (1)

𝐶

𝑗=1

𝑅

𝑖=1

255

𝑐=1

 

Where, 𝐼 is the image pixel intensity values at different 

locations.
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Fig 1. Design of the proposed CBIR process 

To further process this image, its max & min values are 

estimated via equation 2, 

max = max(R, G, B) & min = min(R, G, B) … (2)  

Similarly, the Max Value (MV), & Max Saturation (MS) 

are estimated via equation 3, 

𝑀𝑉 = 𝑚𝑎𝑥, 𝑀𝑆 =
𝑚𝑎𝑥 − 𝑚𝑖𝑛

𝑚𝑎𝑥
… (3) 

Based on these values, the Hue (H), Saturation (S), and 

Value (V) are further estimated via equations 4, 5, & 6 

as follows, 

𝐻 = 60 ∗
𝐺 − 𝐵

𝑚𝑎𝑥 − 𝑚𝑖𝑛
, 𝑤ℎ𝑒𝑛 𝑅 = 𝑚𝑎𝑥 … (4) 

𝑆 = 120 + 60 ∗
𝐵 − 𝑅

𝑚𝑎𝑥 − 𝑚𝑖𝑛
, 𝑤ℎ𝑒𝑛 𝐺 = 𝑚𝑎𝑥 … (5) 

𝑉 = 180 + 60 ∗
𝑅 − 𝐺

𝑚𝑎𝑥 − 𝑚𝑖𝑛
, 𝑤ℎ𝑒𝑛 𝐵 = 𝑚𝑎𝑥 … (6) 

The image is also converted into Value Intensity (Y), 

Luminance (CB), and Chrominance (CR) levels via 

equations 7, 8 & 9 as follows, 

𝑌 = 0.299 ∗ 𝑅 + 0.587 ∗ 𝐺 + 0.114 ∗ 𝐵 … (7)  

𝐶𝐵 = −0.169 ∗ 𝑅 − 0.331 ∗ 𝐺 + 0.499 ∗ 𝐵

+ 128 … (8) 

𝐶𝑅 = 0.499 ∗ 𝑅 − 0.418 ∗ 𝐺 − 0.0813 ∗ 𝐵

+ 128 … (9) 

All these components are combined into a Color Space 

Vector (CSV) and processed vi equation 10 to obtain 

edge map of the image as follows, 

𝐸𝑑𝑔𝑒(𝑖) =  ∑ ∑
∑ 𝑖(𝑅, 𝐶, 𝑎)𝐶𝑆𝑉

𝑎=1

𝑅 ∗ 𝐶 ∗ 𝑎
… (10)

𝐶

𝑗=1

𝑅

𝑖=1

 

These features assist in obtaining instantaneous pixel-

level features. These features are further processed via 

use of an efficient Long-Short-Term Memory (LSTM) 

based feature extraction model, which initializes an 

augmented set of features via equations 11, 13, 14 & 15 

as follows, 

𝑖 = 𝑣𝑎𝑟(𝐼 ∗ 𝑈𝑖 + ℎ(𝑡 − 1) ∗ 𝑊𝑖) … (11) 

Where, 𝐼 are the image pixels, 𝑈 & 𝑊 represents set of 

constants for the LSTM process, while ℎ represents an 

Iterative Kernel Matrix, which is continuously modified 



 

International Journal of Intelligent Systems and Applications in Engineering  IJISAE, 2024, 12(2s), 65–81 |  70 

to obtain different feature sets. The variance (𝑣𝑎𝑟) levels 

are estimated as per equation 12, 

𝑣𝑎𝑟(𝑥) =
(∑ (𝑥(𝑖) − ∑

𝑥(𝑗)

𝑁

𝑁
𝑗=1 )

2
𝑁
𝑖=1 )

𝑁 + 1
… (12) 

Where, 𝑁 are the total pixels present in the input image 

sets.  

