

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING

ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4), 495–501 | 495

Adaptive P2P Live Streaming Model Using Connection Switching to

Enhance the QoS

M. Satyanarayana Reddy *1, P. Chenna Reddy*2

Submitted: 07/05/2023 Revised: 16/07/2023 Accepted: 06/08/2023

Abstract: Peer-to-Peer (P2P) methods have been regarded as an ideal solution for large live streaming platforms due to their low cost and

scalability, they tend to cause delays in playback. In order to address this issue, we have proposed a method that allows a P2P system to

select its neighbour peers more efficiently. The proposed method allows the system to select its neighbour peers even if the number of

connectable peers has already exceeded the maximum. This method would greatly increase the data duplication among the peers and make

the system's playback range denser. To prevent degradation in the quality of the system's playback, the method only performs connection

switching if all of the other connectable peers have sufficient buffer data. Through extensive simulations, the proposed method significantly

lowers the start-up latency and playback lag.

Keywords: P2P live Streaming, Playback, connection Switching, Network establishment.

1. Introduction

The high-speed broadband network that has allowed

communication and broadcasting technologies to converge

has been credited for the emergence of IPTV services.

While most IPTV systems adopt a single server/client

architecture, providing services to a large number of users

necessitates the use of a content distribution network. As the

number of users increases, the cost of maintaining network

capacity also increases. Furthermore, IPTV services, such as

Video on Demand (VOD), pose a challenge for these

systems in efficiently handling traffic in their networks.

Due to its low cost and high scalability, peer to-peer (P2P)

live streaming has been the subject of numerous studies [1-

3]. P2P is the type of streaming system used, which is

typically classified into two main structures: mesh and tree.

In the tree structure, data is transmitted from one peer to

another without explicitly requesting subsequent chunks,

resulting in short transmission delays [4-5]. However, if a

peer leaves the tree structure, its descendants cannot receive

data, and rebuilding the structure to enable the peer to

connect with another parent can be time-consuming.

To address this problem, several mesh structures have been

proposed, one of which is a streaming topology that permits

peers to exchange buffer maps with one another [6-7]. When

a peer requests a chunk from its neighbour, it is transmitted

to all neighbours at once. This approach enables a peer to

maintain its desired number of neighbours even when a

neighbour leaves the network, and it enables it to receive

data from other neighbours as well. Despite the advantages

of the mesh structure, it employs a pull-based transmission

method, where peers have to explicitly request each chunk,

leading to longer transmission delays. As a result, the mesh

structure experiences playback lag between the source

server and peers. Peers may experience significant playback

delays, depending on when they join, even though they have

requested a live broadcast. Moreover, the average playback

lag in the system increases as the number of peers increases

because the transmission delay increases as more data are

transmitted through P2P.

In a P2P streaming system, the maximum number of peer

peers that each can connect with is set according to the

upload capacity of each individual peer. A P2P mesh

structure uses the order in which its members join to

determine the maximum number of peers they can connect

with. For instance, if a peer has a shorter delay in its

playback, it will be more likely to join the network early. A

newly joined peer is also more likely to interact with peers

that have recently joined the network. This causes the

system's playback lag to increase.

Our proposed method aims to reduce the average lag in P2P

streaming services by enabling users to choose their

neighbour peers. This method involves connecting new

peers with existing ones, while considering the release of the

connections between peers. By doing so, the possibility of

connecting a new peer to an intermediate one with a

relatively short playback time lag increases. Additionally, as

the playback range of the system becomes denser, there is

more data duplication among participating peers, allowing

for the storage of more data and increasing the amount of

information shared between users.

Data transmission to the remaining peer is permitted only

1 Research Scholar, Department of CSE, JNTUA Anantapuramu, Andhra

Pradesh, India
2 Professor, Department of CSE, JNTUA Anantapuramu, Andhra Pradesh,

* Corresponding Author Email: satyam.marrijntu@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4), 495–501 | 496

until a new peer is selected in the current setup. The primary

objective of this approach is to maintain the quality of the

connection between two peers even after the switch to a new

peer, provided that their neighbours have adequate buffer

data. Our extensive simulation has shown that the proposed

technique can substantially diminish the initial delay and

playback latency in P2P streaming systems.

2. Literature Survey

There are various techniques that can improve the

performance of peer-to-peer (P2P) live streaming systems.

Some of these include network coding, chunk scheduling,

and incentive mechanisms [6-7]. Research has shown that

reducing the lag between the server and the peer can help

improve the performance of live programs, like stock

market updates. In [8], iGridMedia used a synchronized

algorithm to ensure that all its peers experience the same lag.

