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Abstract: Accurate household energy consumption predictions are crucial for efficient resource allocation and optimal energy 

management. In recent years, time series forecasting problems have seen encouraging outcomes from deep learning models. However, it 

is extremely difficult to make precise projections due to the energy consumption patterns' intrinsic complexity and non-linearity. This 

research suggests a novel method for estimating household energy usage based on deep learning and multi-headed attention to address 

these issues. To capture the complex temporal correlations and consumption patterns in household energy data, the proposed model 

makes use of deep neural networks and attention processes that are interpretable. In specifically, the model learns different 

representations and accurately captures both short-term and long-term relationships by simultaneously attending to many characteristics 

of the input data via multi-headed attention. The model design combines convolutional and recurrent network neural network layers to 

extract valuable features from the source time series data and capture changes in time. This study makes a significant contribution to the 

field of energy forecasting by developing a new model using deep learning with multi-headed attention, producing precise estimates of 

residential energy consumption, and facilitating effective energy management and allocation of resources in residential settings. 

Keywords: Efficient energy prediction, deep learning, multi headed attention, recurrent neural network 

1. Introduction 

The International Energy Agency (IEA) emphasized the 

predicted annual rise of 1.3% in global energy demand 

until 2040 in the World Energy Outlook 2019, 

emphasizing the necessity for increased efficiency 

initiatives [1]. Residential power consumption is one of 

the industries that significantly contributes to this 

demand, making up about 27% of the world's electricity 

consumption [2]. As a result, the forecasting and analysis 

of household power consumption become essential for 

efficient power supply planning, making machine 

learning technologies, particularly deep learning 

algorithms, a desirable option [3]. A multivariate time 

series prediction issue must be solved in order to 

anticipate residential electricity usage [4]. As shown in 

Figure 1, sensor-level signals are used to extract distinct 

properties, such as attributes related to energy use. Using 

a prediction model, these parameters are then used to 

forecast power consumption levels [5]. This procedure is 

crucial for energy management systems (EMS) and smart 

grid services because it makes it possible to anticipate 

future power demand using information about past 

consumption and other factors relating to electricity.  

This study attempts to solve the modelling issues related 

to energy usage in residential settings in order to get 

around these constraints. A more complicated and 

accurate prediction model can be created by utilizing 

cutting-edge deep learning algorithms. Deep learning 

algorithms are used in the proposed model to capture the 

complex temporal relationships and non-linear patterns 

present in residential power use. The model also 

combines multivariate time series data, including energy 

consumption variables. The drawbacks of conventional 

naive time-series models can be avoided by using this 

method, which will result in better energy management 

and more effective power supply planning in residential 

settings. Machine learning techniques are used in the 

energy sector to forecast future energy demand by 

utilizing historical customer data.  
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Deep learning-based power forecasting models have 

excelled in this situation [10]. But they must overcome 

two significant obstacles. The active power consumption 

patterns and other power parameters are multicollinear, 

to start [11], [12]. Second, the use of electronic devices is 

the main driver of the transitory and impulsive behaviour 

displayed by power consumption. The concurrent 

utilization of power-consuming services can impair the 

performance of deep learning models, even if 

convolutional operations have been designed to learn 

filters that capture local correlations. In real-world 

circumstances, this method is anticipated to deliver 

predictions that are more solid and trustworthy, 

facilitating effective energy management and planning. 

The local link between electric characteristics and active 

power in time-series modelling is captured by a unique 

deep learning model that we offer in this study [13], [14]. 

It makes use of multi-headed attention.   

We illustrate the potency of our suggested strategy 

through in-depth tests and evaluations. The ability to 

capture and utilize the key characteristics of the power 

consumption patterns demonstrates the effectiveness of 

the multi-headed attention mechanism, enabling precise 

predictions, including energy peaks. Our findings 

outperform the effectiveness of current approaches and 

demonstrate the superiority of the suggested strategy for 

simulating and forecasting power consumption trends. 

