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Abstract: This paper proposes a new SceneGuide wearable aid for providing information about the surrounding scene to the visually 

impaired people. Its main feature is its ability to understand the scene and offer simplified information in an intuitive way. SceneGuide aid 

is designed as a wearable jacket with low-power embedded processing unit, monocular camera, and Bluetooth headphones.  It is a 

lightweight, low-cost, battery-operated blind assistive aid. The aid employs a novel, computationally efficient model, using multi-feature 

fusion and multi-level optimum feature selection approach. SceneGuide serves as a complementary assistive aid to the conventional white 

cane and helps reduce the cognitive information load and anxiety experienced by visually impaired people. The functional evaluation of 

the aid presented scene recognition accuracy of 95.25% on a custom dataset and 85.82% on the 15 Scene Standard Dataset. This aid was 

evaluated with 10 blindfolded volunteers. The volunteers expressed 77% acceptance towards usability to identify the scene with lower 

levels of confusion and anxiety. This highlights that the SceneGuide aid can enhance the understanding of visually impaired people about 

their surroundings. 
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1. Introduction 

World health organization (WHO) reported approximately 

2.2 billion people are affected with near or distance visual 

impairment [1].  There are a variety of circumstances that 

make it difficult for these people to move safely or recognize 

their surroundings. This excursion also presents numerous 

difficulties, including inadvertent falls, a feeling of being 

lost, and the incapacity to perform activities independently. 

Traditionally, long white canes are used to aid vision-

impaired individuals. The white cane has been a widely used 

mobility aid due to its simplicity and portability. The blind 

user needs to heavily relay on can tapping for obstacle 

detection along the path, this increases their walking anxiety 

and cognitive load [2], also it has limitation in perceiving 

any visual information. Over the past 75 years, extensive 

research has been conducted in the field of assistive aids for 

individuals who are blind or visually impaired. Various 

electronic mobility aids, such as Venucane [3], MobiFree 

[4], SplitGrip Cane [5], and Tom Pounce III [6], have been 

developed to facilitate obstacle detection and avoidance. 

Wearable aids, including Ultrasonic spectacles and waist-

belt [7], Array of Lidars and Vibrotactile Belt [8], Haptic 

Sensory Glove [9], Optical See-Through Glasses [10], and 

Mobility Shoes [11] have also been introduced to enhance 

the mobility and perception of visually impaired 

individuals. These aid with simultaneous localization and 

mapping, as well as recognition of traffic lights and 

crosswalks. Additionally, cloud-based smartphone aids like 

the Divya Dristi App [12], Uasis Aid [13], Tap-Tap-See 

App [14], and Be-My-Eyes App [15] have been developed 

to help with various tasks related to navigation and object 

recognition. 

These aids have limited or no capability in providing 

detailed visual information about the surroundings. The 

smartphone-based aids [12, 13, 14, 15] heavily rely on cloud 

technologies, with stable internet connectivity, and are not 

suitable for areas with limited connectivity, creating 

dependency challenges. The usability of these assistive aids 

presents challenges due to slow learning curves and 

complex user interfaces. The complex operating processes 

further hinder the adoption and effectiveness of these aids. 

Visual perception assistance has emerged as a 

transformative technology that offers significant benefits to 

visually impaired individuals by enhancing their 

understanding of the surrounding environment. It promotes 

environmental awareness by providing them with crucial 

information about objects, structures, and people in their 

surroundings. The use of computer vision and machine 

learning algorithms has facilitated the development of 

systems capable of recognizing various types of scenes and 

objects within them. Previous research has focused on scene 

recognition using computer vision and machine learning 

approaches [16, 21, 22, 30], as well as deep learning 

techniques [33 – 44]. However, scene recognition continues 

to pose challenges, primarily due to variations in internal 

scene details, changes in illumination, and occlusions. 

In this paper, we propose a novel approach that leverages 

the fusion of local and global features to achieve more 
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meaningful scene perception for visually impaired 

individuals. By combining fine-grained local details with 

holistic global information, our approach aims to provide an 

understanding of scenes, enabling visually impaired 

individuals to perceive and navigate their environment more 

effectively. The proposed method uses a multi-feature 

fusion of ULBP (Uniform Local Binary Pattern), LBPHF 

(Local Binary Pattern Histogram Fourier), and SIFT (Scale 

Invariant Feature Transform) features to capture scene 

discriminative information with lower computational cost. 

It also employs a multi-level feature dimension optimization 

algorithm using PCA (Principal Component Analysis) and 

LDA (Local Discriminant Analysis) to obtain an optimal 

feature subset with high inter-class separation. The paper 

describes the implementation of a wearable SceneGuide 

assistive aid to help visually impaired individuals in real-

time scene recognition. Functional evaluation on custom 

and 15 scene datasets demonstrates the superiority of the 

proposed method over other state-of-the-art methods. Real-

time evaluation with 10 sighted volunteers confirms the 

system’s suitability as a lightweight, portable assistive aid 

for scene recognition.  

The paper is organized as follows: Section 1 provides a 

summary of the need assessment survey conducted for 

visually impaired people. Section 2 presents a review of 

related works. Section 4 introduces the proposed method of 

multi-feature fusion and multi-level feature optimization. 

Section 5 presents the experimental results. Finally, Section 

6 concludes the paper. 

1.1. Need Assessment Study with Visually Impaired 

People 

This section of the paper details the findings of a survey 

conducted on a group of people living in the city area of the 

western region of India. The survey has been conducted on 

60 blind or visually impaired people. The initial section of 

the survey asked participants to identify their age group, 

gender, and family status. This information was used to form 

groups based on their age groups to perform age-specific 

mobility assistive aid requirement assessment. The cities 

were not designed to cater to the mobility needs of blind 

people. The blind and visually impaired people face many 

challenges while traveling short distances on their own. The 

challenges faced by them vary as per the age group and type 

of activity they wish to carry. The objective of the survey is 

to understand the different types of hurdles to independent 

mobility experienced by blind and visually impaired people 

in indoor and outdoor situations, the shortcomings of the 

existing assistive aids., and the ergonomic considerations 

for the assistive aid. 

The detailed questionnaire with 10 questions was prepared 

with the following questions: i) Challenges faced in 

identifying the indoor scene, ii) finding the correct bus stop, 

iii) identifying the auto rickshaw, iv) Shopping requirement 

for daily items, v) places visited frequently, vi) Any 

accidental falls, vii) Challenges faced while traveling, viii) 

challenges faced while shopping, ix) assistive aid design 

considerations, x) assistive aid cost requirement. 

