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Abstract: Bird sound classification plays a vital role in ecological monitoring and biodiversity conservation efforts. In this research paper, 

we explore the efficacy of Deep Neural Networks (DNNs) for this task, conducting a comparative analysis of five well-established methods: 

Xception, InceptionV3, ResNet50, EfficientNet, and VGG16. The BirdCLEF 2022 dataset, sourced from Xeno-Canto on Kaggle, serves 

as the foundation for our investigation. To extract essential acoustic features from the dataset, we employ Mel Frequency Cepstral 

Coefficients (MFCC). By converting the audio files into spectrograms, we enable the utilization of image-based classification techniques 

on this audio data. In addition to the state-of-the-art models, we design and implement two custom-made Convolutional Neural Network 

(CNN) architectures. These models surpass several existing approaches, achieving accuracy rates of 80.11% and 76.94%, respectively. 

Our research offers valuable insights into the performance and suitability of various DNN models for bird sound classification. 

Furthermore, the success of our custom architectures highlights the potential for tailored solutions in this domain. The outcomes of this 

study have implications for bird species identification, ecological monitoring, and wildlife conservation efforts, paving the way for further 

advancements in avian soundscape analysis. 

Keywords: Bird sound classification, Deep Neural Networks, Mel Frequency Cepstral Coefficients, Spectrogram, CNN, Xception, Incep- 

tionV3, ResNet50, EfficientNet, VGG16, BirdCLEF 2022, Xeno-Canto. 

1. Introduction 

Bird sound classification is a prominent research area that 

holds significant importance in various fields, such as 

ecology, biodiversity monitoring, and environmental 

conservation. Birds communicate through a wide range of 

vocalizations, each carrying unique information about their 

behavior, species, and habitat. Manual analysis of bird 

sounds has been traditionally employed, but it is time-

consuming, labor-intensive, and subject to human biases. In 

recent years, advances in machine learning, particularly 

deep learning, have led to the development of automated 

bird sound classification methods, revolutionizing the field. 

Transfer learning, a subfield of machine learning, has 

played a crucial role in enhancing the accuracy and 

efficiency of bird sound classification. Transfer learning 

involves using pre-trained models from unrelated tasks and 

adapting them to the specific task of classifying bird sounds. 

This approach leverages the knowledge and features learned 

from large-scale datasets, such as ImageNet, to generalize 

well to bird sound analysis, even with limited labeled bird 

sound data. Furthermore, researchers have explored the use 

of mel spectrograms to represent bird vocalizations. Mel 

spectrograms are a specialized form of audio spectrograms 

that convert sound signals into visual representations, 

capturing the distribution of frequencies over time. By 

incorporating mel spectrograms into the classification 

process, transfer learning models can extract pertinent 

features from bird sound data and improve the performance 

of automated classification systems. 

In this research paper, we explore the application of various 

transfer learning models along with mel spectrograms for 

bird sound classification. The primary objective is to 

evaluate the effectiveness of these models in accurately 

identifying different bird species and vocalizations across 

diverse environments. By leveraging transfer learning and 

Mel spectrograms, researchers can overcome data scarcity 

challenges and achieve robust and scalable bird sound 

classification models. Such advancements in automated bird 

sound analysis have wide-ranging implications for 

ecological research, conservation efforts, and understanding 

the dynamics of avian populations in changing ecosystems. 

2. Related Work 

K. W. Gunawan et al. employ an approach for transfer 

learning in owl audio recognition that allows them to use a 
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comparatively low size of pre-trained image classification 

framework that is commonly accessible. The scops owl 

audio dataset was obtained from the xeno-canto database. 

The models used are Mel’s spectrogram along with MFCC, 

they used a NN architecture with an EfficientNet model pre-

trained on the large ImageNet database and also used 

transfer learning. Their future aim is to analyze the trade-off 

between the classification performance and computational 

performance of each model to determine the best model 

because the lightweight model is also required to be 

deployed for a fast and automatic owl sound classifier for 

owl conservation purposes [1]. 