2. Review of Literature 

In this section, we go over crucial deep learning methods 

for estimating energy use. We examine both traditional 

signal processing techniques and more current deep 

learning-based power prediction studies. The bulk of 

methods utilized prior to the invention of deep learning 

concentrated on time series modelling using a symbolic-

dynamic framework [15], [16]. These techniques, 

however, were unable to handle minute changes in the 

time axis, leading to large discrepancies between time 

series. Lin et al. created a bag-of-patterns format for 

feature extraction and incorporated rotation-invariant 

symbols to address this issue [17]. A fundamental 

obstacle developed despite the effectiveness of machine 

learning-based power demand models: these techniques 

were predominantly assessed for short-term forecasting 

horizons, omitting medium and long-term projections 

[7]. 

Neural networks regularly outperformed other machine 

learning-based power demand forecasting techniques, 

such as autoregressive integrated moving average 

(ARIMA) and decision trees [7][8], in large part because 

of their non-linear mapping abilities [19]. Previous 

research mainly concentrated on time series modelling 

with symbolic-dynamic techniques. However, the 

development of deep learning methods, notably neural 

networks, opened the door to the possibility of stronger 

and more precise predictions of power usage. In addition 

to outperforming earlier approaches, these models also 

addressed their shortcomings, notably with regard to 

medium- and long-term forecasting horizons. Two deep 

learning models that have excelled at classifying energy 

patterns and predicting energy use are the LSTM (Long 

Short-term Memory) and convolution neural networks 

[10]. In time series data, LSTM models can identify 

patterns and long-term dependencies due to their ability 

to learn temporal gating functions. On the other hand, 

CNN models excel at extracting regional relationships 

and spatial characteristics from power spectra. 

Table 1: Summary of related work in residential energy consumption using deep learning 

Paper Area Domain Data Prediction Method MSE Value for 

prediction 

 [21] Household Power at UCI Conditional RBM That Was 

Made 

0.7211 (1-h) 

 [22] Household Power at UCI LSTM Model 0.5420 (1-h) 

[20] Victoria and New South Wales, 

Australia 

RNN-SVR Group 0.6059 (1-h) 

 [23] Australian smart grid and smart city LSTM, and RNN Method 0.4903 (1-h) 

 [24] Building energy applied ELM, Stacked Autoencoder 4256747 (30-min) 

 [7] Competition Time Series Data for M3 k-NN, NN, GP, SVR, and 

ARIMA 

0.4252 (1-h) 

[25] Building for Salt Lake City's Public 

Safety 

LSTM Method 0.2913 (1-h) 
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Other deep learning models including autoencoders (AE) 

and generative networks of adversarial networks (GAN), 

in addition to LSTM and CNN, have become more well-

liked in the context of predicting power usage. Deep 

learning is effective at capturing and reconstructing 

patterns of power usage, as shown by autoencoders, 

which are built as a probabilistic technique using CNN 

and LSTM layers as building blocks [24]. These deep 

learning models are well suited for tackling challenging 

energy forecasting problems and energy pattern 

classification, as evidenced by their extensive acceptance 

and successes. These models offer promising ways to 

increase the precision and efficacy of consumption 

prediction in a variety of energy-related applications by 

making use of their capacity to learn complicated 

temporal dependence, extract local correlations, and 

record complex patterns. Due to the intricate traits 

displayed by demand time series, anticipating electricity 

demand is extremely difficult. These traits include, 

among others, jumps, numerous periodicities, calendar 

effects, non-constant mean and variance, and high 

volatility. Researchers have investigated numerous 

methodologies and optimization methods to address 

these problems. In order to estimate power usage using a 

neural network, Mocanu et al. created a stochastic 

pertaining stage and assessed its effectiveness in various 

temporal contexts [21]. RBMs (restricted Boltzmann 

machines) are typical unsupervised learning models that 

strive to reduce the Kullback-Leibler divergence between 

layers. When learning the prior distribution from data on 

power usage, stacked RBMs have proven particularly 

useful for enhancing prediction accuracy. 