 

 

Fig.1. Type of Problems Reported by Blind and 

Visually Impaired People 

The responses received from the blind and visually impaired 

people were analyzed and we found that there had been 

many challenges faced by these people during outdoor 

travel even for a short distance. 90% of the participants 

reported that they memorize the route. Also, the 

environmental noises and smell help them to recognize the 

place. 60% of them reported difficulty in the recognition of 

indoor scenes in known and unknown houses. 85% of 

respondents had difficulty traveling using local transport 

facilities such as autorickshaws or public buses. 75% of 

participants reported difficulty in identifying the shops and 

marketplaces for day-to-day shopping for groceries, 

vegetables, medicines, etc. Figure 1 details the distribution 

of the largest reported requirements by blind and visually 

impaired people. 

1.2. Need Assessment Driven Findings 

The last two questions in the survey were about the 

requirements from the aesthetics and functions needed in an 

assistive aid. 80% of them reported it should be wearable 

aid, so their hands can be free to hold guide-cane and other 

things. It should be battery operated, lightweight. The blind 

participants suggested the system should give them real-time 

responses either in voice or vibrations. Some suggested aid 

with a video calling facility to a known person. The figure 2 

shows the requirements of the features in assistive aid vs the 

percentage respondents. 

 

Fig. 2. The Assistive Aid Features vs Percentage of 

the Respondents 
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The findings of the survey helped to assess the feature 

requirements and the type of system to be designed for 

helping blind people. The data gathered from the survey 

helped to understand the budget limitation for assistive aid 

since almost 95% of them needed lightweight and low-cost 

aid. This paper proposes an assistive aid to address these 

difficulties reported by blind and visually impaired people 

and focuses on real-time, lightweight, wearable blind 

assistive aid. 

2. Prior Art 

The domain of scene recognition research encompasses the 

creation of computer vision algorithms and machine 

learning models that can automatically identify scenes. This 

task is particularly challenging, as scenes can vary greatly 

in complexity and diversity, and often display significant 

variability in visual appearance. 

Scene recognition is an essential component of computer 

vision, which involves identifying the objects and natural 

surroundings depicted in a scene image. An effective scene 

recognition algorithm must account for the 

interrelationships between the various semantic partitions 

of the image. There exist a variety of scene recognition 

strategies, with early approaches such as the influential 

work of [16] considering scenes as a collection of objects 

with distinct shapes and structures. However, recognizing 

indoor images poses significant challenges due to the 

complexity of indoor environments, resulting in poor 

performance for this type of approach compared to the 

satisfactory results obtained for outdoor scenes. 

The GIST [17] characteristics provide a statistical 

overview of the spatial arrangement of the scene, capturing 

its key perceptual features, such as naturalness, openness, 

roughness, expansion, and ruggedness. Oliva and Torrlba 

[17] suggested that images belonging to the same scene 

category have comparable spatial configurations that can 

be extracted without dividing the image into segments. 

These features are computed with a combination of multi-

scale-oriented Gabor kernels. These were found to be more 

suitable for outdoor scenes than indoors. Hierarchical 

GIST [18] utilized the perceptual GIST layer and Kernel 

PCA layer. 

Both the local and global descriptors can be utilized for 

scene description. The SIFT [19] algorithm extracts image 

features that remain unchanged despite variations in image 

scale, rotation, and illumination. A method to employ SIFT 

for scene categorization [20] involved extracting local 

features from dense patches, creating a dictionary through 

k-means algorithm from random local patches, and 

generating a feature vector for each input image. SIFT-

based spatial pyramid matching technique (SPM) [21] and 

Sparse coding based spatial pyramid matching (ScSPM) 

[22] was used to represent local features. In contrast to the 

original SPM method that employs histograms, the ScSPM 

approach utilizes the max operator, which is more resistant 

to local spatial translations, resulting in improved 

robustness. The efficiency of the SIFT-FV method [23] 

surpasses previous techniques as it computes SIFT features 

on dense grids and creates global features using Fisher 

kernel coding. 

LBP algorithm [24] for texture classification, was first 

used for scene categorization on SUN dataset [25]. LBP-

HF [26], which combines uniform LBP and Fourier 

coefficients, was proposed and shown to have better 

rotation invariance than uniform LBP. Completed local 

binary pattern (CLBP) [27] for texture classification, 

which encodes both the signs and magnitudes of differences 

between center pixel and its  neighbors, as well as the 

intensity of the center pixel. CLBP achieved superior 

texture classification accuracy com- pared to the original 

LBP algorithm. Pyramid Local Binary Pattern (PLBP) 

[28], utilizes a hierarchical spatial pyramid to extract 

texture resolution information by concatenating LBP 

features, more efficient than LBP. CENTRIST [29], a 

holistic visual descriptor representation of images’ 

geometrical and structural properties. It employs the census 

transform (CT) to calculate feature maps, which is 

equivalent to LBP. 

HOG [30] features are adept at capturing the distribution 

of edge directions and image gradients on a regular grid, 

making them useful for scene categorization. In a study on 

the SUN397 dataset [31], HOG features outperformed 

SIFT and GIST. The combination of SIFT and PCA in the 

PCA-SIFT approach [32] involves the computation of a 

projection matrix P using numerous image patches. This 

technique has been shown to yield superior results in feature 

selection and image matching compared to the use of SIFT 

features alone [33]. 

In recent years, the deep convolutional neural network 

(CNN) [36] first introduced in 1998, has gained popularity 

and achieved astounding performance on a variety of 

visual tasks, in addition to the traditional scene recognition 

approaches that employ handcrafted visual features, as 

mentioned above. The Multi-scale orderless pooling CNN 

(MOP-CNN) [37] is a method that involves using 

convolutional neural networks (CNNs) to extract 

activations from local patches of input images at different 

scales. These activations are then aggregated into vector 

descriptors using a locally aggregated descriptor (VLAD) 

technique, which is orderless pooling. 

The DAG-CNN (Directed Acyclic Graph Convolutional 

Neural Network) [38], as a deep learning architecture, has 

achieved notable success by integrating local features 

extracted from lower layers and holistic features from top 

layers. This combination allows the model to learn and 

leverage both low-level and high-level features to improve 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4), 623–637 |  626 

its performance on image-related tasks. Several CNN 

architectures Inception [39], ResNet [40], GoogleNet [41] 

and DenseNet [42], have also demonstrated similar benefits. 

These architectures have shown that features extracted 

from intermediate and high layers, which correspond to 

parts and objects in images, are more informative for scene 

recognition tasks compared to low-level features such as 

edges and textures. This suggests that leveraging high-level 

features is crucial for achieving superior performance on 

image recognition tasks. 