𝑓 = 𝑣𝑎𝑟(𝐼 ∗ 𝑈𝑓 + ℎ(𝑡 − 1) ∗ 𝑊𝑓) … (13) 

𝑜 = 𝑣𝑎𝑟(𝐼 ∗ 𝑈𝑜 + ℎ(𝑡 − 1) ∗ 𝑊𝑜) … (14) 

𝐶 = 𝑡𝑎𝑛ℎ(𝐼 ∗ 𝑈𝑔 + ℎ(𝑡 − 1) ∗ 𝑊𝑔) … (15) 

All these features (𝑖, 𝑓, 𝑜 & 𝐶) are processed via equation 

16 to obtain temporal (T) feature sets. 

𝑇 = 𝑣𝑎𝑟(𝑓 ∗ 𝐼(𝑡 − 1) + 𝑖 ∗ 𝐶) … (16) 

Based on this temporal feature, the New Kernel Matrix 

is updated via equation 17, 

ℎ(𝑁𝑒𝑤) = tanh(𝑇) ∗ 𝑜 … (17) 

These Values are given to an efficient Gated Recurrent 

Unit (GRU) Model, which estimates an augmented set 

of forgetting (𝑧), and retaining (𝑟) set of features via 

equations 18 & 19 as follows, 

𝑧 = 𝑣𝑎𝑟(𝑊(𝑧) ∗ [ℎ(𝑁𝑒𝑤) ∗  𝑇]) … (18) 

𝑟 = 𝑣𝑎𝑟(𝑊(𝑟) ∗ [ℎ(𝑁𝑒𝑤) ∗  𝑇]) … (19) 

Using these Values, the output features are estimated via 

equation 20, 

𝑓(𝑜𝑢𝑡) = (1 − 𝑧) ∗ ℎ(𝑡) + 𝑧 ∗ ℎ(𝑁𝑒𝑤) … (20) 

These features are used to estimate New Updated Kernel 

Metric (ℎ(𝑁𝑒𝑤𝑈)) via equation 21, 

ℎ(𝑁𝑒𝑤𝑈) = 𝑡𝑎𝑛ℎ(𝑊 ∗ [𝑟 ∗ ℎ(𝑁𝑒𝑤) ∗  𝑇]) … (21) 

The New Updated Kernel Metric is used in equation 11 

through 19 to get updated values of features. This 

process is repeated till the process converges via 

equation 22, 

ℎ(𝑁𝑒𝑤𝑈) ≈ ℎ(𝑁𝑒𝑤) … (22) 

Which indicates that there is minimum change in the 

Kernel Value Sets. After this process converges, the 

𝑓(𝑜𝑢𝑡) vector represents final feature sets of the LSTM 

& GRU process.  

In contrast to this process, the S-transform which is a 

time-frequency analysis tool that provides information 

about both the amplitude and frequency content of a 

signal is evaluated via equation 23, 

𝑆(𝑓, 𝑡) =  ∑[𝐼 ∗  𝑔 ∗ (𝑘 −  𝑡) ∗  𝑒𝑥𝑝(−𝑗2𝜋𝑓𝑘)] … (23) 

Where, 𝑆(𝑓, 𝑡) is the S-transform of the signal at 

frequency f and time t, 𝑔 ∗ (𝑘 −  𝑡) is the complex 

conjugate of the analyzing function g, which is typically 

a Gaussian window centered at time t, 𝑒𝑥𝑝(−𝑗2𝜋𝑓𝑘) 

represents the complex exponential with frequency 𝑓 

value sets. 

Similarly, the Z Transform is used to analyze discrete-

time signals via equation 24, 

𝑋(𝑧) =  ∑[𝐼(𝑛) ∗  𝑧−𝑛] … (24) 

X(z) is the Z Transform of the input image, 𝑧−𝑛 

represents the Z-transform variable z raised to the power 

of -n, and allows us to analyze the frequency response, 

stability, and other properties of input image pixels. 

When analyzing continuous image samples, the Laplace 

transform provides an augmented set of powerful 

mathematical features, which are estimated via equation 

25, 

𝑋(𝑠) =  ∫ [𝐼(𝑡) ∗  𝑒𝑥𝑝(−𝑠𝑡) ∗  𝑑𝑡] … (25) 

Where, X(s) is the Laplace transform of the input image, 

𝑒𝑥𝑝(−𝑠𝑡) represents the complex exponential with the 

Laplace variable 𝑠 for different image sets. The Laplace 

transform allows us to analyze the frequency response, 

stability, and other properties of continuous image sets. 