The RNN-CNN cells, specifically created for time series 

modelling, were used to estimate power usage [22], [23]. 

These research demonstrated the viability and efficiency 

of boosting prediction performance by utilizing neural 

networks with memory cells. For forecasting models, 

researchers have developed optimization techniques to 

accommodate the varied properties of demand series. For 

instance, Li et al. pioneered the use of RNNs with 

pooling procedures for selective gradient updates and the 

use of autoencoders for obtaining multidimensional 

features prior to time series modelling [24][30]. Critical 

time lag factors that significantly affect prediction 

performance were optimized using genetic algorithms 

(GA) [31]. Additionally, particle swarm optimization 

(PSO), which outperforms current deep learning models 

and is recognized for faster convergence and greater 

search space exploration compared to GA, has shown 

potential in optimizing power prediction models [29]. 

3. Data-Set Used 

1. Household Electric Power Consumption: 

The amount of active energy spent per minute (in watt-

hours) by electrical equipment in the home that is not 

counted by submeterings 1, 2, or 3 is denoted by the 

formula (global_active_power * 1000 / 60 - 

sub_metering_1 - sub_metering_2 - sub_metering_3). 

The measurements in the dataset have missing values, 

which make up about 1.25 percent of the rows. All 

calendar timestamps are present in the collection, 

although some of them lack measurement values. The 

absence of a value between two consecutive semi-colon 

attribute separators serves as a signal for these missing 

values. The dataset, for instance, has missing values for 

April 28, 2007. 

 

Table 2: Dataset Information 

Sr. No Characteristics Subject Area Task Attribute  Record 

1 Time Series Physical Classification 

Prediction 

9 2075259 

 

4. Proposed Methodology 

The CNN-LSTM network with multi-headed focus, 

which is used to extract spatiotemporal information and 

predict power consumption based on the power 

spectrum, is shown in this section's architecture. In order 

to include them into an end-to-end neural network 

architecture, we accept and change two crucial elements 

of the standard power prediction model. Notably, 

capturing fleeting and impulsive values in electricity 

demand is a key function of the multi-headed attention 

mechanism. The recovered features from the CNN are 

then processed further by the LSTM component, which 

is renowned for its capacity to capture long-term 

dependencies. Taking into account the sequential 

character of time series data, it simulates the temporal 

dynamics of power use. The model can successfully 

learn both spatial and temporal patterns thanks to the 

integration of CNN and LSTM, which boosts the 

accuracy of power consumption prediction. 

Our suggested method combines these components into 

an end-to-end neural network architecture to extract 

important spatiotemporal information from the power 

spectrum and anticipate the transient and impulsive 

values of electricity consumption. The multi-headed 
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attention mechanism enhances the model's ability to 

focus on key elements and spot key trends in data on 

electricity usage. 

 

 

Fig 1: Proposed CNN-LSTM based Model for Energy Consumption Prediction 

A. CNN-LSTM Network: 

Our suggested approach uses a CNN-LSTM network to 

estimate electricity demand as its primary goal. The 

multi-headed attention mechanism, which is created 

using the function φ that extracts spatiotemporal 

information and forecasts future energy need, is 

incorporated to do this. We utilize a direct forecast 

technique [5] in light of the intricate non-linear mapping 

stated by stacking numerous levels in the network. This 

method stays clear of the bias accumulation that 

recursive sequential forecasting methods frequently use 

can cause. In the direct forecast tactics, we create a direct 

model h that, using the input features, directly forecasts 

the future energy demand. The direct model's associated 

parameter set is represented by the symbol. We seek to 

increase the precision and dependability of the 

forecasting of power demand by utilizing this direct 

forecast technique.  