Recent deep learning-based scene recognition techniques 

propose use of discriminative information of the pre-trained 

deep learning architecture with metric learning [42, 43]. 

The fusion of deep learning features with extreme learning 

machine observed better scene recognition performance. 

Improved scene recognition proposed by [44] involves 

dense hog feature extraction, autoencoders and spatial 

pyramid pooling. Instead of using histogram of local visual 

descriptors over each region in image block, the modified 

spatial pyramid pooling with local normalization is used to 

produce representations of the various regions. 

Recent advancements in deep learning and computer vision 

have led to significant progress in scene recognition research 

and have enabled the development of models that can 

recognize scenes with high accuracy and robustness. 

However, there are still many challenges and open problems 

in this field, such as dealing with large variability in scene 

appearance due to lighting, weather, and other factors, or 

recognizing scenes with little visual information or 

contextual cues. The large computational complexity, heavy 

models are not suitable for portable embedded development 

platform. This paper proposes computer vision and machine 

learning approach for scene recognition. 

3. Design and Development of Sceneguide 

Wearable Aid 

This research presents a real-time approach to recognizing 

indoor and outdoor scenes, namely indoor kitchen and living 

room scenes. The outdoor scenes include recognition of 

public bus station, autorickshaw stand, marketplace and 

shopping place. The responses to a survey of blind people 

with visual impairments were used to inform the selection 

of scene types. Fig 3 is a system-level diagram of the 

SceneGuide wearable aid. The blind or visually impaired 

people assistive wearable aid SceneGuide is implemented 

utilizing a low-power embedded microcontroller, the Jetson 

Nano board consists of a Quad-core ARM A57 CPU 

clocked at 1.43 GHz, a 4GB RAM, and a 128-core GPU, 

USB connected monocular camera, Bluetooth headphones. 

The figure 1 details the camera is mounted on the wear- able 

jacket worn by the blind user who is equipped with 

backpack with Jetson Nano processing unit and 22.5W 

rechargeable portable battery pack. The fig. 4 (a) and (b) 

details the developed wearable SceneGuide aid with the 

blind-folded volunteer.  First, the camera’s collected images 

are resized to 256X256 pixels and Gaussian blurred to 

eliminate high-frequency noise. The second step is to extract 

multiple features using SIFT, Uniform Local Binary Pattern, 

and Local Binary Pattern Histogram Fourier. In the third 

stage, clustering and feature fusion are carried out to 

generate an optimal feature subset. The high dimensionality 

of the feature space is optimized using PCA (Principal 

Component Analysis) and LDA (Linear Discriminant 

Analysis) is used to increase distinction between the classes. 

The last and final stage consists of indoor or outdoor scene 

recognition employing Random Forest, KNN, LGBM, and 

XGBoost classifiers, and scene recognition is successfully 

performed. The output of the classifier is then given to the 

text-to-speech conversion module. The Bluetooth-

connected headphones are used to send an audible message 

alert regarding the scene category to the blind individual. 

3.1. Dataset Collection and Pre-Processing 

The two different datasets were used to evaluate the 

performance of the model. The custom dataset has a total of 

4800 images of 6 scene categories. The images in the 

custom dataset are collected and labeled by the authors. The 

standard dataset of 15-Scene is also  

 

Fig. 3. System Level Diagram of SceneGuide Wearable Aid for Visually Impaired People 
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Fig. 4. (a) Blind-folded volunteer with SceneGuide Aid, (b) Blind-folded volunteer at Outdoor Rickshaw Stand 

 

used. The dataset consists of 6 scene classes i) Indoor 

Kitchen, ii) Living Room, iii) Shopping Place, iv) Market 

Place, v) Bus stop, and vi) Rickshaw. Figure 5 shows 

examples of the images in the dataset. The diverse image 

database can easily accommodate additional image types in 

the training set without any changes to the existing 

algorithms. All the images have been resized to 256 x 256 

dimensions. The images were augmented with rotation of 10 

deg, 15% zoomed and translated horizontally and vertically 

by 20%. Also, the 15% shear and horizontal flip was 

introduced to build a model with translation, rotation, and 

view angle change invariant. The  scene of interest at varied 

scales and positions, against an illumination change, 

improves model generalization, addresses class imbalance, 

and increases robustness to variations in the input data. All 

the images were converted to a grayscale. Then smoothing 

is applied using gaussian filter to remove extraneous noise. 

 

 

Fig. 5.  Sample Images from the dataset with (a) Kitchen, 

(b) Living Room, (c) Market Place, (d) Shopping Mall, (e) 

Bus Stop, (f) Auto-Rickshaw 

reduce high-frequency noise and preserving edges in the 

scene. The Gaussian filter produces the following estimate 

of  the original scene, with kernel standard deviation sigma 

along horizontal and vertical direction, as shown in eq 1: 

𝐹(ⅈ, 𝑗) =
1

2𝛱𝜎2 ⅇ
−(

ⅈ2+𝑗2

2𝜎2 )
                         (1) 

Here i and j are the pixels in the image. This helps in 

reducing the high-frequency components, resulting in 

features which are more robust to noise and other 

distortions. 

In order to accurately capture the specific geometrical 

details, present in different scene categories such as 

kitchen, living room, shopping place, bus station, and 

rickshaw, it is important to compute the edge gradients and 

create image descriptors based on this information. This 

approach allows for a more precise description of the 

distinct structural details that are present in each category. 

The Prewitt operator [35], developed by M. S. Prewitt is 

used   to estimate the magnitude and orientation of the 

structural details present in the scene. The Prewitt operator 

with horizontal and vertical kernel is used to generate edge 

gradient images using eq.      2: 

 |𝛻𝐹| = √𝛻𝑓𝑖
2 + 𝛻𝑓𝑗

2                    (2) 

This gradient image is used for computing SIFT features 

for the scene. 

3.2 Multi-Feature Extraction and Feature-Fusion 

The research introduces a novel scene recognition system 

that integrates three distinct feature extraction techniques: 

Scale Invariant Feature Transform (SIFT) [19], Uniform 

Local Binary Pattern (ULBP) features [24], and Local 

Binary Pattern Histogram Fourier (LBPHF) features [26]. 

SIFT is employed to extract scale-invariant and viewpoint-robust 

features from images, accurately capturing geometrical and 

structural variations present in each of the six scene categories. 

ULBP is utilized to capture fine-grained local image features, 

enhancing the system's ability to distinguish subtle texture 
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patterns within the scenes. Additionally, LBPHF is used to 

capture both spatial and frequency information, providing a 

comprehensive representation of the scene's characteristics. 