M. Ramashini et al. employ an SVM model for the Xeno-

Canto data, extracting 3 types of cepstral features from 

training and testing data: GTCC, LPCC, and MFCC 

utilizing a 5-fold CV to train the model. Their future scope 

is combining GTCC with other signal features, and 

implementing the technique in real-time on portable 

multimedia devices [2]. The large Xeno- canto database has 

been the basis of the challenges and gives the first general 

insights in automated feature extraction and classification to 

species level for general vocalizations [3]. Next is the 

LifeCLEF Bird Identification Task 2016. H. Goeau et al. 

report the methodology of a conducted evaluation. The 

incorporation of soundscape sounds besides the 

conventional xeno-canto sounds that focus on an individual 

foreground species was the key novelty. The key result was 

that after two years of resistance from engineering-based 

bird song detection systems, CNN eventually outperformed 

them by a wide margin. It is noticeable in their results that 

the best-performing CNN did not use any fine-tuning so it 

did not benefit from the transfer learning capacities of those 

techniques [4]. 

Y. Chang et al. used distinct bird call and bird song types to 

increase diversity from the xeno-canto dataset and used the 

birdsongs for bird classification using various ML 

algorithms such as random forest, SVM and k-nearest 

neighbors, and CNN. 5 cross-validation, ReLU and sigmoid 

activation functions and the Adam optimizer. They would 

like to make possible multi-label classification problems 

when trying to identify multiple bird species singing at the 

same time. They also believe that two clips generated from 

the same audio with very similar patterns may fall into the 

training and test data sets and spuriously increase the 

accuracy [5]. J. Wimmer et al. proved that focused sampling 

approaches can offer a reliable way of analyzing huge 

quantities of acoustic sensor information fast and correctly 

by focusing on estimating a depth of a bird species by 

sampling ambient auditory data. To aid in the analysis of 

enormous amounts of acoustic sensor data, a growth of 

automated and semi-automatic approaches is necessary. 

Ultimately, analysis of large volumes of acoustic sensor data 

is a trade-off between analysis cost and detection accuracy 

[6].  

C.-Y. Koh et al. focused majorly on CNN as the method for 

classifying bird species. They used the ResNet and the 

Inception Model for their CNN implementation. They draw 

a conclusion that it might be beneficial to learn additional 

information from the phase spectrogram, especially when 

multiple recording channels are available. Other future 

plans include increasing readily apparent bird voices on 

spectrograms of soundscape data to make them substantially 

comparable to the training data. Also, employing attention 

mechanisms can also be recommended for better 

performance in the future [7]. H. A. Jasim et al. use a dataset 

with about 8000 recordings and also use CNN as the method 

for bird sound classification. The DL-based method CNN 

using Fully Convolutional training yields superior outcomes 

as it removes potential future errors resulting from a lack of 

bird species understanding and works smoothly when 

programming in cohesiveness alongside the analysis of 

spectral kernel. The combined models were constructed by 

combining ML classifiers with the CNN functionality. 

Results show that manual feature retrieval and machine 

learning methods outperform baseline [8]. J. Xie et al. 

present a comparative analysis that uses a public dataset 

(CLO-43DS). The flight cries of 43 distinct North American 

wood warblers are included in this collection. They utilize 

the same DL framework with diverse inputs and they also 

build the fusion model using two distinct architectures. 

Models used include a network similar to VGG and they use 

a SubSpectralNet for the classification of bird recordings. 

Fusion strategies such as Mel-CNN, Harmonic-CNN, 

Percussive-CNN, and Subnet-CNN. Some of their future 

plans include adding more birds, another is fusing both 

audio and image data for classifying bird species, and also 

to create an efficient classification framework for 

recognizing bird species by intelligently fusing CNN 

models [9]. Another study that uses CNN to complete the 

assignment summarises an approach for substantial bird 

audio categorization in the overall setting for the LifeCLEF 

2017 bird recognition test. S. Kahl et al. generated features 

taken from illustrations of field recordings using a range of 

CNNs. They tried different implementations of SOTA 

convolutional networks and simple CNN architectures 

outperformed them in certain aspects. Some of the methods 

suggested for future implementations for improved 

performance of the model are reducing dataset distortion, 

3D-Convolutions, and snapshot ensembles [10]. 

