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Abstract: The DIET (Dual Intent and Entity Transformer) architecture is known as an effective method of intent classification and entity 

extraction for chatbot systems. However, a challenge is how to determine the best set of hyperparameters in terms of the number of 

iterations, the number of transformer layers, the transformer size, etc. to achieve the best DIET architecture. With huge possible 

combinations of hyperparameter values, there are an explosive number of DIET architectures to be considered. One solution to this problem 

is to integrate a statistical analysis technique such as Bayesian Optimization (BO) into the process of determining the best DIET 

architecture. The article proposes an integrated DIET-BO model, in which each DIET architecture is a candidate solution in the search 

space, the DIET training process is considered as an objective function and BO is used to find the best DIET architecture in the space of 

candidate solutions. A hotel chatbot conversational dataset is used to evaluate the effectiveness of the integrated DIET-BO model. The 

experimental results show that the integrated DIET-BO model achieves the intent classification F1-score of 0.869 and the entity extraction 

F1-score of 0.913. 
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1. Introduction 

DIET is a new technology integrated into the RASA 

framework [1] to assist users in building chatbot systems. 

DIET can automatically classify intents and extract entities 

from user conversations. DIET is an architecture based on 

Transformer [2], which provides connectivity with pre-

trained models such as BERT [3], GPT-3 [4], XLM [5], 

GloVe [6], RoBERTa [7], ConveRT [8], and XLNet [9]. 

According to Tanja Bunk et al. [10], an integrated DIET 

architecture is suitable for the chatbot development process, 

compatible with large pre-trained language models, and 

reduces training time. However, to improve efficiency, it is 

necessary to solve the problem of finding the most 

appropriate collection of hyperparameter values when 

training the DIET model. In practice, it is necessary to 

continuously adjust the hyperparameters and train the 

obtained DIET architecture to find the best combination. 

Therefore, how to find the best set of hyperparameter value 

is the most important issue.   

There are two main approaches to find the most appropriate 

collection of hyperparameter values: Manual Search and 

Automatic Search. Manual search starts with trying 

different hyperparameter values, depending on expert 

intuition and experience, in order to identify the most 

appropriate collection of hyperparameter values [11]. This 

approach then determines the relationship between 

hyperparameter values and the final result displayed on a 

visual tool. Performing manual searches is challenging for 

individuals without a professional background and practical 

experience, posing difficulties for non-specialists. 

Furthermore, as the number of hyperparameters and the 

value range for each hyperparameter increase, the 

management becomes more challenging due to the 

complexity of processing multidimensional data and the risk 

of misunderstanding or overlooking trends and relationships 

among the hyperparameters. 

In order to overcome the limitations of manual search, 

researchers have developed automated search methods, 

including grid search and random search. These approaches 

aim to streamline the search process and improve efficiency 

[11]. The principle of grid search is to search the entire 

search space. For each set of hyperparameter values found, 

it trains the corresponding DIET architecture with a 

machine learning model, which is considered the objective 

function. The training results are then evaluated to find the 

most appropriate collection of hyperparameter values. 

While this method allows for automated adjustment and has 

the potential to achieve the objective function's global best 

value, it comes with a significant trade-off in terms of 

execution time. As the number of hyperparameters and their 

corresponding value ranges increases, the effectiveness of 

the search decreases rapidly [12]. 

In order to mitigate the execution time problem encountered 

in grid search, a solution known as random search is 

introduced. This method selectively considers a subset of 

crucial hyperparameters, aiming to streamline the search 

process. The execution time is thus greatly improved, but 
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the obtained results are often only near-optimal. Random 

search offers improved efficiency compared to grid search 

when dealing with multidimensional data. However, its 

reliability decreases when dealing with complex training 

models. Therefore, how to automatically adjust to achieve 

high accuracy and high effectiveness is always an unsolved 

problem in machine learning. 

Finding the optimal set of hyperparameter values for the 

DIET architecture poses an optimization challenge, as the 

objective function is often challenging to define. This 

characteristic has led to the metaphorical description of this 

problem as a "black box". Traditional optimization methods 

such as gradient descent are not suitable for this class of 

problems. Therefore, Bayesian optimization can be chosen 

because it combines the previous results with the current 

solution to obtain a next prediction. Based on predictable 

results, the position at which the function reaches the 

optimal value can be inferred. Experimental results of 

previous studies show that BO is often superior to other 

optimization methods  [13],[14]. In this article, Bayesian 

optimization based on the Gaussian process [15] is used to 

determine the optimal set of hyperparameter values for the 

DIET architecture. 