The scenes, including the kitchen, living room, shopping mall, 

marketplace, bus stop, and autorickshaw, exhibit unique 

features such as object arrangements, structural uniqueness, 

and lighting conditions. By combining these three feature 

extraction techniques, the scene recognition algorithm 

achieves a comprehensive representation, effectively 

recognizing the distinctive visual characteristics in the 

dataset's six different scenes. This feature fusion approach 

significantly improves scene recognition accuracy, 

outperforming existing algorithms and demonstrating its 

effectiveness in real-world scene recognition problems. 

The unique features are generated by integrating image-

based dense features and applying multi-level feature 

dimension reduction to obtain an optimized and highly 

discriminative feature subset for classification. This 

approach outperforms existing algorithms for scene 

recognition, demonstrating its effectiveness in solving real-

world scene recognition problems. 

Algorithm 1: Gradient image based key point 

detection and description 

Input: Image dataset with N images, I (i, j) 

Output: Feature vector h(wfSIFTN
K) 

Steps:  

1. for N images in the dataset: 

2.      Resize images to 256 x 256 

3.      Convolve Image, I (i, j) with 3 x 3 Gaussian 

kernel: 

           F(i, j) = G * I(i, j) 

           Gaussian filter kernel equation: 

           𝑭(ⅈ, 𝒋) =
𝟏

𝟐𝜫𝝈𝟐 ⅇ
−(

ⅈ𝟐+𝒋𝟐

𝟐𝝈𝟐 )
 

4.      Find intensity gradient of filtered image F(i, j) 

           Magnitude of image gradient,  

|𝛻𝐹| = √𝛻𝑓𝑖
2 + 𝛻𝑓𝑗

2 

            Direction of image gradient, 

 𝜃 = 𝑡𝑎𝑛
−1 (

𝛻𝑓𝑗

𝛻𝑓𝑖
) 

           Compute Edge Gradient image, E (i, j) 

      end for 

5. for each pixel in E (i, j) compute 

      SIFT Key points, NSIFT 

      Key point Descriptors, DNSIFT = NSIFT x 128 d  

6. Find minimum number of clusters 

needed for NSIFT key points  

      for k = kmin → kmax do 

          k, NSIFT → k-means++ and train  

          for number of clusters Nc = k do 

    Calculate distance of each NSIFT   point from 

cluster center Nc1, … Nck 

    Compute sum of square distances for each cluster 

    Find WCSS for all clusters 

    Minimize WCSSk in range [WCSSkmin, … 

WCSSkmax] 

    Choose optimum number of clusters NC at elbow 

point 

{the point where the WCSS starts to decrease 

more slowly} 

      end for 

 end for 

7. Normalize the clustered feature descriptors, 

fSIFTKN 

8. Compute the histogram of features with bins = 

Nc 

9. return h(wfSIFTN
K) 

 

SIFT [4] is used to extract distinctive invariant key points, 

NSIFT from images. SIFT detects all the key points 

which are invariant to scale and orientation. Each scene 

image has different number of key points. In this study, we 

have implemented a BOF framework to analyze structural 

elements and recognize scene. The descriptors extracted 

using SIFT, NSIFT were grouped into a specified number 

of clusters to minimize the WCSS (within cluster sum of 

square differences) for the K clusters. The clustered 

descriptors were  normalized NSIFTKN. The Algorithm 1 

details the SIFT feature points detection, description and 

choosing optimum number of clusters to generate final 

features fSIFTK. These features are normalized to using 

min-max scaling to generate fSIFTKN. The 

normalization improves the performance of the 

classification algorithm and helps to converge faster and 

more reliably. The optimization algorithm works better 

with the features are on similar scales, as it helps to avoid 

oscillations and divergences. Finally, the histogram 

h(wfSIFTN
K) of the normalized features fSIFTKN 

computed. 

The SIFT feature extraction algorithm can struggle to 

accurately capture the characteristics of an object in an 

image when the background is complex or contains noise. 

In contrast, LBP features are effective at filtering out such 

noise when the image contains uniform patterns. Therefore, 

combining SIFT and LBP features can potentially yield 

better results for scene recognition tasks. 

Local Binary Patterns (LBPs) are a type of feature 

descriptor that is computed from pixel intensities in a local 
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neighborhood. This algorithm is simple yet effective for 

extracting local texture information and is also robust to 

changes in lighting and rotation. To compute the LBP value 

for a pixel, a 3X3 size circular neighborhood of pixels is 

defined around the central pixel. The LBP operator then 

compares the intensity values of the pixels in this 

neighborhood to the intensity value of the central pixel and 

assigns a binary label of 0 or 1 based on whether each pixel's 

intensity value is greater than or less than the central pixel's 

intensity value. These binary labels are then concatenated to 

form a binary number, which is converted into a decimal 

value to represent the LBP value for the central pixel. 

The Uniform Local Binary Pattern [24], is an extension of 

the LBP algorithm that is designed to reduce the number of 

possible LBP patterns and improve the discriminative 

power of the LBP descriptor is used. Here all uniform 

patterns have their own separate bins, while the non-

uniform patterns are collected into a single bin. Uniform 

patterns are those that have a maximum of two transitions 

between 0 and 1, and vice versa. In this study, the ULBP 

operator was utilized to convert pixel values to binary 

numbers, using the eight neighboring pixels around each 

pixel at a radius of r = 3. The image was divided into non-

overlapping blocks of 9x9 and the histogram of each block 

was calculated to form a feature vector, fULBP.  

 The LBP-HF algorithm [26] is a feature descriptor that 

combines Uniform Local Binary Patterns (ULBP) and 

Fourier coefficients. Fourier coefficients, capture frequency 

information in an image. By combining these two methods, 

LBP-HF can achieve improved rotation invariance 

compared to ULBP alone. In the LBP-HF algorithm, ULBP 

is first computed on the image to generate a binary pattern. 

Then, Fourier transforms are performed on the binary 

patterns in each image block. The Fourier coefficients are 

computed from the transformed binary patterns and used to 

represent the texture information of the image. Finally, 

these Fourier coefficients are normalized to obtain the LBP-

HF features, fLBPHF. The combination of ULBP and LBPHF, 

more detailed, and robust to rotation and illumination 

change features are extracted.  

The proposed method follows multi - feature fusion 

approach to integrate scene key point features and local 

texture features. The feature fusion forms a cumulative/joint 

histogram hscene
i represented as: 

hscene
i =  [ h(wfSIFTN

K), h(fULBP
i), h(fLBPHF

i)]                        (3) 

The feature dimension after fusion was (12000 x 40 bins) 

3.3 Multi-level Optimum Feature Subset Selection 

The multiple-level feature subset is selected using two 

different dimension reduction techniques, PCA and LDA. 