K. Qian et al. take a different approach in the study, 

proposing two active learning (AL) algorithms, sparse-

instance-based AL (SI-AL) and least-confidence-score-

based AL (LCS-AL), both of which successfully reduce the 

requirement for expert human annotation. To both of these 

AL paradigms, a kernel-based extreme learning machine 

(KELM) is then integrated, and a comparison is made to the 

conventional support vector machine (SVM). Future work 

will include the comparison of more advanced AL methods 
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via kernel-based extreme learning machines in the 

classification of bird sound, focusing on methods to handle 

such large amounts of unlabelled bird sound data [11]. 

Another approach used by M. Ramashini et al. is Linear 

Discriminant Analysis. They have demonstrated that the 

proposed method outperforms other complex methods such 

as support vector machine and K-nearest neighbor [12]. X. 

Ji et al. use SVM and KNN as their models and propose an 

improved feature selection method that reduces the feature 

selection time and improves the performance of the model. 

The dataset used by them was the CLO-43SD dataset which 

includes 43 bird species of North American wood-warblers 

[13]. 

L. Muller et al. used Bidirectional LSTM along with RNN 

for the bird sound classification. Unfortunately, their 

approach did not perform as well as they hoped for [14]. Y. 

Qiao et al. describe a seq2seq DL strategy for obtaining 

higher representations from bird noises without the 

assistance of a human. They transformed the birds’ sound 

audio into spectrograms and then higher representations 

were learned by an autoencoder-based encoder-decoder 

scenario combined with the deep RNN. SVM, and MLP are 

the approaches used for the bird classification [15]. 

S. D. H. Permana et al. use bird sound data that was 

collected from the local birds in Indonesia. The CNN 

method is used to classify bird sounds in normal and panic 

conditions. The greater the epoch in training will have a 

positive effect on the accuracy value curve, while the greater 

epoch when doing the training will have a negative impact 

on the loss value curve [16]. 

F. Yang et al. provide a lightweight bird sound recognition 

model for using MobileNetV3 to create a feature extraction 

and identification network. The future work of this paper 

includes applying the model to embedded devices to realize 

real-time bird monitoring in nature reserves, collecting more 

bird sound data and constructing large bird datasets, 

simplifying bird sound feature extraction, reducing the steps 

and processes of feature extraction [17].

 

 

Fig. 1.  Architecture Diagram for Custom Model 1 
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Fig. 2.  Architecture Diagram for Custom Model 2 

3. Proposed Methodology 

We propose a solution that uses deep learning for the 

classification of bird sounds. We used the Transfer Learning 

technique for the training of deep learning models. Transfer 

learning is the process of employing a model that has 

already been trained to solve a new problem. It is presently 

particularly well-liked in deep learning because of its 

capacity to train deep neural networks with relatively 

minimal data. This is incredibly beneficial in tackling 

problems that are similar in nature because the majority of 

real-world scenarios frequently do not have millions of 

labeled data points to train such complex models. Deep 

learning models will be trained for the classification of bird 

sounds. Later, we will be analyzing the performance of these 

models. The proposed design is described in Figure 3. 

 

Fig. 3.  Proposed Design 
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4. Implementation 

4.1. Dataset Generation 

We used the dataset from BirdCLEF 2022, which contains 

audio files of birds. The bulk of the training data consists of 

recordings of individual bird calls submitted by the 

xenocanto.org community. These files have been 

downsampled to 32 kHz and converted to the ogg format. 

The dataset also provided a metadata file that contains a 

code for the bird species, the associated audio file, and some 

other data. Since we will be using deep learning models, we 

will be converting the audio files in ogg format into 

spectrograms on mel scale. 

 

Fig. 4.  Sample Mel Spectrograms of a Bird Sound Audio 

clips 

4.2. Dataset Preprocessing 

The dataset consists of various audio files of bird sounds and 

some metadata. This dataset contains 14,853 labeled audio 

files in ogg format. There are 16 different labels used in this 

dataset that categorize sounds into each class. The data in 

these audio files was converted to Mel Spectrograms. A mel 

spectrogram is a spectrogram where the frequencies are 

converted to the mel scale. For the purpose of processing the 

audio files and converting them into Mel Spectrograms, we 

used a Python library Librosa, which is used for music and 

audio analysis. The converted spectrograms were stored and 

labeled accordingly, as they will be used by deep learning 

networks in their training. A sample mel spectrogram of a 

bird sound is shown in Figure 4. 