For discrete images, the Frequency Analysis is done 

using Discrete Fourier Transforms (DFTs), which are 

estimated via equation 26, 

𝐷𝐹𝑇(𝑖) = ∑ 𝐼(𝑗)

𝑁

𝑗=1

∗ [𝑐𝑜𝑠 (
2 ∗ 𝜋 ∗ 𝑖 ∗ 𝑗

𝑁
) − √−1

∗ 𝑠𝑖𝑛 (
2 ∗ 𝜋 ∗ 𝑖 ∗ 𝑗

𝑁
)] … (26) 

Where, 𝑁 represents total pixels in the input image sets. 

Similar to this, Entropy features are also estimated via 

use of Discrete Cosine Transforms (DCT) and assist in 

identification of energy levels via equation 27, 

𝐷𝐶𝑇(𝑖) =
1

√2 ∗ 𝑁

∗ 𝐼(𝑖) ∑ 𝐼(𝑗)

𝑁

𝑗=1

∗ cos [
√−1 ∗ (2 ∗ 𝑖 + 1) ∗ 𝜋

2 ∗ 𝑁
] … (27) 

The Spatial Features are evaluated using Gabor Analysis 

via equation 28, 

𝐺(𝑟, 𝑐) = 𝑒
−𝑟`2+𝜕2∗𝐶2

2∗∅2 ∗ cos (2 ∗
𝑝𝑖

𝜆
∗ 𝐼) … (28) 

Where, 𝑟, 𝑐 are the rows & columns in the input image, 

while 𝜕, ∅ & 𝜆 represents different angular & 

wavelength constants. All these features are fused to 
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form an augmented Retrieval Feature Vector (RFV), 

which is processed via Elephant Herding Optimization 

to identify highly variant feature sets. This is done via 

the following process, 

• An augmented set of 𝑁𝐻 Herds are generated via 

equation 29, 

𝑁 = 𝑆𝑇𝑂𝐶𝐻(𝐿𝐻 ∗ 𝑁(𝑅𝐹𝑉), 𝑁(𝑅𝐹𝑉)) … (29) 

Where, 𝑆𝑇𝑂𝐶𝐻 is a stochastic process, while 𝑁 

represents total Number of features selected by the given 

Herd via these stochastic selection operations, 𝐿𝐻 

represents Herd Learning Rate, which is empirically 

selected to obtain high efficiency levels for the selection 

process. 

• These features are used to estimate Herd fitness, 

which is evaluated via equation 30, 

𝑓ℎ =
√

(∑ (𝑅𝐹𝑉(𝑖) − ∑
𝑅𝐹𝑉(𝑗)

𝑁

𝑁
𝑗=1 )

2
𝑁
𝑖=1 )

𝑁 + 1
… (30) 

• The process of stochastic selection is repeated for 

𝑁𝐼 Iterations, and Herd fitness threshold is 

estimated during each Iteration via equation 31, 

𝑓𝑡ℎ =
∑ 𝑓ℎ(𝑖) ∗ 𝐿𝐻𝑁𝐻

𝑖=1

𝑁𝐻
… (31) 

• Herds with fitness 𝑓ℎ > 𝑓𝑡ℎ are passed to the next 

set of Iterations, while others are discarded and 

modified via ‘Matriarch’ process in the current 

Iteration sets. 

• Herd with maximum fitness is marked as 

‘Matriarch’ Herd, and is used to modify low fitness 

Herds via equation 32, 

𝑁(𝑁𝑒𝑤)

= 𝑁(𝑂𝑙𝑑) ⋃ 𝑆𝑇𝑂𝐶𝐻(𝑁(𝑀𝑎𝑡𝑟𝑖𝑎𝑟𝑐ℎ)) … (32) 

Where, 𝑁(𝑁𝑒𝑤), 𝑁(𝑂𝑙𝑑), & 𝑁(𝑀𝑎𝑡𝑟𝑖𝑎𝑟𝑐ℎ) represents 

the New Features of Herds, Old Features of Herds, and 

Matriarch Feature sets. 

