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Abstract: In this paper, a highly robust and first-of-its-kind Incremental Feature Selection (IFS) framework is designed for BigData 

Analytics, which considers both feature reduction as well as feature sensitive instance selection as a viable solution towards BigData 

Analytics. Unlike classical threshold based feature selection methods, this work is designed for an IFS model encompassing Chi-Squared 

IFS with Feature Sensitive Progressive Instance Selection (FSPIS). This concept intends to meet Volume, Variety, Velocity, and Veracity 

aspects of the BigData simultaneously. FSPIS model executed K-Means clustering over the selected features and performed incremental 

stratified instance selection. The proposed FSPIS model initiated feature selection with minimum volume as 20% (and maximum as 80%), 

which was continuously updated by appending new (ranked) features and corresponding instances to achieve expected accuracy 

performance. To ensure generalizability of the solution, FSPIS model can be applied to an ensemble learning model encompassing Bagging, 

AdaBoost, k-NN, Random Forest and Extended-Tree Classifiers as foundational-classifiers to perform consensus-based classification. 

Simulation results over the different datasets confirmed that the proposed FSPIS model selects minimum features while retaining higher 

statistical performance (i.e., Accuracy), and minimum computational time than other state-of-art techniques. 

Keywords: BigData Analytics, Feature Sensitive Progressive Instance Selection, Incremental Feature Selection, Select-k-Best. 

1. Introduction 

The high pace increase in advanced software technologies, 

internet, and affordable hardware solutions have expanded 

the opportunities for global human society to exploit 

aforesaid technologies for making efficient, and timely 

decisions. The above mentioned technologies have enabled 

the different decentralized computing environment to 

exploit the large set of input data to perform real time data 

mining, and decision making. Exponentially developing 

technologies, and allied up-surge in demands from the 

different socio-industrial verticals such as industrial 

communication, business intelligence and analytics, e-

Healthcare, surveillance, civic administration, and allied 

query-driven data support, science and technology, social 

media, e-Commerce, and digital education, etc., have given 

rise to a new computing world called BigData. BigData, 

often commonly defined using 4Vs stating Volume, Variety, 

Velocity, and Veracity demands a state-of-art robust 

computing environment to process significantly large data 

elements to identify the optimal set of cues for accurate 

decision making. Despite the roaring significance in the 

contemporary (analytics) world [1], [2], [3] BigData need to 

address numerous challenges including large heterogeneous 

data, unstructured data, and high-dimensional humongous 

data. BigData analytics possesses a large set of spatio-

temporal features having impact on certain target cues or 

decision-making variables. However, processing a 

significantly large set of features over humongous 

(heterogeneous and high dimensional) inputs make major 

BigData analytics models confined, especially due to large 

features, convergence and local minima, and delay issues. 

Such limitations confine the efficacy of the BigData 

analytics solutions to meet Velocity and Veracity demands. 

To alleviate such issues, learning over most significant 

features can be of great significance. Moreover, the 

analytics model requires the ability to process humongous 

data swiftly and learn over the maximum possible, and 

significant features to make final prediction accurately [4], 

[5]. 

In sync with the above stated 4V challenges, the classical 

analytics solutions or data mining methods which are 

typically based on the full-batch-mode learning concept turn 

into confined solutions, and fail in addressing 4V 

expectations. This as a result makes analytics solutions 

inferior to contemporary real-time decision systems. The 

exploitation of the complete set of original data is visualized 

to be the key reason behind such limited performance [6], 

[7]. On the contrary, there can be a set of minimum features 

which could give the same or relatively similar performance 

even with significantly reduced data size. As a result, it can 

help not only alleviate the issues like local minima and 

convergence but can provide higher accuracy with low 

latency, and achieves Accuracy (i.e., Veracity), Time-

efficient computation (i.e., Velocity), even with large (i.e., 

Voluminous) and high-dimensional i.e., Variety) input data. 

With respect to BigData attributes, the dimensionality 
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reduction methods can be of vital significance so as to 

minimize the dimensions of the original data, while enabling 

better learning efficiency [8]. 