This method was able to exploit the connection between the

server's bandwidth and the playback lag. In [9], a similar

technique known as Elite was suggested to reduce the lag.

But its effectiveness is limited by the available bandwidth

and its application is only specific to certain users. Our

proposal, in contrast, utilizes existing frameworks to reduce

lag without requiring additional resources such as server

bandwidth.

Several hybrid push-pull structures have been proposed to

enhance system performance, including mesh-pull and tree-

push structures. These structures offer benefits such as

decreased data transmission delay and resilience against

peer churn. The mTreebone framework adopts both mesh-

pull and tree-push structures to link each peer. While the

tree-push structure is used for data exchange, the mesh-pull

structure is employed to reconstruct the tree in case a

member leaves. In [10], the authors proposed a hierarchical

push-pull framework with two topologies, namely a multi-

source multicast tree and a control topology. The latter is

responsible for managing membership, while the former is

utilized for data exchange. Numerous other push-pull

frameworks have also been proposed, which can potentially

enhance performance. However, maintaining these

structures can be challenging.

Peer selection schemes for P2P streaming systems have

been proposed, and they can be broadly classified into three

categories: random selection, locality-aware selection, and

QoS-aware selection. Random selection is advantageous

because it provides load balancing among peers and has

robust performance. However, it is not suitable for real-time

applications like P2P video streaming because it does not

consider network latency and upload bandwidth.

There have been various proposed solutions to address the

problem of QoS-aware neighbour selection. One of these is

PRO, which selects neighbours based on their upload

bandwidth by considering the upload bandwidth of all its

peers [11]. The study suggests that peers with lower network

latency and better upload bandwidth are more likely to

become neighbours [12]. The peer divides its members into

different quality classes to select neighbours. Additionally,

a tax-based approach was proposed to increase the number

of neighbours [13-14].

Several schemes that are locality-aware have been proposed

to reduce the transmission delay of data. These include

selecting close neighbours as their neighbours using peer

information. The distance between peers was calculated by

using RTT as the metric for determining the locality [15].

Some methods tried to determine the P2P traffic's locality

by choosing the same ISP's neighbours. Some of these

methods tried to determine the P2P traffic's locality by

choosing the same ISP's neighbours [16-18].

Previous studies focused on selecting the closest neighbours

among individuals who had not yet reached the maximum

number of connectable peers. However, these studies did

not consider adjusting existing connections between peers

who had already reached the maximum number of

connectable neighbours. There is no evidence that changing

existing connections among peers who have reached the

maximum number of connectable neighbours improves

their performance.

3. Connection Switching Mechanism for

Neighbour Selection

3.1 Drawback of Traditional Neighbour Selection

Method

The proposed neighbour selection method enables the

tracker server to monitor its peers and their positions in the

playback queue. Initially, media servers transmit video data

to their directly connected peers. Within the mesh-pull

structure, each peer transmits and receives data to and from

its neighbour. Subsequently, they inspect their peers'

buffermap to identify the ones that possess the necessary

chunks. The media servers request their neighbours to send

each chunk explicitly, and then they receive it. This

approach introduces a transmission delay through each

intermediate peer.

In Fig. 1, peer 10 receives data from the media server

through at least three intermediate peers, causing it to have

a longer playback lag than peers 2, 5, and 8 which are closer

to the server. As new peers join the network, they are

connected to neighbour peers who have not reached the

maximum number of connectable peers. Peers who joined

earlier and have shorter playback lags are more likely to be

fully connected, so new peers tend to select recently joined

peers as neighbours, resulting in longer playback lags for

later joining peers. When a new peer joins and the maximum

number of connectable neighbours is four, it checks if each

peer can be its neighbour starting from peer 1. In this case,

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4), 495–501 | 497

peers 9 and 10 are selected as neighbours, which results in

the new peer having the longest playback lag since these

peers have the longest playback lags among all existing

peers.

Fig. 1. Existing Peer to Peer connection method when a

new peer joining in the Network.

Algorithm 1: Pseudo Code for Neighbour Peer selection

Begin

1. Set the first peer's index in the peer list sorted in

ascending order of playback lag to current.