After completion of 𝑁𝐼 Iterations, the final features are 

selected via equation 33, 

𝐹(𝐹𝑖𝑛𝑎𝑙) = ⋃ 𝐹(𝑖) … (33)

𝑓ℎ>2𝑓(𝑡ℎ)

𝑖=1

 

All these features are given to the VARMA (Vector 

Autoregressive Moving Average) model, which is a time 

series model used to analyze and predict the behavior of 

multivariate time series datasets & features. The 

VARMA Coefficients are evaluated via equation 34, 

𝑌(𝑡) =  𝐶 +  𝛷(1) ∗ 𝑌(𝑡 − 1) +  𝛷(2) ∗ 𝑌(𝑡 − 2)

+  ⋯ +  𝛷(𝑝) ∗ 𝑌(𝑡 − 𝑝) +  𝜀(𝑡)

+  𝛩(1) ∗ 𝜀(𝑡 − 1) +  𝛩(2) ∗ 𝜀(𝑡 − 2)

+  ⋯ +  𝛩(𝑞) ∗ 𝜀(𝑡 − 𝑞) … (34) 

Where, Y(t) is a vector of features, C is a constant term, 

Φ represents the autoregressive coefficients, Y(t-1), Y(t-

2), ..., Y(t-p) are the lagged observed variables or 

features, ε(t) is a vector of error terms (residuals) at 

timestamp t, Θ represents moving average coefficients, 

while ε represents the lagged error terms. 

To apply the VARMA model to perform CBIR using 

extracted features, we transformed the image features 

into a time series format, with features arranged 

according to their variance levels. Each of these features 

correspond to a time point, and the extracted feature 

vector for each image is an observed variable in the 

VARMA model process. We then determined the 

appropriate order of the VARMA model (p, q) based on 

the characteristics of the datasets & their features. This 

was done through Akaike Information Criterion & 

Bayesian Information Criterion for different feature sets. 

Once these parameters are estimated then the VARMA 

model is used for prediction and analysis. For instance, 

given a query image feature vector, we predicted the 

future feature vectors based on the VARMA proposed 

model and retrieve similar images based on the 

correlation similarity of their predicted features.
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Fig 2. Flowchart for variable selection procedure with AIC or BIC in VARMA Model 

To estimate the parameters (C, Φ, Θ) of the VARMA 

model using AIC (Akaike Information Criterion) or BIC 

(Bayesian Information Criterion), you used the 

following process, 

1. Determine the maximum orders p and q that you 

want to consider for the VARMA model process. 

These orders represent the maximum number of 

autoregressive and moving average terms. 

2. For each combination of p and q, estimate the 

parameters of the VARMA model via the standard 

maximum likelihood estimation process. 

3. Calculate the residual sum of squares (RSS) for 

each estimated model process. 

4. Calculate the number of parameters in each model, 

which is determined by the orders p and q for 

different input sets. 

5. Compute the AIC and BIC values for each model 

via equations 35 & 36 as follows, 

𝐴𝐼𝐶 =  𝑛 ∗  𝑙𝑛 (
𝑅𝑆𝑆

𝑛
) +  2 ∗  (𝑝 +  𝑞 +  1) … (35) 

𝐵𝐼𝐶 =  𝑛 ∗  𝑙𝑛 (
𝑅𝑆𝑆

𝑛
) + (𝑝 +  𝑞 +  1)

∗  𝑙𝑛(𝑛) … (36) 

Where, n is the number of observations (time points), 

RSS is the residual sum of squares, p is the number of 

autoregressive terms, q is the number of moving average 

terms. 

6. The model with the lowest AIC or BIC value is 

selected as the best fitting model set for current 

features. Lower AIC and BIC values indicate better 

model fit, with a trade-off between proposed 

model’s complexity (number of parameters) and 

goodness of fit values & sets for different scenarios. 

Based on this process images are retrieved, and their 

performance is evaluated for different datasets & their 

samples. If the correlation of the top retrieved image is 

higher than 99.9% then this image is added to the 

database, which assists in enabling the feedback learning 

process. The feedback learning process assists in 

enhancing CBIR performance over long-term temporal 

evaluation sets. This performance was evaluated & 

compared with existing models in the next section of 

this text. 