Our suggested strategy, represented by the function, 

efficiently captures spatiotemporal characteristics and 

gives precise forecasts for future energy demand by 

combining CNN, LSTM, and the multi-headed 

attentiveness mechanism. The model's learnable weights 

and biases are captured by the parameter set, allowing it 

to generate precise predictions according to the input 

data. 

ŷt =  φh(Xωt − h;  Θh) +  et, h 

Convolutional recurrent neural networks with trained 

neurons (CNN-LSTM) are well known for their benefits 

in learning data-driven filters, notably in extracting 

spatiotemporal characteristics for signal processing tasks 

like predicting power consumption [10][6]. An overview 

of the proposed CNN-LSTM model with multi-headed 

attention for power consumption prediction is shown in 

Figure 1. The model consists of two main phases, each of 

which has a specific function. Convolutional layers are 

used in the initial stage to separate out spatial 

information from the input power data. The model can 

comprehend the spatial linkages and recognize 

significant features thanks to these layers' application of 

filters to capture local correlations and patterns within 

the power spectrum. 

Hyperparameters necessary for training the CNN-LSTM 

model are defined at the data preprocessing stage. Each 

power attribute is subjected to min-max normalization, 

and a sliding-window method is used. The time lag, also 

known as the length of the input signal, and the stride 

parameter, which controls how many time steps overlap, 

create the sliding window. The sampling temporal 

resolutions for the power usage data are 1 to 60 minutes, 

1 day, and 1 week as shown in figure 1. The inclusion of 

LSTM layers in the second stage makes use of their 
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capacity to identify temporal dependencies and enduring 

patterns in time series data. Taking into account the 

sequential nature of the data, the LSTM layers process 

the retrieved spatial information and predict the 

dynamics of power use over time. The multi-headed 

attention mechanism is incorporated into the architecture 

to further improve the performance of the model. The 

model may concentrate on the most instructive elements 

of the data, even transitory and impulsive values, 

because to this attention mechanism's selective weighting 

and attention to pertinent features.   

B. Convolution Neural Recurrent Networks: 

The extraction of spatiotemporal information from small 

consumption samples is one of the key difficulties in 

modelling power consumption with neural regressor 

[21]. We use a combination of CNN and LSTM models 

for feature learning from time-series power consumption 

data to get around this problem. Taking use of the 

complementary nature of these two deep learning models 

in capturing spatiotemporal data, they are successively 

combined. Convolution and pooling techniques are used 

in the CNN model to extract spatial data. The ability to 

identify spatial linkages between various power 

parameters is made possible by its suitability for 

collecting local correlations and patterns within the data 

on power usage. 

As opposed to this, the LSTM model is created primarily 

to identify long-term trends and temporal dependencies 

in time-series data. The LSTM model can accurately 

represent the dynamics and temporal relationships within 

the power consumption sequence by include memory 

cells. We may take advantage of the advantages of both 

CNN and LSTM in capturing spatiotemporal features by 

sequentially merging these two models. While the LSTM 

component simulates temporal interdependence, the 

CNN component concentrates on spatial relationships. 

The intricate patterns in the power usage data may now 

be fully understood thanks to this integration. 

Proposed Deep Learning CNN-LSTM Algorithm: 

Step 1: Data preparation 

• Apply min-max normalization to the time series 

data of power consumption, X. 

• Create input-output pairs using the sliding-window 

method. 

• Time series data are divided into overlapping 

windows of length stride. 

• The input sequence should be defined as X = x1, 

x2,..., x, and the corresponding produce y = xn+1. 

Step 2: Modeling: 

• Convolutional Neural Network (CNN), 2.1 

▪ Convolutional filters should be applied to the input 

sequence X. 

▪ Create feature maps by activating function c for 

each filter. 

▪ Use the feature maps' pooling procedure to retrieve 

pertinent spatial characteristics. 

• LSTM stands for Long Short-Term Memory. 

▪ Pass the feature maps obtained from the CNN to the 

LSTM model as input. 

▪ Create the cell states and hidden states for the 

LSTM. 