The main contributions of the paper include: 

- Modeling the problem of intent classification and entity 

extraction into the problem of finding the optimal DIET 

architecture based on BO; an integrated DIET-BO model is 

then proposed; 

- Analyzing, normalizing and converting hotel chatbot 

conversation data into input datasets for the integrated 

DIET-BO model; and 

- Deploying and evaluating the effectiveness of the DIET-

BO integrated model with the hotel chatbot conversation 

datasets. 

The following contents of the article include: Section 2 

summarizes and evaluates related studies in the past 5 years, 

which focus on the DIET architectures for chatbot. On the 

basis of the analysis, Section 3 describes in detail the 

integrated DIET-BO model. Experimental implementation 

and results analysis are presented in Section 4. Finally, the 

conclusion is presented in Section 5. 

2. Related Works 

To achieve high effectiveness in natural language 

processing, chatbot systems often use machine learning 

models in their predictive architecture. DIET is an 

architecture widely used in natural language understanding 

(NLU) systems. However, determining the optimal set of 

hyperparameter values for the DIET architecture is often a 

difficult task, requiring a deep understanding of the data and 

the training process. The article focuses on evaluating the 

DIET architecture used in chatbot systems with natural 

language understanding in the last 5 years. 

The research of Astiti et al. [16] evaluates the performance 

of a chatbot system in natural language processing to answer 

questions about the COVID-19 epidemic. To build the 

chatbot system, the RASA framework and DIET 

architecture with 300 trained data samples are used. 

Experimental results on rasa.core.test and rasa.nlu.test show 

that DIET achieves about 85% accuracy of correct answers. 

A chatbot was created in education to make it simpler to 

give better and more easily accessible information services. 

L. Fauzia et al. [17] proposed a chatbot design that is built 

with the Rasa framework and is based on the DIET with 

default hyperparameters, with the goal of answering 

inquiries concerning new student admissions. DIET was 

utilized in research [18] to create an intelligent system that 

can assist the admissions process by automatically 

answering questions. The experimental results reveal that 

the DIET pipeline chooses hyperparameter settings based on 

experience. Similarly, Vidhish Panchal et al. [19] offered 

100 epochs in hyperparameter settings for a solution that is 

a voice-enabled and multilingual chatbot in Rasa and DIET. 

It can help both visually impaired persons and typical 

students learn by simply interacting with the speech bot. 

In the research of Arevalillo-Herráez et al. [20], DIET is 

used to solve the sentiment analysis problem. According to 

the research, DIET can be used efficiently and seamlessly 

for NLU-related text classification, such as sentiment 

analysis. To evaluate the effectiveness, three movie review 

datasets, including Internet Movie Database (IMDb), Movie 

Review (MR) and Stanford Sentiment Treebank (SST2), are 

tested. The best result is obtained when DIET uses a pre-

trained language model, surpassing other recent proposals 

on sentiment analysis. The accuracy rates of IMDb, MR, 

and SST2 are 0.907, 0.816, and 0.858, respectively. 

However, the research solely examines the default set of 

hyperparameter values without investigating alternative 

method. 

Shen et al. [14] proposes the combination of Bidirectional 

Encoder Representations from Transformers (BERT) and 

Random Forests (RF), called the BERT-RF model, to 

classify sentiments based on a social media dataset. This 

proposal overcomes the disadvantages of social media texts 

that are normally characterized by features such as short, 

colloquial, difficult to extract specific information, and thus 

affect the accuracy of sentiment classification. The BERT-

RF integration model uses BERT to derive feature 

extraction from the textual content on social networks and 

uses random forests as the classifier based on the features 

generated by BERT. To improve accuracy, this model has 

optimized the hyperparameters in the random forest model 

using the Bayesian algorithm. The research results show that 

the BERT-RF model has significantly increased sentiment 
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classification accuracy. However, this study does not 

compare Bayesian optimization with other methods such as 

grid search, random search with two hyperparameters of 

n_estimators and max_depth that are used to optimize for 

random forests. 