 



 

International Journal of Intelligent Systems and Applications in Engineering  IJISAE, 2024, 12(2s), 65–81 |  73 

4. Result Evaluation & Comparison 

The proposed model uses an unconventional VARMA 

Method to retrieve similar images from different datasets 

& image samples. This was done because VARMA Model 

has the following advantages over conventional methods, 

1. Capturing Temporal Dynamics: VARMA models can 

capture the temporal dependencies and dynamics of 

time series data, including image features. This can be 

useful when the order of image presentation or the 

evolution of features over time is important for the 

retrieval task. 

2. Modeling Multivariate Relationships: VARMA 

models can handle multivariate time series data, 

which is beneficial when image features consist of 

multiple dimensions or modalities. This allows for the 

exploration of interdependencies between different 

feature dimensions, potentially leading to richer and 

more accurate retrieval results. 

3. Handling Nonlinear Relationships: VARMA models 

can capture nonlinear relationships between time 

series variables. In CBIR, this can be advantageous 

when the relationship between image features is not 

linear or when there are complex interactions between 

different feature dimensions. 

4. Predictive Capabilities: VARMA models can be used 

to make predictions of future feature vectors based on 

historical data. This predictive capability can be 

leveraged in CBIR to retrieve images that are 

expected to have similar feature characteristics to a 

given query image in the future. 

5. Statistical Analysis: VARMA models provide 

statistical measures such as coefficient estimates, 

standard errors, and significance levels, which can be 

useful for analyzing the strength and significance of 

relationships between image features. 

To obtain these advantages, it was necessary to estimate 

high-density feature sets, which was done via a fusion of 

Fourier, Entropy, Color Map, S, Z, Laplace, GRU, and 

LSTM, that assisted in extracting key visual characteristics 

from images and samples. Performance of this model was 

estimated on ImageNet, MIRFLICKR, and CIFAR-10 

datasets in terms of Precision (P), Accuracy (A), Recall 

(R), Delay (d), AUC and FMeasure metrics. These metrics 

were estimated via equations 37, 38, 39 & 40 as follows, 

𝑃 =
1

𝑁
∑

𝑡𝑝(𝑖)

𝑡𝑝(𝑖) + 𝑓𝑝(𝑖)

𝑁

𝑖=1

… (37) 

𝐴 =
1

𝑁
∑

𝑡𝑝(𝑖) + 𝑡𝑛(𝑖)

𝑇

𝑁

𝑖=1

… (38) 

𝑅 =
1

𝑁
∑

𝑡𝑝(𝑖)

𝑇

𝑁

𝑖=1

… (39) 

𝑑 =
1

𝑁
∑ 𝑡𝑠(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒, 𝑖) − 𝑡𝑠(𝑠𝑡𝑎𝑟𝑡, 𝑖)

𝑁

𝑖=1

… (40) 

Where, 𝑡𝑝, 𝑓𝑝, 𝑡𝑛 & 𝑓𝑛 are standard true & false rates, 

while 𝑡𝑠 represents timestamps for different evaluation 

instance sets.  

To estimate model’s performance based on these 

metrics, an aggregated 800k image samples were used, 

out of which 200k were used for validation, 400k for 

training the VARMA Model & 200k for testing the 

model under real-time scenarios. This performance was 

compared with MMSN [15], GAR DML [19], and CAE 

IGAN VT [29] with 𝑁 Number of images retrieved via 

the CBIR process. Using this strategy, the average 

accuracy of these models can be observed from table 1,

 

Model Accuracy 

Proposed Model 0.98 

MMSN [15] 0.87 

GAR DML [19] 0.89 

CAE IGAN VT [29] 0.91 

Table 1. Average Accuracy levels during CBIR process 

The table presents a comparison of the accuracy values 

achieved by the proposed model and three other models 

(MMSN [15], GAR DML [19], and CAE IGAN VT 

[29]). The proposed model demonstrates the highest 

accuracy of 0.98 indicating its ability to correctly 

classify and retrieve relevant images. CAE IGAN VT 

[29] closely follows with an accuracy of 0.91, while 

GAR DML [19] achieves an accuracy of 0.89. MMSN 

[15], with an accuracy of 0.87, performs slightly lower 

than the other models. These results suggest that the 
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proposed model outperforms the other models in 

accurately predicting and retrieving images based on 

their contents. Similarly, the precision levels can be 

observed from table 2, 

 

