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Abstract: Accurate understanding and interpretation of the underlying field of view (FoV) are paramount in a real-time planetary landing. 

This understanding helps detect hazardous bodies and bypasses unfavourable situations well in advance. Existing planetary landing 

missions rely on the 3-dimensional digital elevation models (DEM) and achieve terrain-relative navigation. These DEMs are used as a 

reference for spotting the hazards on the pre-defined landing site. These are computationally intensive and time-consuming pattern-

matching tasks. The primary concern is the existence of such DEMs before the missions and high storage requirements. This study aims to 

tackle the abovementioned drawbacks and build a robust intelligent system for autonomous hazard-free planetary landing. This paper 

utilizes the advanced deep learning approach for accurately detecting and positioning the hazards in the current FoVs using vision sensors 

of the spacecraft. Deep convolutional neural networks are utilized for feature extraction purposes. These features are further utilized by the 

recurrent neural network's region proposal algorithm to spot the distinct regions inside the current FoV. These proposals are the keys to 

detecting the hazards like craters and boulders. The detection results are interpreted by classifying the hazards into craters and boulders. It 

also classifies the safe landing region as a plain surface. Further, the classes are positioned accurately using the bounding boxes of the coco 

model. Transfer learning is used to build and train the network. The work also includes the creation of a valid planetary dataset required 

for generating a ground truth. The overall results are validated through comparative judgments and exhaustive analysis. Experimental 

results show that the transfer learning approach for hazard detection and localization achieved excellent results. 
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1. Introduction 

On-earth navigation guidance system like the Global 

Positioning System (GPS) allows aircraft to land safely and 

accurately at desired locations. But spacecraft exploring 

other bodies in space does not have a system to guide them 

to land at hazard-free locations. It needs to use different 

methods to determine where they are.  During the Apollo 

moon landings, astronauts sighted landmarks for landing. 

They looked out the window during the final descent to 

avoid craters and boulder fields and land safely. But this 

approach must depend on the onboard astronaut, and it also 

involves human error and perception of humans. Since then, 

sensors, algorithms, and onboard computing can replace and 

surpass human capability to navigate and enable safe 

landings in space.  NASA's Mars 2020 spacecraft has used 

such a system to land the Perseverance rover at the Jezero 

Crater. Here by matching onboard sensor data to a map of 

the landing area, Terrain Relative Navigation (TRN) 

provides a map-relative position fix that can be used to 

accurately target specific landing points on the surface of a 

celestial body and avoid hazards.  TRN allows for 

mitigating landing hazards in the regions and facilitates 

hazard-free landings. TRN's effort relied heavily on the 

design of the Entry, Descent, and Landing (EDL) a system 

where the spacecraft descends toward the surface on a 

parachute, and then, during the final seconds before landing, 

it lowers the upright spacecraft on a tether to the surface, 

much like a crane. But This system uses ground-based 

navigation from Earth to determine the position of the 

spacecraft just before atmospheric entry.  But the position 

error is too large at 3km above the surface to enable precise 

navigation. To reduce this error below 40m relative to a 

landing site map, the spacecraft is augmented with Lander 

Vision System (LVS). The onboard guidance system selects 

a reachable landing point given the fuel onboard. It avoids 

hazards identified a priori in the map. This effort required 

flight software development for landmark matching, state 

estimation, and safe site selection; a high-performance 

compute element for vision processing; a high frame-rate 

camera; and high-precision mapping techniques. 

These DEMs are the 3-dimensional representation of the 

pre-known FoVs captured by the orbital missions. It 

provides elevation information about all possible 

viewpoints of the planet. The time required to process this 

data is a hindrance to the navigation. The high response time 

of the DEM approach is due to computer vision tasks such 

as pattern matching.  
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Our prior work [1], [18]-[20] discusses the methods of 

mathematical approximations, feature extraction methods 

[2], [3], vision-based navigation methods using LiDAR or 

SAR [4]–[7], and methods based on DEMs [8]–[11]. Our 

previous work proposed a combined approach with machine 

learning to avoid the need for all the facilities. It uses deep 

neural networks, classifies onboard camera images into 

categories, and shows hazards by coloured segments. After 

the segmentation map is generated, a graded membership of 

a particular hazardous/hazard-free area is also shown by 

embedding a fuzzy membership function as a non-linear 

functionality. The method is proposed with a clear objective 

of detecting the terrain objects like boulders using graded 

classification. With known landing site coordinates, this 

method can be used to map the given coordinates onto the 

classified image to check where exactly the landing spot 

lies, and then retargeting decision can be made. The 

combined approach succeeds in the hazard detection, and 

graded classification shows the logical way of representing 

the possible hazards of the terrain and provides visual 

completeness to the solution. Hence the dependency of 

hazard detection system on heavy pre-processing and other 

needs of DEM models can be avoided.  