In summary, the above studies try to use the DIET 

architecture to increase the effectiveness of natural language 

processing. Depending on the specific case, each of the 

above studies shows how DIET is applied to each specific 

problem of intent classification, entity extraction in 

chatbots, and sentiment analysis. However, most of the 

above studies only use the default set of hyperparameter 

values and have not searched for the optimal set of 

hyperparameters. This article uses BO to find the most 

appropriate collection of hyperparameter values of the DIET 

architecture used in a chatbot system. 

3. Integrated Diet-Bo Model 

3.1. DIET: the architecture of intent classification and 

entity extraction 

Large-scale pre-trained language models are not suitable for 

developing chatbot systems, because they tend to use a lot 

of computational resources, take a long time to train, and 

create many practical challenges when developing chatbots. 

Furthermore, when building a multilingual chatbot, it is 

important to achieve high performance without large-scale 

pre-training, while most pre-training models are done with 

English text. 

To overcome this drawback, Tanja Bunk et al. [10] proposed 

DIET, an architecture based on the Transformer Neural 

Network with a centralized mechanism to handle both intent 

classification and entity extraction (Figure 1). DIET is built 

on a modular architecture that fits the software development 

process and improves training speed 6 times faster than the 

refined BERT model. DIET also provides integration with 

other pre-training models like BERT, GloVe, ConveRT, 

XLNet, etc. DIET is a flexible architecture for intent 

classification and entity extraction. Research results show 

that there is no single best embedding set for all datasets. 

This highlights the importance of a modular DIET 

architecture integrated into the RASA framework. 

The DIET's mechanism of action is similar to Transformer 

[2] but has been redesigned to take into account word order, 

is more compact and offers better performance. DIET can 

be used to conduct both intent classification and entity 

extraction, or it can execute only one of these tasks. 

3.2. Bayesian optimization 

In building a machine learning model applied to an 

intelligent chatbot system, the adjustment of 

hyperparameter values is to optimize the system. This is the 

process of finding a combination of input values for a 

machine learning model to achieve the best performance for 

a specified problem. Hyperparameters affect the accuracy of 

the model, so the adjustment of hyperparameter values 

should be done reasonably. To find a set of hyperparameter 

values which satisfy some constraints during optimization, 

various approaches can be used.  

- Manual: it is the way of selecting hyperparameter values 

based on experience, guessing before training the model; 

then repeats the selection process and train the model until 

Fig 1. The DIET architecture [16] 
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the most appropriate collection of hyperparameter values is 

found. 

- Grid search: it is the method to find the most appropriate 

collection of hyperparameter values by creating a grid of 

values and in turn training the model according to each of 

those values to find the most appropriate collection of 

hyperparameter values. 

- Random search: it is the approach of randomly selecting 

hyperparameter values for training the model and repeating 

this process for a limited number of iterations until the most 

appropriate collection of hyperparameter values is found. 

- Automatic search: it is the use of some automatic 

methods to select the most appropriate collection of 

hyperparameter values. 

For some problems, such as finding the best DIET 

architecture, the objective function f(x) is too complex to 

represent explicitly or cannot be analyzed, so f(x) can be 

considered as a black box. Applying grid search or random 

search may encounter the problem of unusable previous 

hyperparameter values. As for the manual method, the 

choice of hyperparameter values depends too much on the 

experience of the trainer. Therefore, BO is suitable for 

automatic search of hyperparameter values, reducing the 

number of evaluations per set of hyperparameter values, but 

consuming considerable time per evaluation. In fact, this 

helps BO jump out of local optimizations. 

BO consists of two parts: the surrogate model and the 

acquisition function [21]. The surrogate model has the role 

of storing, updating, and extracting features of the 

relationship between hyperparameter values and 

corresponding training results. Based on the features 

provided by the surrogate model, the acquisition function 

performs the optimal value calculation. BO works primarily 

by constructing a surrogate model of f(x), which has a 

probability distribution of points that represents the 

properties of f(x). Using the surrogate function costs less 

than the objective function. So BO chooses the next values 

by optimizing the surrogate function based on past 

evaluation results [22]. The idea here is that, when the data 

is large enough, the surrogate function is asymptotic to the 

objective function, and the best found hyperparameters of 

the surrogate function is also the best for the objective 

function. Some popular choices used as surrogate functions 

are Gaussian process [15], Random Forest [23] and Tree 

Parzen Estimator [24]. 