▪ Use the LSTM layers to process the input sequence 

while recording temporal dependencies. 

▪ Produce the LSTM model's output sequence h = h1, 

h2,..., hn+1. 

• Multi-headed  

▪ Attention should be used to recognize the 

significance of various input sequence components. 

▪ Calculate attention weights utilizing dot product 

operations and softmax. 

▪ Determine the LSTM outputs' weighted sum. 

3. Training: 

• Set up the model's parameters. 

• To determine the difference between the output that 

was predicted and the actual output, y, use a loss 

function, L. 

• To reduce the loss, modify the model's parameters 

using an optimization approach (such as stochastic 

gradient descent). 

4. Prediction: 

• Pre-process the data using a fresh input sequence, 

Xnew. 

• Pass the trained CNN-LSTM model via the 

preprocessed input. 

• Utilize the multi-headed attention mechanism to 

calculate the final prediction for the following time 

step. 

5. Evaluation: 

• Measure the performance of the CNN-LSTM model 

using appropriate evaluation metrics 

Widely used in signal processing, the convolution 

operation φc(·) and pooling operation in CNNs are 

excellent for modelling power consumption sequences 

and extracting features by capturing local connection 

between windowed signals. By using filters to identify 

hidden correlations, the convolution procedure preserves 

the spatial link among power attributes while lowering 

translational variation between features [22]. An m 1 

sized filter W is used to apply the convolutional 

operation sequence at the t-th time step. The filter is 

convolved with the input power attribute sequence R 
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during the convolution operation, with an emphasis on 

the i-th node in the lst layer and the i-th element of the 

power attribute sequence. This procedure enables CNN 

to pick up and record pertinent geographical information. 

φl
c(Xt)

=  [ ∑ ∑ 𝑊

mX−1

τ=1 l−1

a

Rt−ω+τ] 

Our suggested model uses a 1D convolution-pooling 

operation to separate out specific properties from the 

power spectrum in order to extract spatial data. The 

following LSTM layers receive these spatial 

characteristics as a sequence of encoded vectors. 

According to the sliding-window preprocessing, the 

convolution-pooling function _c catches the time-series 

data inside a window size. Our model's LSTM 

component includes gating operations, which are 

represented by an input gate, forget gate, and output gate 

(abbreviated as ot). These gates regulate the information 

flow inside the LSTM cell in an adaptive manner. The 

LSTM generates an encoded vector L(i) based on the cell 

state ct and the hidden value ht at each time step t. 

φL(·) =  ht =  ot ◦ tanh(ct) 

where, b stands for the bias term and represents the 

element-wise product after the CNN-LSTM extracts the 

spatiotemporal features 

φ l (Xt) =  σ  Wlφ l − 1 L φ l − 2 c (Xt)  +  b l  

A linear activation function is used in the last layer of the 

Multilayer Perceptron (MLP) in the proposed CNN-

LSTM regressor. By selecting this activation function, 

the output scalar value is guaranteed to be directly read 

as the power prediction. 

 

Fig 2: Proposed model CNN-LSTM using multi-headed attention 

The backpropagation approach is used in conjunction 

with gradient descent optimization to update the CNN-

LSTM regressor. 

L𝑀𝑆𝐸  =  
1

𝑛
 ∑(Xi −  Xˆi)2

𝑛

𝑗=1

 

The objective is to reduce the mean squared error (MSE) 

metric, which stands for the loss function. The average 

squared difference between the true values y and the 

predicted values for a set of n observations is used to 

calculate the MSE. The CNN-LSTM regressor gains the 

ability to produce more accurate power forecasts based 

on the input data by minimizing the MSE loss function 

using the backpropagation algorithm and gradient 

descent optimization. To enhance the model's 

functionality and produce more accurate predictions, the 

procedure iteratively refines the model's parameters. The 

gradients of the parameters of the model with respect to 

the loss function are calculated via the backpropagation 

algorithm. In order to iteratively reduce the loss and 

increase the precision of the power estimates, these 

gradients are then utilized to update the weights of the 

model and bias through the process of gradient descent. 