The reason behind performing multi-level feature reduction 

is to obtain optimum features for classification, to improve 

the performance of scene classification. 

3.3.1 Level 1 Optimization on N-dimensional feature 

set  

PCA is a method in statistics that can change a group of 

correlated variables into a new group of uncorrelated 

variables, called principal components. It does this by using 

a special mathematical process called an orthogonal linear 

transformation. This technique can reveal the underlying 

structure of the data and help identify patterns or trends 

among the variables. Additionally, PCA can be used for 

dimensionality reduction, as it transforms the original 

variables into a lower-dimensional space while retaining 

most of the important information. This can be particularly 

useful for reducing the complexity of high-dimensional 

datasets and improving the performance of statistical 

models.  

The extracted and fused multi-features are hscene
i = (hscene

1, 

hscene
2, …, hscene

I ) has dimension of I x N, where I is number 

of scene images with fused feature vector dimension n. The 

dimensions are reduced to (P << N) using PCA as described 

in algorithm 2. The input features are standardized to have 

a unit variance and zero mean. The covariance matrix's 

eigenvectors and eigenvalues are calculated. A feature 

transformation matrix is computed associated with largest 

eigenvalues. The projection of feature vectors into a p-

dimensional subspace is done by including top p 

eigenvector of co-variance matrix. This is used as new basis 

for the further steps. This way the feature vectors hscene
i with 

N dimensions have been reduced to P dimensional 

representation, as hscene
P retaining maximum information 

about scene features. 

This process transforms the d-dimensional features into k 

dimensional subspace (where k << d). This indicates that the 

first principal component has the largest variance and is 

orthogonal to the other principal components. 

 

3.3.2 Level 2 Optimum feature subset selection  

The hscene
P features with P dimension were further reduced 

to obtain a lower dimensional space with higher inter class 

separation using Linear Discriminant Analysis [34]. This 

approach maximizes the separation of multiple scene 

classes, giving better recognition accuracy. The feature 

space hscene
P is projected to lower subspace (L << C-1), 

where C is the number of scene categories. This approach 

performs dimension reduction without much loss of class 

discriminative features. The feature reduction is done. The 

feature optimization steps are mentioned in the algorithm 2.  
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Algorithm 2: Multilevel optimum feature subset 

selection (MOFSS) 

Input: Cumulative histogram of fused features 

hscene
i 

Output: Optimum feature subset hscene
P and hscene

L 

Steps:  

1. Level 1 Optimization on N-Dimensional 

feature set 

hscene
i = {hs1, hs2, … hsN} 

2. Standardize the features 

ℎ𝑠𝑐𝑒𝑛𝑒 𝑗
𝑖 =

ℎ𝑠𝑐𝑒𝑛𝑒 𝑗
ⅈ −ℎ𝑠𝑐𝑒𝑛𝑒𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 

ⅈ

𝜎𝑗
        ∀𝑗    

3. Compute mean: µs =
1

𝑛
∑ ℎ𝑠𝑐𝑒𝑛𝑒  𝑖  

𝑛

𝑖=1
 

4. Compute covariance matrix 

Cov(hscene) =   
1

𝑁
∑ (ℎ𝑠ⅈ

− 𝜇𝑠)(ℎ𝑠ⅈ
− 𝜇𝑠)

 

𝑇𝑁

𝑖=1
 

5. Compute eigen vectors Vi and eigen values λi of 

Cov(ℎ𝑠𝑐𝑒𝑛𝑒 
) 

6. Cvi = λi Vi        (I = 1, 2, 3, … N), N no. of features  

7. Estimating high valued eigen vectors 

λ1 > λ2 > λ3 > ….. > λN  

8. Transformation matrix: T = [V1, V2, … Vp], with 

p eigenvectors associated with largest 

eigenvalues 

9. Project the fused features into the P feature 

subspace: 

hscene
P = T hscene

i  for I = 1,2, …, N 

 

10. Level 2 Optimization on P Dimensional 

feature set 

hscene
P 𝜖𝑅𝑑×𝑁, and hscene

i 𝜖 𝑅𝑑×1 is ith column of 

hscene  

class yi 𝜖 (1, 2,…,C),  

Nc=number of samples in each class C 

11. for each class: 

12.      Compute mean vector: 𝑚𝑐 =
∑ ℎ 𝑠𝑒𝑐 𝑛𝑒ⅈ

𝑁𝑐

ⅈ−1

−𝑁𝑐
∈

𝑅𝑑×1  

13.      Compute total mean vector: 𝑚 =
∑ ℎ𝑠𝑁

ⅈ=1 𝐶 𝑙𝑛 𝑙ⅈ

𝑁
∈ 𝑅𝑑×1  

14.      Compute within-class Scatter: 

     𝑠𝑤 =

∑ ∑ (ℎ𝑠𝑐𝑒𝑛𝑒  𝑗 −𝑚𝐶)(ℎ𝑠𝑐𝑒𝑛𝑒  𝑗 −𝑚𝐶)𝑇𝜖 𝑅𝑑×𝑑
 
 𝑁𝑐

𝑗=1

𝐶

𝐶=1
 

15.      Compute between-class scatter: 

     𝑆𝑏 = ∑ 𝑁𝑐
𝑐
𝑐=1 ⋅ (𝑚𝑐 − 𝑚)(𝑚𝑐 − 𝑚)𝑇𝜖𝑅𝑑×𝑑 

16.      Eigen-decomposition: 

     [V, D] = eig (Sw-1  Sb) 

17. end for 

18.      Project the features into C subspace: 

hscene
L = Top – p eigenvectors corresponding 

to the largest eigenvalues 

 

The mean vector, total mean vector for is class is used for 

computing within-class scatter and between class scatter. 

The eigenvectors and their corresponding eigenvalues are 

obtained.  The eigenvectors are arranged in decreasing order 

and top p eigenvectors with highest eigenvalues are 

selected. The d * i eigenvector matrix is utilized to transform 

the input samples into a new subspace by multiplying the 

original data matrix hscene
P by hscene

L. 

The paper follows the multi-level feature dimension 

reduction using two feature optimization techniques as 

detailed in fig. 6. The level 1 feature subspace selection 

maximizes the feature's variance, and level 2 maximizes the 

distance between different scene categories. Level 2 

optimization achieves dimension reduction by identifying 

the directions of linear discriminants that maximize the ratio 

of the between-class variance to the within-class variance. 

The resulting linear discriminants provide a lower-

dimensional representation of the data that maximizes class 

separability.  