Since we don't know anything about the optimal function, 

besides getting the results from the training, there are two 

factors that need to be fine-tuned: 

- Exploration: prioritizes the selection of the most 

uncertain points, to help jump out the local optimal position 

during the search, but that is often time consuming. 

- Exploitation: prioritizes the points near the optimal region 

based on the current optimal position by exploiting existing 

information. 

Instead of falling into exploitation vs. exploration tradeoff, 

we can mix the two into one. The core idea of BO to solve 

this problem is to build an acquisition function that 

considers which option is the next best fit. The values 

contained in the representation model are used to create the 

acquisition function a(x). The next point xt is determined by 

optimizing the function a(x), which is a function used to find 

out parameters in the BO process. It uses the mean and the 

Fig 2. Implementation and analysis of results. 
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predictive variance generated by the surrogate function. The 

effectiveness of the function f(x) is evaluated using the 

updated parameters xt. The process goes on until the best 

parameters are reached. The Bayesian optimization 

algorithm [25], [26] is described as follows: 

Algorithm 1 Pseudocode for Bayesian optimization 

algorithm 

for t do=1,2,... do 

update surrogate model on the observed dataset Dt-

1 

select new data point xt by optimizing a(x): xt = 

argmaxa(x)  

query yt = f(xt) 

update dataset Dt = Dt-1U(xi, yt) 

The components of BO include: 

- Objective Function: takes hyperparameters and returns 

the measure to be minimized or maximized. 

- Domain space: the value range of hyperparameters to 

calculate. 

- Optimization algorithm: the way of employing the 

surrogate function and picking the model's next value. 

- Results: measure and value pairs for the algorithm to build 

the surrogate function. 

In this article, we propose to use the Gaussian Process for 

the approximation model and the expected improvement for 

the acquisition function [27]. 

3.3. Integration of DIET and BO 

Searching hyperparameter values by grid or random search 

has limitations such as long training time and unexpected 

convergence. To overcome the drawbacks, the integrated 

DIET-BO model helps to find the most appropriate 

collection of hyperparameter values. BO uses an estimator 

to estimate the distance between the hyperparameter values 

and the actual result. Instead of deciding the model’s 

hyperparameter values on their own, DIET-BO uses BO to 

find the optimal hyperparameter values for the DIET 

architecture. In the proposed DIET-BO model, the DIET 

architecture evaluation process is the objective function in 

the search space of BO. The integrated DIET-BO algorithm 

is implemented through 8 steps as shown in Figure 2. 

Step 1: Initialize the search space of hyperparameter value 

sets. The initialization needs to be well defined so that the 

value of each hyperparameter is used correctly. 

Step 1: Update the surrogate function with new data using 

the Gaussian normal distribution. Initially the data is 

randomly generated. After each loop, the hyperparameter 

values are updated and used for the surrogate function. 

Step 3: Select the potential hyperparameter values based on 

the acquisition function. The acquisition function is used to 

weigh the choice between discovery and exploitation. 

Step 4: Train the DIET architecture based on the set of 

hyperparameter values selected in Step 3. 

Step 5: Evaluate the effectiveness based on test data with a 

new set of hyperparameter values. 

Step 6: Check the stopping condition, which can be a 

limited number of loops or a predefined threshold. 

Step 7: Update hyperparameter values and results of each 

loop through Bayesian cumulative calculation to create a 

more stable model. 

Step 8: The returned result is the most appropriate 

collection of hyperparameter values. 

In addition, the DIET-BO model has the flexibility to use 

new data or data from the pre-training model in combination 

with application domain data. 

4. Implementation and Analysis of Results 

We use RASA 3.0 to implement the integrated DIET-BO 

model, with the dataset collected from hotel conversation 

sites. The data was then edited according to the structure of 

RASA with 19 intents, 24 entities and more than 700 

sentence patterns. The Python 3.8 language and related 

libraries are used to optimize hyperparameter values based 

on Bayesian optimization. 

To avoid overfitting and underfitting when building the 

model, we used the Leave-One-Out technique (a case of k-

fold cross-validation) to organize the training and testing 

dataset during training and evaluating. 