But this approach does not guarantee real-time processing 

capability or help position the terrain hazards. Hence in the 

current work, we introduced a new approach for real-time 

hazard detection using the on-the-spot captured camera 

images. Due to the scarcity of landing videos, a new 

synthetic dataset of landing videos is generated through the 

Unreal Engine [12] simulator. The ground truth images 

containing bounding boxes are generated using Roboflow 

[13] software to position the hazards. A deep recurrent 

neural network model is trained using this synthetic dataset 

and then validated using pre-known object detection base 

models: You Look Only Once (YOLO), and MobileNet. 

The deep learning architecture is designed and respective 

hazard detection models are built and validated using 

comparative analysis. The pixel positions obtained through 

the trained models can be easily converted to the 3D world 

coordinates with the help of known camera calibrations and 

geometry. 

Significant contributions of this work are: 

1. Synthetic Video Data Generation with labels for landing 

space vehicle 

2. Video Data Annotation for hazard detection 

3. Real-time hazard detection system for planetary landing 

1.1. Abbreviations and Acronyms 

Global Positioning System (GPS), Field of View (FoV), 

Region of Interest (RoI), Convolutional Neural Network 

(CNN), Terrain Relative Navigation (TRN), Entry Descent 

and Landing (EDL), Lander Vision System (LVS), Digital 

Elevation Models (DEM), Recurrent convolutional neural 

network (RCNN), Batch Normalization (BN), Rectifier 

Linear Unit (ReLU), Graphics Processing Unit (GPU). 

1.2. Organization of the paper 

Section 2 discusses the data generation methodology and the 

proposed real-time hazard detection and localization 

methodology. Section 3 discusses the results of the proposed 

approach and two more approaches using MobileNet and 

YOLO for comparative analysis. At last, section 4 

concludes the paper. 

2. Material and Proposed Method 

The proposed method involves data generation in the first 

step and designing a deep recurrent neural network 

architecture that utilizes the faster RCNN [1] as the base 

model in the next step. A typical RCNN network is so 

designed that it utilizes some edge detection algorithm in the 

first step to divide the input images into several semantically 

different segments. Later in the second step, these segments 

extract the different region proposals using a Region 

Proposal algorithm [2]. Such regions are called Region of 

Interest (RoI). While the region proposals are extracted, 

deep convolutional neural networks (CNN) are employed 

for the feature extraction process. The results of both steps 

are logically combined and fed to the output layer for 

classification and regression tasks. The following 

subsections explain the complete data generation process 

and the proposed deep neural network architecture based on 

the RCNN object detection model. It describes the planetary 

hazard detection classification and hazard localization 

processes using regression.  

2.1. Synthetic Data Generation 

Hazard-free planetary landing using supervised machine 

learning methods requires much training data. This data 

must incorporate the different landing scenarios. More 

precisely, the real-time videos or images captured while 

descending a spacecraft to the desired location are required. 

The solution to the problem is using a software simulator 

named Unreal Engine-4. Generally, this simulator is 

intended for gaming and has been proven to create real-

world gaming environments. It can also be helpful for AI, 

Computer Vision tasks such as training agents; generating 

and simulating prototypes is only possible because several 

reusable APIs support multiple programming languages. 

For the same reason, the unreal simulator is employed for 

generating the synthetic data in this work. A lunar 

environment is used as an underlying Terrain. A spacecraft 

agent is created with a camera to capture the underlying 

terrain. Multiple simulations are run for the safe landing of 

the agent, and thus descent videos are captured. A glimpse 

of the data generated through an Unreal environment is 

shown in Fig. 1. These images are extracted at a 30 fps frame 
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rate. Images are shown with the altitude information in Fig. 

1 for better understanding.  