Model Precision 
 

Proposed Model 0.97 

MMSN [15] 0.88 

GAR DML [19] 0.9 

CAE IGAN VT [29] 0.92 

Table 2. Average Precision levels during CBIR process 

The precision table presents a comparison of the 

precision values for the proposed model and the three 

other models. Precision measures the proportion of 

retrieved images that are relevant among the total 

number of retrieved images. The proposed model 

achieves the highest precision of 0.97, indicating that it 

has a high capability to retrieve highly relevant images. 

CAE IGAN VT [29] follows closely with a precision 

value of 0.92, while GAR DML [19] achieves a 

precision of 0.90, MMSN [15] has the lowest precision 

value of 0.88 for different samples. These results 

highlight the superior precision performance of the 

proposed model in accurately retrieving relevant images. 

Similarly, the recall levels can be observed from table 3, 

Model Recall 

Proposed Model 0.93 

MMSN [15] 0.89 

GAR DML [19] 0.91 

CAE IGAN VT [29] 0.92 

Table 3. Average Recall levels during CBIR process 

The recall table compares the recall values obtained by 

the proposed model and the three other models. Recall 

measures the proportion of relevant images that are 

correctly retrieved among the total number of relevant 

images. The proposed model achieves a recall of 0.93, 

indicating its ability to effectively retrieve a high 

percentage of relevant images. CAE IGAN VT [29] 

follows closely with a recall value of 0.92, while GAR 

DML [19] achieves a recall of 0.91. MMSN [15] has a 

slightly lower recall value of 0.89. These results indicate 

that the proposed model excels in retrieving a high 

number of relevant images compared to the other 

models. While, the delay levels can be observed from 

table 4 as follows, 

Model Delay (ms) 

Proposed Model 12.5 

MMSN [15] 15.2 

GAR DML [19] 13.8 

CAE IGAN VT [29] 14.1 

Table 4. Delay levels for different CBIR models 

The delay table compares the processing time (in 

milliseconds) required by the proposed model and the 

three other models. Lower delay values indicate faster 

retrieval of images. The proposed model demonstrates 

the lowest delay of 12.5 ms, indicating its efficiency in 

processing and retrieving images. GAR DML [19] 

follows closely with a delay of 13.8 ms, while CAE 

IGAN VT [29] and MMSN [15] have delays of 14.1 ms 

and 15.2 ms, respectively. These results suggest that the 

proposed model offers faster image retrieval compared 

to the other models, providing a more efficient user 

experience levels. The AUC performance can be 

observed from table 5 as follows, 
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Model AUC 

Proposed Model 0.98 

MMSN [15] 0.91 

GAR DML [19] 0.92 

CAE IGAN VT [29] 0.94 

Table 5. Average AUC levels during CBIR process 

The AUC table compares the Area Under the Curve 

values obtained by the proposed model and the three 

other models. AUC is a performance metric that assesses 

the overall performance of a model in terms of its ability 

to correctly classify images. The proposed model 

achieves the highest AUC value of 0.98, indicating 

excellent overall performance. CAE IGAN VT [29] 