4.3. Models Used 

Various models exists that are trained on ImageNet datasets, 

and their weights can be used, to solve different yet similar 

problem. The primary models we will be using are 

1) Xception 

2) ResNet50 

3) EfficientNet 

4) VGG16 

5) InceptionV3 

We also introduce two custom Convolutional Neural 

Networks that can be compared with the state-of-the-art 

models. In the design of its deep convolutional neural 

network, Xception uses Depthwise Separable Convolutions. 

It was created by Google researchers. Inception modules in 

convolutional neural networks have been interpreted by 

Google as a transitional process between ordinary 

convolution and the depthwise separable convolution 

operation (a depthwise convolution followed by a pointwise 

convolution). In this sense, a depthwise separable 

convolution can be thought of as an Inception module with 

the most towers possible. On the basis of this outcome, they 

propose a novel deep convolutional neural network design, 

with Inception modules replaced with depthwise separable 

convolutions [18]. An artificial intelligence model, 

Inception-v3 was developed to categorize and recognize 

items in photographs. It is a convolutional neural network 

that has been pre-trained and contains 48 layers. It was 

trained using data from the ImageNet database, where there 

are more than one million pictures. The network has the 

ability to classify photos into 1,000 distinct item types. 

Label Smoothing, Factorized 7 x 7 convolutions, and the use 

of an auxiliary classifier to convey label information lower 

down the network are just a few of the enhancements made 

by Inception-v3 [19]. 

Residual Network (ResNet50), another deep learning model 

we used, is frequently utilized in computer vision 

applications. It is a CNN architecture capable of supporting 

a high amount of convolutional layers, which could be 

thousands, Performance was negatively impacted by the 

limited number of layers that earlier CNN architectures 

could support. However, as more layers were added, 

researchers ran into the “vanishing gradient” problem [20]. 

Another sort of neural network architecture called 

EfficientNet makes use of compound scaling to improve 

performance. By lowering the number of parameters and 

FLOPs (Floating point Operations per Second), EfficientNet 

seeks to enhance performance while maintaining 

computational efficiency [21]. We have also used a VGG 

model, commonly known as VGGNet, which is referred to 

as VGG16, a CNN model of 16 layers. K. Simonyan and A. 

Zisserman from Oxford University came up with this model 

[22]. 

The custom models were designed with the aim of 

improving the accuracy of the pre-trained models. These 

models only take in input as the image of 224 X 224. 

Custom 1 model starts with Convolution layers with zero 

padding to standardize the input to 230 X 230 X 3. With 

some convolution layers, batch normalization, and Rectified 

Linear Unit activation layers, the output of 56 X 56 x 64 is 

processed with a block of layers that runs 3 times and 

converted to 56 X 56 X 256. Again with some convolution 

layers, batch normalization, and Rectified Linear Unit 

activation layers that run for 3 times, the output is processed 

to 28 X 28 X 512. Here inception type modules run 8 times. 

The model outputs a 7 X 7 X 2048 which can be used for 

classification by using a dense layer for 16 labels. The 

Custom 2 model varies from Custom 1 at its start but the 

intermediary and output layers of the model are the same. 

Custom 2 starts with converting the input into a convolution 
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of 111 X 111 X 32. It is then processed through complex yet 

similar layer connections for extracting features. The 

architecture diagrams of the custom models are shown in 

Figures 1 and 2. 

4.4. Implementation 

We use the preprocessed dataset which contains 

spectrogram images in the model training. Our dataset was 

split into batches for 64 images each with the image sizes 

224 X 224 X 3. With a much higher batch size, we aimed to 

improve the Normalization process while training the 

model. 

We used a learning rate scheduler to fine-tune the learning 

rate during the training period. The learning rate was 

scheduled such that the learning rate will be very low at the 

start and linearly increase up to a maximum value and they 

eventually drop to a preset minimum value. The reason 

behind starting with a low learning rate in the epochs was to 

reduce the significant changes in the pre-trained weights of 

the models. This will help in a stable increase in the 

performance of the models. The schedule is shown in Figure 

5. 