 

Fig. 1.  Database samples generated through simulated 

lunar environment 

2.2. System Architecture for Real-Time Hazard 

Detection using Recurrent Neural Network 

The real-time hazard detection and localization system is 

depicted in Fig. 2. The system has three major processing 

parts: region proposal algorithm (RPN), convolutional 

neural network (CNN), and classifier/regression layer. The 

region proposal algorithm is a network proposed by 

Shaoqing Ren et al. [14], [15]. It takes the input image and 

segments it into distinct regions after pre-processing. These 

are the possible RoIs, as suggested by the network. It has an 

anchor point concept. The anchor point is the centre of each 

proposed region. A deep network consists of multiple back-

to-back convolutions, inner activations, and pulling layers 

intended to generate the feature maps from an input image. 

Each region of interest is a sliding window over the feature 

maps  

 

Fig. 2.  Network architecture for real-time hazard detection 

and localization  

obtained through the convolution operation. The adder 

symbol in  the network shows this operation. A softmax 

activation function is used for multi-class classification. The 

classification result is further revised using SVM class 

confidences. Hazards are classified into three categories: 

Crater, Boulder, and Plain surface. To localize the 

hazardous region, simple regression logic is implemented. 

For each input image captured through a real-time camera, 

the image spotted with hazards and their corresponding 

localization is the outcome of the entire process. A pre-

trained RCNN base model is utilized as a starting point for 

training the network. 

2.3. Hazard Detection & Localization using MobileNet 

The basic steps followed in the MobileNet [16] architecture 

(Fig. 3) are: 

1. Apply depthwise convolution (channel-wise separate)  

2. Apply point convolution (to combine depth convolutions) 

In MobileNetV2, there are two types of blocks. One is a 

residual block with a stride of 1. Another one is a block with 

a stride of 2 for downsizing. There are 3 layers for both types 

of blocks. This time, the first layer is 1×1 convolution with 

ReLU6. The second layer is the depthwise convolution. The 

third layer is another 1×1 convolution but without any non-

linearity. It is claimed that if ReLU is used again, the deep 

networks only have the power of a linear classifier on the 

non-zero volume part of the output domain. 

2.4. Hazard Detection & Localization using YOLO 

YOLO [17] first resizes the images to "448 𝑝𝑖𝑥𝑒𝑙𝑠 ×

 448 𝑝𝑖𝑥𝑒𝑙𝑠" and then feds to the convolution layers. All 24 

convolution layers have preceded max pool layers for 

extracting vital features. In the end, two fully connected 

layers are attached to the softmax activation function for 

classification. A typical YOLO architecture is trained using 

an Image net dataset freely available online. This work 

utilizes this pre-trained YOLO model and rebuilds the 

network for current application use using transfer learning. 

It divides an input image into an m x m grid. Each grid tends 

to have n bounding boxes. The network outputs a class 

probability and extracts offset for each bounding box. The 

bounding boxes with the class probability above a threshold 

value are selected and used to locate the object within the 

image. It is found to be the fastest object detection 

algorithm, such that it can process around 45 images per 

second. Although it has some spatial constraints due to grids 

and hence fails to detect smaller-sized objects. 
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Fig. 3.  Real-time hazard detection and localization using 

MobileNet architecture. 

3. Results and Discussion 

3.1. Metrics for results validation 

The results of the hazard detection are validated using 

precision and recall metrics and then compared among three 

implementations. The mean average precision and mean 

average recall are computed as in equations (1) and (2), 

respectively. TP is true positive, FP is false positive, and FN 

is false negative for the class category C.  

𝑀𝑒𝑎𝑛 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1

|𝐶|
∑

𝑇𝑃(𝑐)

(𝑇𝑃(𝑐)+𝐹𝑃(𝑐))𝑐∈𝐶                      (1) 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑐𝑎𝑙𝑙 =
1

|𝐶|
∑

𝑇𝑃(𝑐)

(𝑇𝑃(𝑐)+𝐹𝑁(𝑐))𝑐∈𝐶      (2) 

The hazard categories are further separated into large, 

medium, and small regions based on the total area that 

region is spanning. The large area spans regions greater than 

"96 𝑝𝑖𝑥𝑒𝑙𝑠 × 96 𝑝𝑖𝑥𝑒𝑙𝑠", and small area spans regions 

lesser than "32 𝑝𝑖𝑥𝑒𝑙𝑠 × 32 𝑝𝑖𝑥𝑒𝑙𝑠". The medium area 

holds regions between "32 𝑝𝑖𝑥𝑒𝑙𝑠 × 32 𝑝𝑖𝑥𝑒𝑙𝑠" and 

“96 𝑝𝑖𝑥𝑒𝑙𝑠 × 96 𝑝𝑖𝑥𝑒𝑙𝑠". 