2. While there exists any remaining peer in the system:

 a. If Ncurrent < max_num_neighbours:

 i. Add acurrent to the neighbour peer list of Xnew

(SNnew).

 ii. Increment Nnew by 1.

 b. Else:

i. Set the first peer's index in SNcurrent to

neighbour of current.

 ii. Set b_current_buf_enough to true.

 iii. While b_current_buf_enough is true and there

exists any neighbour belonging to SNcurrent:

1. If Bneighbor of current >= buf_threshold, set

b_current_buf_enough to false and break the loop.

2. Set the next peer's index in SNcurrent to

neighbour of current.

 iv. If b_current_buf_enough is true:

 1. Set the first peer's index in

SNEGcurrent sorted in ascending order of playback lag

to neighbour.

2. For there exists any remaining neighbour belonging to

SNEGcurrent:

a. Set the first peer's index in SNneighbour to neighbour

of neighbour.

 b. Set b_neighbour_buf_enough to true.

 c. While

 b_neighbour_buf_enough is true and there exists any

remaining neighbour belonging to SNneighbour:

 i. If Bneighbour of neighbour >= buf threshold, set

b_neighbour_buf_enough to false and break the loop.

 ii. Set the next peer's index in SNneighbour to

neighbour of neighbour.

 d. If b_neighbour_buf_enough is true:

 i. Delete aneighbour from the neighbour peer list of

acurrent (SNcurrent).

 ii. Decrement Ncurrent by 1.

 iii. Delete acurrent from the neighbour peer list of

aneighbour (SNneighbour).

 iv. Decrement Nneighbour by 1.

 v. Add acurrent and aneighbour to the neighbour peer

list of anew (Nnew).

 vi. Increment Nnew by 1.

 vi. Break the loop.

3. Set the next peer's index in SNEGcurrent to neighbour.

 c. If Nnew >= max num neighbours, break the loop.

 d. Set the next peer's index in the peer list to current.

End

3.2. Proposed Connection Switching Method for

Neighbour Selection

The proposed approach allows a new neighbour to join a

group of existing peers, even if it exceeds the maximum

number of allowed peers. This can lead to a significant

increase in the number of peers, resulting in a denser

distribution of their playback positions and increased data

duplication. Despite the increase in the number of peers, the

average playback lag remains the same as in the

conventional approach.

To switch between a pair of peers in a P2P streaming

system, we must first find a connection that meets the lag

rate requirements. Once a suitable connection is established,

both existing peers are transferred to the new neighbour.

However, the new neighbours may experience playback

jitter as they only receive data from the remaining peers until

their buffers are sufficient. To minimize the impact on

existing connections, switching is only performed after all

new neighbours have sufficient buffers.

The Neighbour Selection algorithm is presented in

Algorithm 1 which is for selecting a neighbour through

connection switching. Upon joining the list, a new peer

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4), 495–501 | 498

requests the tracker server for its list of neighbours. The

tracker server maintains a list of its peers sorted in ascending

order of playback lag and periodically updates their current

positions. It also sets the first peer's index in the list as

current. If the number of neighbours of acurrent is less than its

maximum allowed number, it will be directly selected as a

neighbour of Xnew. However, if Ncurrent has no neighbours in

its list, the connection switching process cannot be

performed effectively. In such cases, we consider two peers

from each connection, i.e., acurrent and each neighbour peer

of acurrent (aneighbour), as potential neighbours of Xnew while

minimizing the degradation of playback quality.

We are checking whether the neighbours of acurrent and

aneighbour are buffering more data than the Buf_threshold.

Initially, we check if the number of buffer chunks owned by

the peers in SNcurrent is greater than the Buf_threshold. If it

is, we then check if the buffer chunks belonging to the

neighbors of acurrent in SNEGcurrent (i.e.,

Bneighbor_of_neighbour) also exceed the Buf_threshold. It

should be noted that this issue may not affect all peers whose

playback lags are greater than acurrent, as we have already

evaluated them.

Once the aforementioned requirements are satisfied, acurrent

and anext can receive chunks from their respective

neighbours despite their severed connection. The switching

of acurrent and aneighbour connections to anew result in anew being

connected to both their peers. In case Nnew is still less than

the maximum allowed number of neighbours, the sorted

peer list will be searched for additional neighbours for anew.

This process will continue until the maximum number of

neighbours for Nnew is attained.

Fig. 2 illustrates the steps involved in selecting the

neighbours of Xnew through connection switching. When a

new peer joins the network, it can have up to three

neighbours. The tracker server initiates the selection process

by checking if ai, the peer with the shortest playback lag, can

be a neighbour of Xnew. As shown in the Fig. 2, Ni for a1 is

2, which satisfies the condition for ai to be selected as a

neighbour of Xnew.