3. Multi Headed Mechanism: 

The attention mechanism determines the alignment score 

by using a compatibility function f(R_t, q) given a 

window at time step t, designated as X_t = [R_t,..., R_t-, 

and the spatiotemporal feature vector representation of a 

query, indicated as q. The correlation or resemblance 

between the element R_t and the query q is measured by 

this compatibility function. A_t = [f(R_, q)] is the 

alignment score vector.The compatibility function 

measures the correlations between the query and key 
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items in _=t, which is made up of correlations between 

those elements.  

At =  [ f(Rτ, Q)] 

The probability distribution p(z) is used to represent the 

compatibility function using a softmax operation on the 

variables (X, Q), and defining the indicator variable z as 

follows: 

p(z|Rt , Q) =  softmax(At) 

The attention score s can be used as a random variable to 

describe the relationship between the query Q and the 

key, which is represented on a scale of [0,1]. The 

anticipated amount of the use of energy, which is 

sampled depending on its importance, can be expressed 

as this attention score.  

p(z =  t|Q) =
exp(f(Rt , Q)) 

t exp(f(Rτ, Q))
Pt − ω τ 

The energy consumption is dependent on the expectation 

(E), which indicates the average value. Based on the 

association between the query and key, the attention 

score determines the relevance or importance of the 

energy usage. By taking into account its significance in 

relation to the supplied inquiry, it enables us to predict 

the projected energy consumption value. 

f(Rt , Q)  =  φ l cp(Rt)  ·  φ l cp(Q)

 

Fig 3: Internal Operation of Multi Headed Mechanism 

The deep learning architecture incorporates specialized 

layers for the attention mechanism. The attentive layer is 

specifically positioned between the time series and the 

modelling stages that capture the power spectrum. With 

the addition of attention layers, the problem of foreseeing 

abrupt increases in power facility demand, which can be 

challenging for standard deep learning models, is 

addressed. 

5. Result and Discussion 

Convolutional neural networks (CNN) and long short-

term memory (LSTM) neural networks were among the 

machine learning models whose prediction performance 

results were assessed. A notable improvement in error 

reduction was shown by our suggested model, which 

includes a selective modelling strategy for 

spatiotemporal features. Our suggested model 

specifically produced a significant error reduction of 

22.82% when compared to the traditional CNN-LSTM 

neural network. This demonstrates the efficacy and 

superiority of our model in precisely identifying and 

simulating the intricate spatiotemporal patterns inherent 

in the data.  

Table 3 shows the evaluation findings for our suggested 

model at various temporal resolutions, from 1 minute to 

1 week. Each method's prediction error is represented by 

its mean squared error (MSE) values, which were 

obtained by 10-fold cross-validation. We contrast our 

model with other machine learning approaches for 

predicting power consumption that have been released in 

the previous two years. The loss of short-term temporal 

variables that can affect the modelling of long-term 

trends may be the reason why the largest prediction 

errors are shown at time resolutions of 45 minutes and 1 

hour. The proposed strategy, however, consistently 

outperforms the alternative approaches at all temporal 

resolutions, outperforming both modern machine 

learning and deep learning techniques. 
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Table 3: MSE comparison of Different method 

Resolution LR ARIMA DT RF SVR CNN LSTM Proposed 

Method 

1M 0.0744 0.0738 0.1226 0.0792 0.0798 0.0566 0.0641 0.0616 

15M 0.2415 0.2328 0.4434 0.3962 0.3229 0.2023 0.2108 0.1938 

30M 0.295 0.2892 0.5399 0.3941 0.362 0.2584 0.2673 0.2466 

45M 0.3221 0.3331 0.5004 0.4305 0.4248 0.3083 0.312 0.2938 

1H 0.3298 0.3152 0.5459 0.4334 0.406 0.2765 0.2803 0.2762 

 

This indicates how well our method works at capturing 

both short- and long-term behaviours when estimating 

power demand. Non-linear mapping techniques like SVR 

and neural networks reduce mistakes in shorter 

timescales, whilst conventional methods like ARIMA 

excel at capturing broad patterns over longer periods. 