The confidence of precision and recall values is also taken 

into consideration using Intersection over Union values as 

given by equation (3). It tells how much overlapping the 

predictions have with the ground truth values. 

𝐼𝑜𝑈(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 ,  𝑇𝑟𝑢𝑡ℎ 𝑉𝑎𝑙𝑢𝑒𝑠) =  
(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 ∩ 𝑇𝑟𝑢𝑡ℎ 𝑉𝑎𝑙𝑢𝑒𝑠)

(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 ∪ 𝑇𝑟𝑢𝑡ℎ 𝑉𝑎𝑙𝑢𝑒𝑠)
     

  (3) 

3.2. Hazard Detection Accuracy using Precision, Recall 

metrics 

Table 1 enlists the detection accuracy of transfer learning 

architectures using YOLO, RCNN, and MobileNet models 

through precision-recall metrics. 

3.2.1 Detection Accuracy using RCNN  

The overall mean average precision (mAP) of RCNN 

detections is 0.74 in validation, achieved at 20k steps per 

epoch. On the other hand, a precision value of 0.73 is 

achieved at 15k steps per epoch in training.  For large areas, 

validation mAP is 0.77 at 20k steps per epoch. For medium-

sized regions, mAP is 0.37, while for smaller regions, it is 

0.39. Overall detection box precision with constrained 0.5 

IoU is 0.96, which is very positive for both the training and 

validation set, while precision with constrained 0.75 IoU is 

0.86, which is also a good value at such a high threshold.  

The recall is measured over detections per image and the 

size of regions per image. Three thresholds maintained are 

1, 10, and 100, which tell the number of output detections. 

Per epoch (20k steps in validation and 15k steps in training), 

with 1 max detection, the recall is 0.18; with 10 max 

detections, it is 0.60; and with 100 max detections, it is 0.70, 

which is not bad. For the large proposed region, recall is 

0.72; the medium region is 0.56, while for small regions, it 

is significantly less equal to 0.30.  

Fig. 11 depicts classification, regression (RPN localization), 

regularization, and total loss throughout 20k steps. The 

regularization loss can be seen as nullable throughout the 

training and validation process. However, the other losses 

are relatively steady till 10k steps and then sharply decline 

towards 0 in 20k steps. 

3.2.2 Detection Accuracy using MobileNet 

The overall mean average precision of detections using 

MobileNet is 0.68 in validation, achieved at 35k steps per 

epoch. On the other hand, a precision value of 0.68 is 

achieved at 35k steps per epoch in training.  For large 

proposed regions, training & validation mean average 

precision-mAP is 0.72 at 35k steps per epoch, respectively. 

For medium-sized regions, mAP is 0.26, while for smaller 

regions, it is 0.07. Overall detection box precision with 

constrained 0.5 IoU is 0.94, which is very positive for both 

training and validation set but at the cost of 45k steps per 
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epoch, while precision with constrained 0.75 IoU is 0.76 

which is also a good value at such a high threshold.  

The recall is measured over detections per image and the 

size of regions per image. Three thresholds maintained are 

1, 10, and 100, which tell the number of output detections. 

Per epoch (45k steps in validation and 45k steps in training), 

with 1 max detection, the recall is 0.02; with 10 max 

detections, it is 0.68; and with 100 max detections, it is 0.77, 

which is not bad. For the large proposed region, recall is 

0.79; medium region, it is 0.44; while for small regions, it is 

significantly less equal to 0.26.  

Fig. 10 depicts classification, localization, regularization, 

and total loss for 45k steps. The training and validation 

process losses sharply decline towards 0 at 45k steps. It tells 

the progressive nature of the model in learning. 