Fig. 2. Ni is smaller than max_num_neigbours

In Fig. 3, ai has already reached its maximum number of

neighbors, so the algorithm attempts connection switching

to add ai as a neighbor of Xnew through one of its neighbor

peers. However, one of ai's neighbour peers, (i.e. Bj), has a

lower number of buffered chunks than the buf_threshold.

Due to this, connection switching is not carried out as aj may

not receive enough chunks from its remaining peers (ak and

al) to prevent a reduction in playback quality after the

connection is switched.

Fig. 3. The buffered chunks of at least one neighbour peer

of acurrent are less than buf_threshold

In Fig. 4 depicts that all neighbour peers of ai have a higher

number of buffered chunks than buf_threshold. Therefore,

we assess if it is feasible to switch ai's connection with aj to

Xnew. We conduct this assessment by verifying whether all

neighbour peers of ai and aj are buffering more than

buf_threshold. However, we observe that am, which is a

neighbour peer of aj, has fewer chunks buffered than

buf_threshold. Thus, to prevent a decrease in playback

continuity for aj, it is decided not to conduct connection

switching.

Fig. 4. At least one neighbour peer of aneighbour has a

number of buffered chunks less than buf_threshold

Fig. 5. All neighbour peers of acurrent and aneighbour has a

number of buffered chunks greater than buf_threshold

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4), 495–501 | 499

Fig. 5 demonstrates that all neighbour peers of ai and aj have

a number of buffered chunks greater than buf_threshold.

Therefore, as all the conditions for connection switching are

fulfilled, ai and aj establish a connection to Xnew once their

current connection is terminated.

Note that, if every existing peer has at least one pair of

neighbours, Xnew must wait until one of them exits the

network before initiating the switch. As soon as a neighbour

departs, the new neighbour can be selected for the switch. If

a new peer is not able to start its operation immediately due

to the startup delay, it can still be connected to some of its

neighbours. In addition, it is important to note that, even

though a connection to two neighbouring peers is terminated

immediately after it has joined the network, the system can

still benefit from the switching process. The subsequent peer

will be connected to two of its neighbours with relatively

short playback time lags

4. Simulation Results

We conducted a series of simulations to evaluate the

effectiveness of our neighbor peer selection approach using

the PeerSim P2P simulator, which provides a simulated P2P

network environment. The simulation involved a total of

1000 peers, with a maximum of 15 peers to which the server

could directly push data. The bandwidth ratios between

peers and routers were set at 10-100 Mbps, resulting in 20%,

20%, 50%, and 10% for 10, 20, 50, and 100 Mbps,

respectively. The backbone network was set to 8 Gbps. We

assumed a playback rate of 720 Kbps for each video, with a

chunk size of 30 KB and a data division rate of 3 chunks per

second. The buffer map contained 512 chunks, and the

tracker server updated the current playback positions of all

peers every second.

To handle variations in the data receiving rate that may

occur due to changes in the network condition, initial

buffering is necessary. The buf_threshold value should be

set to ensure that each peer can overcome these fluctuations

in data receiving rate. Once a peer has buffered 45 chunks,

they can begin playing the requested video, indicating that

there are enough chunks to last the duration of the

connection switching process. Even if a neighbor gets

temporarily disconnected, buffering 45 chunks is sufficient

to prevent network jitters and ensure a smooth playback

experience.

The objective of this paper is to investigate the impact of

connection switching on performance. To ensure a

consistent number of peers with the same number of

neighbors throughout the simulation, a peer churn rate has

been set. Our simulations have demonstrated that a Poisson

distribution with an inter-arrival and departure time of 600

s per peer can achieve this goal.

We conducted performance testing to compare our proposed

peer selection policy with the PPLive[19]. The former

demonstrated better startup latency and playback continuity

than the latter. PPLive is currently the most widely used

peer-to-peer streaming system, but it only accepts new

neighbours if their current neighbours are not at the

maximum limit. To analyze the impact on performance, we

varied the max_num_neighbours parameter from 4 to 9. As

previously mentioned, in our approach, connection

switching occurs only when all neighbours maintain a buffer

greater than the buf_threshold. We weakened this condition

in our simulations to study its impact on system

performance.