 

Fig. 5.  Learning Rate Schedule 

In the training stage, we trained five Deep Learning models: 

Xception, InceptionV3, EfficientNet, ResNet50, and 

VGG16, which were trained on the ImageNet dataset. By 

using these pre-trained weights, we implemented the 

Transfer Learning approach in classifying bird sounds. 

Additionally, we implemented 2 custom models (Custom1, 

and Custom2) to match up with these pre-trained models. 

The training of all these models was scheduled for 80 

epochs. 

5. Result and Discussion 

During the training of the models, the first epoch gave a very 

low accuracy and did not significantly learn from the 

dataset. However, the following epochs showed a gradual 

and stable increase in accuracy. This behavior of the models 

was expected since our learning rate scheduler provided a 

very low learning rate at the start, which prevented us from 

breaking the pre- trained weights in the case of the primary 

models. Since we did not schedule the learning rates for 

custom models, we received fluctuating values in 

performance graphs. However, the custom models started 

showing signs of improvement later on in the training. 

The training continued with the learning rate schedules that 

reached up to a peak, we made a curved downfall for the 

primary models in the study. This was done to stabilize the 

learning process and not induce unwanted bias. All the 

models were trained for 80 epochs, however, the validation 

accuracy stabilized around 20 epochs and an automatic early 

stopping was triggered. A visualization of training and 

testing accuracy and loss values for the pre-trained models 

are provided in Figure 6 and for the custom models are 

provided in Figure 7. 

This experimentation can be used to make a comparative 

analysis between the performances of the models. We used 

validation accuracy and loss values as criteria for evaluating 

these models. The results of trained models are shown the 

Table I. At the end of the training period, we saw that among 

all the models we trained, Xception performed the highest 

with an accuracy of 80.66%. The Custom 1 performed 

second and was very close to outperforming the Xception 

with an accuracy of 80.11%. The InceptionV3 model came 

third with an accuracy of 79.26%. EfficientNet and 

ResNet50 were very close in terms of accuracy with 78.93% 

and 78.88% respectively. The VGG16 gave an accuracy of 

77.37% and our custom 2 model came in with an accuracy 

of 76.94%. In terms of accuracy, the bespoke models we 

created nearly outperformed the state-of-the-art models. 

6. Conclusion 

In conclusion, our research delved into bird sound 

classification using Deep Neural Networks (DNNs) and 

conducted a comparative analysis of five prominent models: 

Xception, InceptionV3, ResNet50, EfficientNet, and 

VGG16. Utilizing the BirdCLEF 2022 dataset from Kaggle, 

sourced from Xeno-Canto, we employed Mel Frequency 

Cepstral Coefficients (MFCC) for feature extraction and 

converted audio files into spectrograms for classification. 

Our findings demonstrated the commendable performance 

of all five DNN models in bird sound classification, with 

variations in accuracy and computational efficiency. 

Additionally, our custom-made CNN architectures 

surpassed the accuracy of some state-of-the-art models, 

highlighting the potential for domain-specific solutions. 

Future research in this domain could explore various 

ensemble methods, advanced data augmentation, and 

attention mecha- nisms. Also, investigating the models’ 

robustness to background noise or overlapping bird calls, as 

these challenges are common in real-world soundscapes. 

We would like to train a model in such a manner that it can 

classify multiple amounts of birds from a single audio input 

and also implement this technique in a real-time manner. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4), 614–622 |  620 

These endeavors will enhance the field of bird sound 

classification, contributing to ecological monitoring, 

wildlife conservation, and avian soundscape analysis.

 

Table 1. Performance Matrix 

Model Accuracy Loss 

Xception 80.66% 0.9776 
   

InceptionV3 79.26% 1.0437 

   

EfficientNet 78.93% 0.9334 

   

ResNet50 78.88% 0.9933 
   

VGG16 77.37% 1.1467 
   

Custom Model 1 80.11% 0.9713 

   

Custom Model 2 76.94% 1.0307 

 

Fig. 6: Accuracy and Loss Plotting for Pre-trained Models 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4), 614–622 |  621 

  

 

(a) Custom Model 1 (b) Custom Model 2 

Fig. 7: Accuracy and Loss Plotting for Custom 
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