 

Fig.6. Flow diagram for dimensionality reduction 

The feature vectors obtained after fusion high dimensional 

feature of size hscene
i 12000 x 40 is obtained. The dimension 

of this feature space was reduced using PCA, with number 

of principal components chosen as 30. Further to improve 

the inter class discrimination the feature vectors were 

optimized using LDA. The feature subspace obtained had 

dimensions of 12000 x 5. This resulted into significant 

reduction in the features with high discriminative power.  

3.4 Detection and Recognition of Scene 

After obtaining the optimal scene sub-features hsceneL by 

reducing dimensionality, the dataset consisting of six 

different scene categories was divided into a ratio of 80:20. 

The 80% of the features were utilized for training while the 

remaining 20% was allocated for testing. The scene 
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classification performance of the model was evaluated using 

five classifiers: i) Decision Tree, ii) Random Forest, iii) 

KNN (K nearest neighbour), iv) LGBM (Light Gradient 

Boosting), and v) XGBoost (Extreme Gradient Boosting). 

The evaluation process utilized various metrics, including 

classification accuracy, precision, recall, F1-score, AUC, 

ROC Curve, and Confusion matrix. Accuracy measures the 

correct classification rate. Precision calculates the 

proportion of true positives among predicted positives. 

Recall measures the proportion of true positives among 

actual positives. F1 score balances precision and recall. The 

confusion matrix breaks down true positives, true negatives, 

false positives, and false negatives. The ROC curve displays 

sensitivity (true positive rate) versus 1-specificity (false 

positive rate) at various thresholds and helps assess the 

classifier's trade-off between precision and recall. AUC 

(Area Under the Curve) measures the classifier's overall 

performance across all possible thresholds and is useful for 

comparing classifiers. 

4. Result & Discussions  

The results of the experimentation are discussed in this 

section. The performance of the proposed system was 

carried out on three different datasets. Indoor and outdoor 

scene categories custom dataset, 15-Scene dataset. The 

evaluations of models were done to check how the 

individual features of scene images, and multi-feature 

fusion perform. Also, the analysis sis performed to 

compare the effectiveness of dimensionality reduction 

approaches using just PCA, and PCA-LDA combined. 

Table I details the classification results obtained on the 

custom dataset for different classifiers with multi-features 

combined (SIFT, ULBP, LBPHF) and dimensionality 

reduction performed using PCA and LDA together.  

Table 1. Classifier Performance for Multi-Feature Fusion 

with PCA-LDA Dimensionality Reduction 

Classifier Accuracy Precision Recall F1-Score 

Decision Tree 92.70% 92.70% 92.07% 92.07% 

Random Forest 92.04% 94.37% 92.67% 93.51% 

 K- 

nearest 

neighbour 

93.63% 93.63% 93.63% 93.63% 

LGBM 95.13% 95.13% 95.13% 95.13% 

XGBoost 

 
93.958% 93.958% 93.958% 93.958% 

 

The Decision Tree classifier achieved an accuracy of 

92.70%, with corresponding precision, recall, and F1-Score 

also at 92.70%. The Random Forest classifier obtained an 

accuracy of 92.04%, with precision, recall, and F1-Score of 

94.37%, 92.67%, and 93.51%, respectively. The K-nearest 

neighbor classifier showed an accuracy of 93.63%. The 

LGBM classifier demonstrated outstanding performance 

with an accuracy of 95.13%. The XGBoost classifier also 

performed commendably, achieving an accuracy of 

93.958%.  

 

Fig. 7. ROC curve for LGBM classifiers with multi-

feature fusion, PCA-LDA Dimension Reduction 

LGBM and XGBoost are gradient-boosting algorithms that 

use a group of weak decision trees to make predictions. 

While both algorithms iteratively add decision trees to the 

model, they differ in the way they construct decision trees. 

LGBM uses a leaf-wise approach, while XGBoost uses a 

level-wise approach. In terms of both speed and accuracy, 

LGBM and XGBoost classifiers outperformed the Random 

Forest and KNN classifier. Specifically, the LGBM 

classifier showed fast training speed and achieved high 

accuracy of 95.13%. 

Figure 7 shows the ROC curve for the LGBM classifier. An 

AUC value of 0.99 indicates excellent classification 

performance. LGBM implements GOSS (Gradient based 

one-side sampling) and EFB (Exclusive Feature Bundling) 

which optimizes the learning process. LGBM has achieved 

high accuracy with reduced computation time.  

The table II details the performance of different classifiers 

on the feature subset generated after performing feature 

dimensionality reduction using PCA alone. The Decision 

Tree classifier achieved an accuracy of 80.16%, with 

corresponding precision, recall, and F1-Score also at 

80.16%, indicating balanced performance. The Random 

Forest classifier obtained an accuracy of 80.83% and 

demonstrated higher precision of 95.50% and recall of 

81.34%, resulting in an F1-Score of 87.80%. The K-nearest 

neighbor classifier showed an accuracy of 89.08%. 
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Table 2. Classifier performance for multi-feature fusion 

with PCA dimensionality reduction 

Classifier Accuracy Precision Recall F1-Score 

Decision Tree 80.16% 80.16% 80.16% 80.16% 

Random Forest 80.83% 95.50% 81.34% 87.80% 

 K-nearest 

neighbour 
89.08% 89.08% 89.08% 89.08% 

LGBM 93.25% 93.25% 93.25% 93.25% 

XGBoost 93.75% 93.75% 93.75% 93.75% 

 

The LGBM classifier achieved a accuracy of 93.25%, while 

the XGBoost classifier demonstrated the highest accuracy 

among all, with a commendable 93.75%. Both LGBM and 

XGBoost classifiers outperformed the others, achieving 

significantly higher accuracy and balanced performance 

across precision, recall, and F1-Score, minimizing both 

false positives and false negatives. 

Figure 8 shows the ROC curve for the LGBM classifier with 

PCA alone. An AUC value of 0.99 and above indicates 

excellent classification performance. The AUC value close 

to 1 highlight that the LGBM classifier model has a high 

true positive rate with low false positive rate. This supports 

the model’s ability to effectively distinguish between 

classes.  

 

Fig. 8. ROC curve for LGBM classifiers with multi-

feature fusion, PCA dimension reduction 

Table 3 presents a comparative analysis of the LGBM 

classifier's performance on both a standard dataset and a 

custom dataset. The analysis evaluates the impact of 

different feature extraction techniques on the classifier's 

accuracy. When utilizing SIFT features, an accuracy of 

74.25% was observed on the standard dataset. Incorporating 

ULBP + LBPHF feature fusion resulted in an improved 

accuracy of 78.85%. Further enhancement was achieved by 

applying PCA for feature reduction on SIFT, yielding a 

performance of 80.85%. The most significant performance 

boost was obtained through the fusion of three techniques, 

namely SIFT + ULBP + LBPHF + PCA, which achieved an 

accuracy of 93.25%. However, the SIFT + ULBP + LBPHF 

+ PCA + LDA approach outperformed all other feature 

extraction and dimension reduction techniques, achieving 

an impressive recognition accuracy of 95.13%. The results 

demonstrate the efficiency of feature fusion and dimension 

reduction in significantly improving the LGBM classifier's 

performance on custom dataset.  