Our suggested technique outperforms existing 

methodologies in the field of energy forecasting across 

all temporal resolutions, demonstrating its superiority. 

 

Fig 4: MSE value comparison of different method with proposed method 

At various resolutions, the performance of several 

models' predictions was assessed. Across all resolutions, 

our suggested approach consistently outperformed 

competing models such as LR, ARIMA, DT, RF, SVR, 

CNN, and LSTM. The results show that our approach is 

superior to previous models in accurately forecasting 

power usage, with much lower mean squared error 

values. 

 

Table 4: Different attention processes (MSE) effects on various neural network designs 

Attention Type CNN (1D) CNN (2D) LSTM CNN-LSTM 

None 0.0724 0.0656 0.0641 0.0576 

Single-attention 0.0801 0.0632 0.0606 0.056 

Multi-headed 

Attention 

0.0788 0.0528 0.0583 0.0416 
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For the CNN (1D), CNN (2D), LSTM, and CNN-LSTM 

models, the performance of several attention types—

including None, Single-attention, and Multi-headed 

Attention was assessed. The CNN (1D) model had an 

MSE of 0.0724 for the None attention type, while the 

CNN (2D), LSTM, and CNN-LSTM models had MSEs 

of 0.0656, 0.0641, and 0.0576, respectively.  

 

Fig 5: Different attention processes (MSE) effects on various neural network designs 

The CNN (1D) model demonstrated an increase in MSE 

to 0.0801 when utilizing the Single-attention mechanism. 

The CNN (2D), LSTM, and CNN-LSTM models, with 

MSE values of 0.0632, 0.0606, and 0.056, respectively, 

outperformed the others. The performance was further 

enhanced by the Multi-headed Attention method. The 

MSE for the CNN (1D) model was 0.0788, while the 

MSE for the CNN (2D), LSTM, and CNN-LSTM 

models were even lower at 0.0528, 0.0583, and 0.0416. 

Figure 5 shows the results of our comparison of our 

proposed model's prediction performance to that of a 

competing CNN-LSTM model. The black line represents 

the actual power usage figures, while the red line 

displays the estimated figures. It is clear that the 

anticipated values and the actual power consumption 

values closely match, especially when transient and 

impulsive changes are present. This demonstrates how 

effective our algorithm is at identifying and forecasting 

such dynamic patterns in power use data. 

6. Conclusion 

We established the usefulness of our suggested paradigm 

by experimental assessments. It performed better across 

a range of temporal resolutions than deep learning 

models like CNN and LSTM as well as more 

conventional machine learning techniques like regression 

techniques and time-series models. Our model 

demonstrated its capacity to capture both short-term and 

long-term patterns, achieving improved prediction 

accuracy while lowering mean squared error. Multi-

headed attention's incorporation was essential for 

collecting complicated correlations and locating key 

elements in the power consumption prediction process. 

The attention mechanism made it possible to localize 

data probabilistically and extract specific patterns of 

power use by utilizing the softmax and dot product 

processes. This assisted in addressing problems with 

multicollinearity between power consumption patterns 

and other characteristics, as well as transitory and 

impulsive behaviour. Our results demonstrate the 

importance of attention processes in energy forecasting 

by showing how they can enhance prediction accuracy 

and get around the drawbacks of traditional deep 

learning models. The suggested model has potential for 

use in smart grids, energy management systems, and 

related fields where precise forecasting is essential. 

Additional contextual data can be incorporated, various 

attention mechanisms can be investigated, and the 

model's applicability to various domains of energy use 

can all be explored in future research. Overall, by 

combining deep learning with multi-headed attention, 

our study advances the field of energy forecasting. 
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