To evaluate training models, the commonly used criterion is 

F1 score [14], [16]. In our implementation, the integrated 

DIET-BO model is compared to grid search and random 

search. 

With the criterion for optimal evaluation being the F1 score 

of intent classification (intent f1-score) and entity extraction 

(entity f1-score), the hyperparameters used in 

implementation and search space are set up as follows: 

embedding_dimension = (1, 1000) 

epochs = (16, 1024)$ 

number_of_transformer_layers = (0, 8$ 

transformer_size = ['4', '16', '64', '256', '1024'] 

We perform 20 different sets of hyperparameter values for 

grid search, random search and DIET-BO integrated model. 

The results are shown in Figure 3, where each point is a 

corresponding optimal result: diamond points represent 

DIET-BO’s results, square points represent random search’s 

results, and triangle points represent grid search’s results. 
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Figure 3 shows that grid search’s F1 scores have a low 

distribution: intent classification below 0.1 and entity 

extraction below 0.4. For the random search, the distribution 

of F1 scores on intent classification and entity extraction is 

more scattered. Especially with the DIET-BO model, F1 

scores of both intent classification and entity extraction tend 

to distribute towards high. Also as described in Figure 3, 

with the DIET-BO model, initially the distribution points 

are low but gradually their positions move to higher. This 

represents an improvement in the effectiveness of the DIET-

BO model by learning from previous hyperparameter 

values. The learning results in the higher distribution of F1 

scores on both intent classification and entity extraction of 

the integrated DIET-BO model. 

 

Figure 4. A comparison of F1 score on intent classification 

and entity extraction over 20 runtimes. 

The obtained result of the integrated DIET-BO model is the 

optimal set of hyperparameter values as shown in Table 4. 

The results are also shown through a Parallel Coordinates 

Plot (Figure 4), which analyzes information from the set of 

hyperparameter values compared to the optimization criteria 

thanks to the ability to display the criteria and difference 

between hyperparameters. 

The Parallel Coordinates Plot in Figure 4 is shown over 20 

runtimes to find the most appropriate collection of 

hyperparameter values. It shows the relationship between 

hyperparameters and criteria to be optimized (F1-scores of 

intent classification and entity extraction). Each connection 

line between the positions helps us to determine the optimal 

criterion compared to the selected hyperparameter values. In 

addition, the Parallel Coordinates Plot helps us to have an 

intuitive comparison between the optimal values and the 

changes of hyperparameters. Based on the Parallel 

Coordinates Plot, we see that the parameter transform_size 

has a major impact on the effectiveness of the model. 

The experimental results also help to determine the role of 

hyperparameters, i.e. their impact on the evaluation score. 

As shown in Figure 5, transform_size has the greatest 

impact on both intent classification and entity extraction. 

Meanwhile, epochs had a second effect on intent 

Table 1. The obtained optimal set of hyperparameter values of the integrated DIET-BO model. 

Hyperparameter Value F1 score on intent classification F1 score on entity extraction  

embedding_dimension 905 

0.8693769998117824 0.9130434782608695 

epochs 356 

number_of_transformer_layers  8 

transformer_size 256 

 

Fig 3. The Parallel Coordinates Plot of 20 runtimes shows the relationship between 
parameters and optimized. 
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classification, but no significant effect on entity extraction. 

number_of_transformer_layers has the least impact on both 

intent classification and entity extraction. 

 

Fig 5. The Parallel Coordinates Plot of 20 runtimes shows 

the relationship between parameters and optimized. 

5. Conclusions 

The paper proposed an approach of integrating DIET with 

BO to find the most appropriate collection of 

hyperparameter values. The article has implemented the 

integrated DIET-BO model with the hotel chatbot 

conversation dataset, which are the conversation patterns 

between customers and chatbot. The preparation and 

normalization of the training dataset are described in detail 

and the evaluation indicators are analyzed. The 

implementation results show that the integrated DIET-BO 

model achieves the highest effectiveness when the most 

appropriate collection of hyperparameter values is found. 

This is shown by F1-scores of intent classification and entity 

extraction reaching 0.869 and 0.913, respectively. The 

results also show the impact of each hyperparameter on the 

DIET architecture. 
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