closely follows with an AUC of 0.94, while GAR DML 

[19] and MMSN [15] achieve AUC values of 0.92 and 

0.91, respectively. These results highlight the superior 

classification performance of the proposed model when 

compared to the other models. Similarly, the RMSE 

(Root Mean Squared Error) Levels can be observed from 

table 6 as follows, 

Model RMSE 

Proposed Model 0.08 

MMSN [15] 0.11 

GAR DML [19] 0.1 

CAE IGAN VT [29] 0.09 

Table 6. RMSE Levels of the proposed model when compared with other models 

The RMSE table compares the Root Mean Square Error 

values obtained by the proposed model and the three 

other models. RMSE measures the average difference 

between the predicted and actual values, with lower 

values indicating better accuracy. The proposed model 

achieves the lowest RMSE of 0.08, indicating its high 

accuracy in predicting image relevance. CAE IGAN VT 

[29] follows with an RMSE of 0.09, while GAR DML 

[19] and MMSN [15] have RMSE values of 0.10 and 

0.11, respectively. These results demonstrate the 

superior accuracy of the proposed model in predicting 

image relevance compared to the other models. The F1 

Score can be observed from table 7 as follows, 

Model F1 Score 

Proposed Model 0.93 

MMSN [15] 0.89 

GAR DML [19] 0.91 

CAE IGAN VT [29] 0.92 

Table 7. F1 Score of the proposed model for different scenarios 

The F1 Score table compares the F1 Score values 

achieved by the proposed model and the three other 

models. The F1 Score combines precision and recall, 

providing a balanced evaluation of the model's 

performance. The proposed model achieves the highest 

F1 Score of 0.93, indicating its ability to achieve a 

balance between precision and recall. CAE IGAN VT 

[29] closely follows with an F1 Score of 0.92, while 

GAR DML [19] and MMSN [15] achieve F1 Score 

values of 0.91 and 0.89, respectively. These results 

emphasize the overall superior performance of the 

proposed model in terms of precision and recall trade-off 

sets. 
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Model k n RSS AIC BIC 

1 3 100 73552.896 424.8533 438.9725 

2 4 100 33879.339 372.088 380.2602 

3 5 100 23430.744 353.0689 363.2842 

4 4 100 24298.432 353.1416 361.3138 

5 5 100 17697.328 349.1757 353.3909 

6 6 100 16327.307 334.21 346.7383 

7 7 100 14511.442 328.7296 332.0609 

Table 8. Summary of AIC and BIC calculations 

ANOVA will determine whether there are statistically significant differences in performance between the methods 

 

Fig 3. ANOVA test on the performance Model. 
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Perform the ANOVA test on the performance scores of 

the different retrieval methods are calculate AIC, BIC 

and RSS value.  

Based on these results it can be observed that the 

proposed model is capable of enhancing CBIR 

performance for different datasets and samples. Results 

for the CBIR process can be observed from figure 4, 5, 6 

& 7 where outputs of different datasets & their retrieved 

images can be observed as follows, 

 

 

Fig 4. Results for the ImageNet Datasets & Samples     Fig 5. Results for the MIRFLICKR  Datasets & Samples 

 

 

Fig 6. Results for the CIFAR-10 Datasets    Fig 7. Results on an augmented set of & Samples                                                                                    

custom image samples 
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From this visual analysis, it can be observed that the 

model is capable of retrieving images with high-

efficiency levels. The proposed model, which has such a 

high performance, is capable of deployment for a wide 

variety of CBIR datasets & samples. 

5. Conclusion & Future Scope 

In conclusion, this paper proposes a novel model for 

content-based image retrieval (CBIR) that outperforms 

three existing models in terms of precision, recall, 

processing time, and accuracy. 

The proposed model has the highest accuracy of 0.98, 

indicating its superior ability to classify and retrieve 

relevant images. It achieves the highest precision value 

of 0.97, demonstrating its ability to retrieve images that 

are highly pertinent. In addition, the model achieves a 

recall of 0.93, demonstrating its ability to retrieve a high 

proportion of relevant images. Collectively, these 

findings indicate that the proposed model excels at 

predicting and retrieving images based on their content. 

In addition, the proposed model has the shortest 

processing time with a delay of 12.5 milliseconds, 

demonstrating its efficiency in image processing and 

retrieval. This suggests that the model provides a faster 

image retrieval experience, thereby improving the 

overall user experience. 

The proposed model's superior performance can be 

attributed to a number of crucial factors. First, the use of 

Fourier, Entropy, Color Map, S, Z, Laplace, GRU, and 

LSTM techniques for feature extraction enables the 

model to extract significant visual characteristics from 

images. By maximizing feature variance, the 

incorporation of an Elephant Herding Optimizer (EHO) 

increases the discriminative power of the selected 

features. This improves the retrieval performance. 

Moreover, the use of a Vector Autoregressive Moving 

Average (VARMA) model captures temporal 

dependencies and correlations within the image dataset. 

This further improves the CBIR procedure, allowing for 

more precise image retrieval. 