3.2.3 Detection Accuracy using YOLO 

The average precision and recall using YOLO are around 

0.9, which is an excellent value. Mean average precision is 

also computed over variable constraints of confidence level 

ranging from 0.5 to 0.95. It is found to be 0.75 with such a 

high-quality threshold. The loss function decreases steadily 

until it reaches 0 at 50k steps per epoch. YOLO, MobileNet, 

and  RCNN models show comparable results for all 

combined regions. But our design with RCNN base 

architecture outperforms the  YOLO and MobileNet models 

in detection accuracy (precision and recall) for smaller and 

medium areas. And it achieves that in only 20k steps per 

epoch compared to the 50k steps for YOLO and 35k for 

MobileNet. 

3.3. Comparative Discussion  

The colour theme differentiates three hazard kinds: Crater, 

Boulder, and Plain-Surface. The localization of hazards is 

interpreted through bounding boxes. Each bounding box 

shows the confidence with which a particular hazard is 

detected. 

Fig.s 4, 5, and 6 show detection and localization using 

RCNN and MobileNet models for comparative analysis. 

The colour theme used for hazards is cyan for Crater, parrot 

green for the boulder, and sea blue for the Plain-Surface 

category. The test image in Fig. 4 shows the image captured 

at an altitude of around 3km. The results show average 95.33 

% accuracy of detection using RCNN. MobileNet failed to 

detect the hazards. The test image in Fig. 5 shows the image 

captured at an altitude of around 1.5km. The results show 

average 95% accuracy of detection using RCNN. The 

hazard detection average accuracy using MobileNet is 85%. 

The test image in Fig. 6 shows the image captured at an 

altitude of around 1km. The results show average 97 % 

accuracy of detection using RCNN. MobileNet results show 

95% accuracy for 3 detections. 

Fig.s 7 and 8 show detection and localization results using 

RCNN and YOLO base models for comparative analysis. 

Blue is for the Crater category, cyan is for the Boulder 

category, and orange is for the Plain-Surface category. The 

above nomenclature is followed for RCNN, while red for 

boulder, orange for plain surface, and light pink is used for 

the YOLO model.  Say a crater is detected with 1.0 

confidence. It means that there is 100% confidence in that 

detection. At an altitude of 1486.77 m, the detections from 

RCNN and YOLO are depicted in Fig. 1. For this sample 

image, the number of detections is almost equal through 

both models' predictions. But the confidence level is much 

higher through RCNN than through the YOLO model for 

each category. Sample Fig. 8 depicts the predictions at an 

altitude of around 1 km for both models. In this case, RCNN 

could logically find a small shadowed crater behind a large 

boulder. But the YOLO model failed to do so. Rest all 

predictions almost match, although the confidence level is 

much lower in YOLO's case.
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Fig. 7 Comparative analysis between RCNN and YOLO models at varying altitude levels at altitude=1486.77 m  
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Fig. 8 Comparative analysis between RCNN and YOLO models at varying altitude levels at altitude=1045.40 m 

Fig.s 9, 10, and 11 show detection losses using YOLO,  

MobileNet, and RCNN models. YOLO takes up to 50k steps 

to generalize, Mobilenet takes upto 40k steps, while RCNN 

generalize very quickly in 20k steps per epoch.

 

Fig. 9 YOLO Losses in 50k steps per epoch 

Fig. 10 Mobile Net Losses in 40k steps per epoch 
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Fig. 11 RCNN detection losses in 20k steps per epoch 

 

4. Conclusion 

This paper describes a hazard detection and localization 

methodology for hazard-free planetary landing. The system 

first detects the hazards, then classifies them into three 

categories Craters, Boulders, and Plain Surfaces. For 

localization, bounding boxes are populated over the 

detected hazards. Due to the scarcity of planetary data, a 

new synthetic dataset is generated using simulation software 

Unreal Engine and Roboflow with ground truth.  

The training and validation of the system are performed on 

the artificial lunar images. The overall results of the deep 

learning approach using recurrent neural network is 

promising, with an overall accuracy of 90-95%. The results 

show the righteousness of the system for real-time terrain 

hazard detection and localization. The real-time processing 

speed and accuracy of RCNN are much better than the other 

two models trained. The RCNN model is more efficient in 

detecting hazards for smaller regions than other models. It 

even achieves that with significantly fewer equal to 20k 

steps per epoch. It means that it is a much faster-converging 

model. 

On the other hand, the MobileNet model still fails to detect 

all possible regions of interest in many cases. The YOLO 

model is relatively stable in detections as compared to the 

others. When tested with real-time video input, it is found 

that the recurrent neural network model detects the highest 

number of hazards with accurate localizations.  
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