The proposed model exhibited superior scene recognition 

accuracy when compared to previously published models 

on the 15-scene dataset. Table 4 provides a comprehensive 

overview of the performance comparison. The proposed 

model, which integrates multiple features from SIFT, 

ULBP, and LBPHF, outperformed other models developed 

using computer vision and traditional machine learning 

techniques. Specifically, the SIFT+ULBP+LBPHF+PCA 

configuration achieved an impressive precision of 84.25% 

and an AUC (Area Under the Curve) of 99%. Moreover, 

the other proposed method, 

SIFT+ULBP+LBPHF+PCA+LDA, achieved an even 

higher precision of 85.82% with the same AUC of 99%. 

These results highlight the effectiveness of the proposed 

feature fusion approach in improving scene recognition 

performance compared to existing models. The higher 

precision and AUC values indicate the model's ability to 

accurately identify and classify scenes from the 15-scene 

dataset, showcasing its potential for real-world applications 

in scene recognition tasks. Additionally, model is light-

weight, with lower computational complexity making it 

more suitable for real-time deployment on embedded CPU 

for building portable vision-based projects. We have 

deployed this model on Jetson embedded development kit, 

equipped with monocular camera and Bluetooth 

headphones. 
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Table 3. Detailed Comparative Analysis of The Model On Custom Dataset 

Method 
Custom Dataset 

Accuracy Precision  Recall F1-Score 

SIFT 74.25 74.25 74.25 74.25 

ULBP + LBPHF 78.85 78.85 78.85 78.85 

SIFT + PCA 80.85 80.85 80.85 80.85 

SIFT + ULBP + LBPHF + PCA 93.25% 93.25% 93.25% 93.25% 

SIFT + LBP + LBP HF + PCA + LDA 95.13% 95.13% 95.13% 95.13% 

 

Table 4. Comparative Analysis of The Proposed Model on 15-Scene Dataset 

Method Precision Recall F1-Score AUC 

LBP [26] 69.8 70.3 69.3 94.9 

Uniform LBP [26] 55.6 54.7 52.6 92.8 

LBP-HF [27] 63.8 63.9 62.5 92.8 

PLBP [28] 52.7 52.4 51.5 92.1 

SIFT_SPM [21] 62.3 57.8 57.0 94.4 

SIFT_FV [23] 79.6 79.2 79.0 98.4 

SIFT_ScSPM [22] 84.8 84.0 84.1 98.9 

SIFT_ULBP_LBPHF_PCA 

(Proposed -1) 
84.25 84.25 84.25 99 

SIFT_ULBP_LBPHF_PCA_LDA 

(Proposed – 2) 
85.82 85.82 85.82 99 

 

5. Test and Evaluation Of the Sceneguide Aid 

The proposed scene recognition model was implemented on 

an embedded processing board called Jetson Nano, and the 

system utilized a monocular camera along with Bluetooth 

headphones or earplugs as input and output devices. The aid 

was designed in three different forms: a wearable jacket that 

housed the processing unit inside the backpack, a wearable 

jacket with the processing unit inside the side pockets of the 

jacket, and a wearable vest that contained both the camera 

and processing unit. All three forms of the aid were powered 

by rechargeable battery packs. 

In order to capture scene details from a better front view, the 

scientists placed the monocular camera on the jacket and 

determined the placement dimensions as illustrated in 

Figure 3 (b). The distance between the shoulder joints (d (a, 

b)) and the distance between the shoulder and hip joint (d 

(a, e)) were measured, and the midpoint (d (a, b) / 2) was 

used to determine the horizontal position of the camera 

sensor center. For the vertical position, the center of the 

camera was fixed at a ratio of 2:3 from the shoulders (2/3 * 

d (a, e)). After calculating the placement point (c, d), the 

camera was secured inside a Velcro fixture to prevent 

movement during navigation. A push button was also fixed 

below the camera, with a separation of 1cm ± 0.5cm, to 

generate a request for the processing unit to perform the 

recognition operation. 

During the testing and evaluation of the SceneGuide aid, ten 

blindfolded volunteers were recruited. The participants were 

comprised of six individuals aged between 18-30 years and 

four individuals aged between 30-45 years. Of the ten 

participants, seven were male and three were female. Within 

the age group of 18-30 years, there were five male and two 

female volunteers, while within the age group of 30-45 

years, there were two male and one female volunteers. 

The effectiveness of the proposed aid was compared in two 

cases: (i) volunteers equipped with only a white cane (180 

trials), and (ii) volunteers equipped with a white cane along 

with a wearable SceneGuide Jacket or vest (180 trials). The 

volunteers were placed at a distance of 4 to 10 meters away 

from the scene event, and 360 scene recognition trials were 
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conducted in a repeated set to ensure recognition accuracy 

in unknown scenes.  During the evaluation, volunteers were 

trained for 10-12 hours across six different categories of 

scenes and instructed on how to use a white cane and rely 

on acoustic cues from the environment to make a final 

decision about the scene. Additionally, when equipped with 

the SceneGuide aid along with the white cane, volunteers 

were trained on how to generate requests for scene 

recognition. Each volunteer was presented with each 

category of scene three times, with and without the 

SceneGuide aid. The volunteers were provided with 

earphones to wear in one ear only, which allowed the other 

ear to capture ambient acoustic signals without obstruction. 

Table 5.  The Mean Response Time Observed for Scene 

Recognition by Blind-Folded Volunteers 

 

Sr. 

No.  

Scene 

Category 

White cane and 

surrounding 

sensory cues Avg 

(s) 

White 

Cane +  

SceneGuide 

Aid Avg (s) 

1 Kitchen  22.42 ± 5.00 7.01 ± 1.40 

2 
Living 

Room  
21.38 ± 6.47 7.38 ± 1.74 

3 Market  15.84 ± 5.71 7.16 ± 1.77 

4 
Shopping 

Place  
25.01 ± 5.37 8.46 ± 3.30 

5 Bus Stop  21.59 ± 5.25 9.77 ± 3.27 

6 
Auto 

Rickshaw  
20.71 ± 7.30 8.21 ± 2.69 

 

Table V presents a comparative analysis of the time taken 

by volunteers with and without the SceneGuide aid as a 

complement to the white cane. The proposed aid requires 

1.9 seconds to generate the scene type result after the 

volunteer presses the push button to request scene 

understanding. Additionally, it takes 1 second to produce an 

audio message such as "Shopping Place" or any other scene 

class. 