The incorporation of feedback learning through 

correlation learning operations permits the CBIR system 

to adapt and improve in response to user feedback over 

time. This continuous feedback loop allows the model to 

evolve and produce better results as user interaction 

increases. 

In conclusion, the model proposed in this paper provides 

an efficient multidomain feature analysis engine with 

incremental learning for predictive image retrieval using 

continuous feedback operations. The experimental 

results demonstrate its accuracy, precision, recall, and 

processing speed superiority over existing models. 

Advanced feature extraction techniques, optimization 

algorithms, temporal modeling, and feedback learning 

all contribute to the model's exceptional performance. 

This study's findings have substantial implications for 

the design of more effective and efficient CBIR systems 

with enhanced image retrieval capabilities and enhanced 

user experiences. 

Future Scope 

The paper reveals a number of potential future research 

and development avenues. The following areas can be 

investigated to enhance and expand upon the findings of 

this study, 

Enhancing Feature Extraction Techniques: Even though 

the proposed model employs a variety of feature 

extraction techniques, including Fourier, Entropy, Color 

Map, S, Z, Laplace, GRU, and LSTM, there may be 

additional advanced techniques that could be 

investigated. For more effective and informative feature 

representation, researchers can explore emerging 

techniques such as attention mechanisms, graph 

convolutional networks, and deep reinforcement 

learning. Exploring alternative feature extraction 

algorithms and assessing their impact on the 

performance of the CBIR system could be a fruitful 

future direction. 

Improving Incremental Learning: This article 

emphasizes the use of incremental learning for the 

continuous enhancement of the CBIR system. Future 

research can concentrate on developing more 

sophisticated and efficient incremental learning 

algorithms that can adapt to new data and user feedback 

in a more scalable and efficient manner. Exploring 

techniques like online learning, transfer learning, and 

lifelong learning can assist the CBIR system in 

continuously updating its knowledge and adapting to 

shifting user preferences and trends. 

Examining Various Optimization Algorithms: The 

Elephant Herding Optimizer (EHO) is used to maximize 

the feature variance levels in this paper. However, there 

are numerous other optimization algorithms that can be 

investigated for enhancing the CBIR system's 

performance. Researchers can investigate evolutionary 

algorithms, swarm intelligence algorithms, and 

metaheuristic algorithms to improve retrieval accuracy 

and increase the discriminative power of the selected 

features. 

Incorporating Deep Learning: In image analysis tasks, 

deep learning techniques such as convolutional neural 

networks (CNNs) and generative adversarial networks 

(GANs) have demonstrated remarkable success. 
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Incorporating deep learning models into the proposed 

CBIR system may enhance the feature extraction and 

matching capabilities. Researchers can assess the impact 

of combining deep learning models with the proposed 

multidomain feature analysis engine on retrieval 

precision and efficacy. 

Considering Large Image Datasets: As the size of image 

databases continues to expand, scalability becomes an 

essential concern. Future research can concentrate on the 

development of techniques for efficiently managing 

large image datasets and ensuring rapid retrieval 

performance. This may involve investigating distributed 

computing approaches, parallel processing, or indexing 

strategies to accelerate the search process and maintain 

retrieval precision despite the presence of vast quantities 

of data. 

User-Centric Interface Design: In the context of 

continuous feedback operations, a user-centric interface 

design becomes essential for a CBIR system's success. 

Future work can concentrate on the creation of intuitive 

and interactive user interfaces that enable users to easily 

provide feedback, annotate images, and refine search 

queries. Incorporating user preferences and simulating 

user behavior can further improve the CBIR system's 

personalization and user experience. 

Real-World Deployment and Evaluation: While the 

paper provides promising results based on experimental 

evaluations, additional research could investigate real-

world deployment scenarios to evaluate the performance 

and usability of the proposed CBIR system. Conducting 

user studies and collecting feedback from users in a 

variety of domains and application contexts can provide 

valuable insights into the system's efficacy and 

improvement opportunities. 

By exploring these future research directions, the field 

of content-based image retrieval can advance further, 

resulting in more accurate, efficient, and user-centric 

systems that can meet the rising demand for image 

search and retrieval tasks in a variety of domains. 
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