4 5 6 7 8 9

15

20

25

30

35

40

45

50

P
la

y
b

a
c
k
 L

a
g

(S
e

c
)

max_num_neighbours

 P2P Live

 Proposed Method

Fig. 5. Playback lag Vs Max_num_neighbours

In Fig.6, the proposed scheme for selecting neighbours

exceeds the standard method in terms of performance when

it comes to playback lag. The proposed scheme's average

playback lag is 21.8 s, while that of the conventional scheme

is 28.4s. The improvement in performance is further boosted

by the setting of the maximum number of neighbours to 4.

The existing approach prioritizes the closest neighbours to

the server's data transmission time when choosing new

neighbours. This method makes it more likely for older and

newer peers to be fully connected. The existing method

increases the average playback lag by about a factor of one

for every participating peer. On the other hand, our proposed

scheme provides a choice between fully connected and

unconnected peers depending on the connection condition.

The selection of new neighbours causes the system's

playback lag to increase significantly if the number of them

is increased. This means that the system's performance is

affected by the increasing number of neighbours.

4 5 6 7 8 9

0

5

10

15

20

25

S
ta

rt
u

p
 d

e
la

y
 (

s
e

c
)

max_num_neighbours

 P2P Live

 Proposed Method

Fig. 7. Startup Delay Vs Max_num_neighbours

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4), 495–501 | 500

Figure 7 shows that our proposed method for choosing

neighbours would result in shorter startup delay than the

existing approach. In our scheme, the preferred method

would result in a lower startup delay. This is because a new

peer would be more likely to connect to an intermediate peer

with shorter lags. Neighbour peers can simultaneously send

and receive data, which can speed up the new peer's

response time. Also, connection switching occurs if the

target peer's buffer is greater than the buf_threshold. This

allows the new peer to access the required video content

more quickly.

4 5 6 7 8 9

0

5

10

15

20

25

S
ta

rt
u

p
 d

e
la

y
 (

s
e

c
)

max_num_neighbours

 P2P Live

 Proposed Method

Fig. 8. playback continuity Vs Max_num_neighbours

Figure 8 compares the continuity of the proposed policy

with that of the conventional one when two peers are

detached from their connection. The graph shows that the

difference between the two schemes is small, with the

average being only 0.7%. The connection switching

scheme's playback continuity is 97.7%, while the

conventional policy's is 98.5%. When two peers are

detached during connection switching, the proposed scheme

ensures that there are enough chunks to buffer the system's

data. This helps minimize the possibility of interruption. In

terms of startup latency and continuity, the proposed scheme

is better than the conventional one.

5. Conclusion

This paper proposed an effective method for choosing new

neighbours in P2P streaming systems. This approach can

help reduce the lag time between the new peer and the

intermediate ones. This method leads to a significant

increase in the duplication of data among the peer groups,

which can cause shorter startup latency and reduced

playback lag. To maintain the continuity of the system, we

designed a condition that requires the two disconnected

peers' neighbours to buffer the data before the connection

switch occurs. Simulations show that our approach can help

reduce the startup latency and minimize the lag time.

Acknowledgements

There is no Acknowledgements.

Author contributions

Satyanarayana Reddy M: Conceptualization,

Methodology, Software, Field study Chenna Reddy P:

Data curation, Writing-Original draft preparation, Software,

Validation., Field study Satyanarayana Reddy M:

Visualization, Investigation, Writing-Reviewing and

Editing.

Conflicts of interest

The authors declare no conflicts of interest.

References

[1] I. M. Zebari, R. M. Zeebaree, and H. M. Yasin, "Real-

time video streaming from multi-source using client-

server for video distribution," in 2019 4th Scientific

International Conference Najaf (SICN), 2019, pp. 109-

114.

[2] J. Deng, G. Tyson, F. Cuadrado, and S. Uhlig,

"Internet scale user-generated live video streaming:

The Twitch case," in Passive and Active

Measurement: 18th International Conference, PAM

2017, 2017, pp. 60-71.

[3] S. Ahmad, C. Bouras, E. Buyukkaya, M. Dawood, R.

Hamzaoui, V. Kapoulas, A. Papazois, and G. Simon,

"Peer-to-peer live video streaming with rateless codes

for massively multiplayer online games," Peer-to-Peer

Networking and Applications, vol. 11, pp. 44-62,

2018.

[4] Y. Zheng, D. Wu, Y. Ke, C. Yang, M. Chen, and G.

Zhang, "Online cloud transcoding and distribution for

crowdsourced live game video streaming," IEEE

Transactions on Circuits and Systems for Video

Technology, vol. 27, no. 8, pp. 1777-1789, 2016.

[5] Y.-S. Wang, "User experiences in live video

streaming: a netnography analysis," Internet Research,

2019.