The results of the evaluation indicate that the volunteers 

equipped with a white cane and SceneGuide aid had a 

significantly faster recognition time, with an average 

recognition time of 8.00 ± 2.36 seconds. In comparison, the 

volunteers equipped only with a white cane responded to the 

unfamiliar scene with an average response time of 21.16 ± 

5.85 seconds. The difference between the two groups is 

quite significant, with the volunteers equipped with 

SceneGuide recognizing the scene 62.19% faster than those 

without it. 

It was observed that 20% of volunteers between the ages of 

30 and 45 were unable to recognize the scene category in 

their first attempt and required two or more responses from 

the SceneGuide aid to confirm the category. During indoor 

testing, some volunteers struggled to align themselves with 

the kitchen scene or living room scene and instead were 

misaligned with a wall, which led to incorrect responses 

from the aid. The effectiveness of the proposed aid in 

generating accurate scene responses is limited when the 

volunteer is not able to properly align with the scene. The 

recognition of public transport scenes such as bus stops and 

auto-rickshaws were more difficult due to the high level of 

ambient noise caused by vehicles and crowd. This made it 

challenging for volunteers to clearly hear the feedback from 

the aid, resulting in a longer recognition time. In 6.66% of 

cases, volunteers were unable to confirm the scene category 

even though the aid generated the correct response. 

The Market scene and shopping place scene are typically 

characterized by crowded environments, which provide a 

variety of sensory cues for recognition. However, 

differentiating between the Market scene and shopping 

place scene can be challenging due to their similar auditory 

cues, making it difficult to distinguish between the two 

places. The evaluations demonstrate that in such cases, the 

vision-based recognition of the scene plays a crucial role. 

While a traditional white cane mainly relies on tactile 

feedback from the surrounding environment, the 

SceneGuide Aid provides a comprehensive and accurate 

understanding of the user's surroundings.  

The volunteers experienced a reduction in anxiety and were 

able to relate the sensory channel feedback with the system's 

feedback. Additionally, the arching of the cane and 

perceptual efforts required to comprehend scene were 

reduced. As a result, volunteers experienced less confusion 

and a reduced cognitive load while navigating in the indoor 

and outdoor environment. 

The proposed model is best suited for real-time performance 

with low memory requirement and faster recognition 

response. The SceneGuide Aid appears to be a promising 

solution for individuals with visual impairments who 

require assistance in navigating complex environments. Its 

real-time performance and ability to provide scene 

recognition make it a valuable tool for enhancing mobility 

and independence. 

Fig. 9 presents insightful data on the usability evaluation of 

the SceneGuide aid based on feedback from the 

participating volunteers. The satisfaction levels for the aid's 

functionalities were rated on a scale of 1 to 5, with a higher 

score indicating a higher level of satisfaction. These 

evaluations were conducted to determine the aid's 

effectiveness in enhancing the navigation experience of 

individuals with visual impairments. The aid's design 

features were evaluated, including its portability, feedback 

type, real-time response, and user acceptance. 
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The aid's portability feature was rated moderately, with an 

average satisfaction score of 3.3 out of 5. This score 

indicates that the aid's lightweight, portable, and battery-

operated design is suitable for easy carrying in a backpack 

or as a wearable vest or jacket. The portability of the aid is 

a critical aspect since it enables the user to carry it wherever 

they go, ensuring that they always have access to the aid’s 

assistance. The auditory feedback system of the aid was 

found to be highly effective, with an average satisfaction 

score of 3.6 out of 5. This score indicates that the aid 

generates audio messages only when prompted by the user 

via a push button, which prevents unnecessary repetition of 

information. This feature allows the user to request multiple 

feedbacks in situations where confirmation was required, 

enabling them to utilize their hearing for other acoustic cues 

during navigation. The auditory feedback system provides 

optimum feedback without interfering with other sensory 

modalities, ensuring a seamless navigation experience for 

the user. 

The aid's real-time response and user acceptance were 

highly rated, with an average satisfaction score of 4.2 and 

4.3, respectively. These scores suggest that the aid's 

assistive functions were perceived as useful and appropriate 

by the users and could potentially improve their overall 

scene recognition experience. The real-time response of the 

aid is critical since it provides immediate feedback to the 

user, enabling them to navigate through their surroundings 

with confidence. 

The usability evaluations of the SceneGuide aid highlight its 

potential to significantly enhance the scene recognition for 

individuals with visual impairments. The aid's design 

features, including its portability, feedback type, real-time 

response, and user acceptance, were rated favorably, 

indicating that the aid's assistive functions were perceived 

as useful and appropriate by the users. 

 

 

Fig. 9. Scene-Guide Real-time Evaluation Feedback from blind-folded volunteers 

6. Conclusion 

Real-time wearable SceneGuide Aid is a significant 

contribution to assistive technology for visually impaired 

individuals, as scene recognition is a challenging task for 

them. The proposed method's experimental results 

demonstrate its high accuracy compared to state-of-the-art 

methods. This can be attributed to the feature fusion of 

SIFT, ULBPH, and LBPHF used in the method, as well as 

feature dimension reduction using PCA and LDA resulted 

in optimum features for classification with strong 

recognition. The highest recognition accuracy of 95.24 % 

was observed using LGBM classifier. The evaluation 

process utilized various metrics, including classification 

accuracy, precision, recall, F1-score, AUC, ROC Curve, and 

Confusion matrix. The model was deployed on Jetson-Nano 

Development board, with monocular camera for capturing 

the scene. To validate the method a different standard 

dataset 15-scene was used. The real-time usability 

evaluation of the model was done with involvement of 10 

blind-folded volunteers. The wearable, light weight 

characteristics of SceneGuide Aid make it accessible and 

convenient for blind users. The real-time nature of the 

system also ensures that users can receive immediate 

feedback on their surroundings, which can reduce their 

cognitive and perceptual efforts while indoor and outdoor 

navigation.   

Future plans involve evaluating the aid with visually 

impaired individuals and further miniaturizing the system. 

The training curriculum for visually impaired users will also 

be assessed, and additional scene categories such as 

hospitals, pharmacies, ATMs, and temples will be 

incorporated into the next version. Through these efforts, 

the SceneGuide Aid has the potential to significantly 

enhance the quality of life for the visually impaired by 

promoting greater confidence and independence. 
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