[6] L. Chen, M. Qiu, W. Dai, and N. Jiang, "Supporting

high-quality video streaming with SDN-based CDNs,"

The Journal of Supercomputing, vol. 73, pp. 3547-

3561, 2017.

[7] S. Nacakli and A. M. Tekalp, "Controlling P2P-CDN

live streaming services at SDN-enabled multi-access

edge datacenters," IEEE Transactions on Multimedia,

vol. 23, pp. 3805-3816, 2020.

[8] Z. ImaniMehr and M. DehghanTakhtFooladi, "Token-

based incentive mechanism for peer-to-peer video

streaming networks," The Journal of Supercomputing,

vol. 75, pp. 6612-6631, 2019.

[9] A. Sammoud, A. Kumar, M. Bayoumi, and T. Elarabi,

"Real-time streaming challenges in Internet of Video

Things (IoVT)," in 2017 IEEE International

Symposium on Circuits and Systems (ISCAS), 2017,

pp. 1-4.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4), 495–501 | 501

[10] S. Budhkar and V. Tamarapalli, "Two-tier peer

selection strategy to minimize delay in P2P live

streaming systems," in 2016 Twenty Second National

Conference on Communication (NCC), 2016, pp. 1-6.

[11] H. Ayatollahi, M. Khansari, and H. R. Rabiee, "A

push-pull network coding protocol for live peer-to-

peer streaming," Computer Networks, vol. 130, pp.

145-155, 2018.

[12] Y. Zhang, C. Gao, Y. Guo, K. Bian, X. Jin, Z. Yang,

L. Song, J. Cheng, H. Tuo, and X. Li, "Proactive video

push for optimizing bandwidth consumption in hybrid

CDN-P2P VoD systems," in IEEE INFOCOM 2018-

IEEE Conference on Computer Communications,

2018, pp. 2555-2563.

[13] B. Uma Maheswari and T. S. B. Sudarshan,

"Reputation-based mesh-tree-mesh cluster hybrid

architecture for P2P live streaming," in 2016 3rd

International Conference on Devices, Circuits and

Systems (ICDCS), 2016, pp. 240-243.

[14] C. Chang, C. Chou, K. Chen, and C. Chunk,

"Scheduling over swarm-based P2P live streaming

system: from theoretical analysis to practical design,"

IEEE J Emerg Sel Top Circ Syst, vol. 4, no. 1, pp. 57-

69, 2014.

[15] K. Yang, B. Wang, and Z. Zhang, "A method of

identifying P2P live streaming based on union

features," in IEEE conference on software engineering

and service science, 2013, pp. 426-429.

[16] A. Bentaleb, P. K. Yadav, W. T. Ooi, and R.

Zimmermann, "DQ-DASH: A queuing theory

approach to distributed adaptive video streaming,"

ACM Transactions on Multimedia Computing,

Communications, and Applications (TOMM), vol. 16,

no. 1, pp. 1-24, 2020.

[17] A. Nassani, L. Zhang, H. Bai, and M. Billinghurst,

"Showmearound: Giving virtual tours using live 360

video," in Extended Abstracts of the 2021 CHI

Conference on Human Factors in Computing Systems,

2021, pp. 1-4.

[18] Y. Zhang, Y. Wu, Y. Tao, K. Bian, P. Zhou, L. Song,

and H. Tuo, "Improving quality of experience by

adaptive video streaming with super-resolution," in

IEEE INFOCOM 2020-IEEE Conference on

Computer Communications, 2020, pp. 1957-1966.

[19] B. Barekatain, D. Khezrimotlagh, M. Maarof, H.

Ghaeini, A. Quintana, and A. Cabrera, "Efficient P2P

live video streaming over hybrid WMNs using random

network coding," Wireless Personal Communications

Journal, vol. 80, pp. 1761-1789, 2015.

[20] Dinakar, J. R. ., & S., V. . (2023). Real-Time

Streaming Analytics using Big Data Paradigm and

Predictive Modelling based on Deep Learning .

International Journal on Recent and Innovation Trends

in Computing and Communication, 11(4s), 161–165.

https://doi.org/10.17762/ijritcc.v11i4s.6323

[21] Thakre, B., Thakre, R., Timande, S., & Sarangpure, V.

(2021). An Efficient Data Mining Based Automated

Learning Model to Predict Heart Diseases. Machine

Learning Applications in Engineering Education and

Management, 1(2), 27–33. Retrieved from

http://yashikajournals.com/index.php/mlaeem/article/

view/17