BigData analytics typically consider analytics problems as 

three key tasks, clustering, regression and classification. In 

these processes, the primary objective of feature selection is 

to retain a subset of the most significant features to construct 

an optimal prediction model, by dropping irrelevant or less-

significant features [9]. It can help in improving the 

performance of the prediction systems by minimizing the 

challenges of high dimensionality, performance generality, 

and accelerating the computation [2], [10]. It also helps in 

improving the interpretability of the model. BigData 

analytics employs different techniques like mining, machine 

learning etc., to perform feature learning, and allied decision 

making [11]. However, the classical data mining, and allied 

feature selection methods undergo limited performance, and 

demand more computational time and memory. On the 

contrary, in a real-world environment, the data volume 

keeps increasing over time, and hence makes most of the 

existing methods limited under dynamic data. Despite being 

explored extensively, the majority of the at-hand solutions 

are capable of learning data in batch-wise processing, and 

inculcates features selection as an offline process. 

Moreover, in this mechanism, the features of training 

instances are provided in advance. Unfortunately, such 

hypotheses may not be applicable to all the real-time 

BigData environments, where the input data is dynamically 

fed into the computing system, and the analytics model 

might have to do online feature learning to make decisions. 

Moreover, the majority of the existing feature selection 

methods merely focus on dimensional reduction while 

ignoring the presence of redundant instances in the selected 

feature set. 

Motivation: In the last few years, a few efforts have been 

made by applying Rough Set methods towards feature 

selection [12], [13], [14]; however, these methods failed in 

addressing dynamic data, and solved feature selection as an 

offline problem. Moreover, these approaches merely 

focused on dimension condensation, even at the cost of 

feature (instance)-insensitiveness, and uncertainty [15]. 

Despite of the fact a few methods like applied Fuzzy Rough 

Set concept [4] is used to improve feature selection online, 

but they failed in addressing data redundancy, and hence 

underwent the compromised performance. Though, the 

concept of Incremental Feature Selection method has gained 

widespread attention, due to its capacity to study data 

online, and estimate the features effectiveness dynamically 

to keep the most important, while dropping the redundant 

one. The Incremental Feature Selection methods have 

considered different computing paradigms such as, learning 

old data first, and then appending learnt new data with the 

old selected features. However, a paradigm is executed with 

the minimum feature set, and sample size to increase both 

feature, and sample dynamically to attain the expected 

maximum 4V performance.  

Contributions: 

1. To achieve 4V-centric BigData analytics, the FSPS 

model applies Incremental Feature Selection followed 

by FSPIS method is used, that helps not only to retain 

reduced feature counts but also sample size to attain 

computationally efficient analytics. 

2. Since, the FSPIS method applies both feature selection 

as well as sample selection as the cumulative solution 

for Incremental Feature Selection; it avoids the need of 

a separate sample selection method. It enhances the 

computational efficiency of the BigData analytics 

solution. 

3. Unlike classical approaches, FSPIS model contributed 

a first of its kind feature sensitive progressive sampling 

concept that applied K-means clustering over each 

selected features and performed stratified sample 

selection method to ensure that even with the 

minimum sample size, the proposed features deliver 

better performance.   

Organization: The manuscript is structured into five main 

sections. The related work presented in section II, followed 

by Section III which outlines the problem definition and 

objectives. The system model presented in section IV, while 

section V highlights results and subsequent discussion. 

Lastly, section VI represents conclusions and inferences. 

2. Related Work 

Realizing the efficacy of rough-set methods, significant 

efforts have been dedicated in recent years where the key 

emphasis was made on feature variations, values and 

instances. In sync with these key aspects, Wang et al., [16] 

focused merely on feature variation by applying classical 

rough-set algorithms. In this method, feature entropy 

information was applied as a decision variable to perform 

dynamic feature selection in an incremental manner. Unlike 

[16], Shu and Shen [17] developed an incremental feature 

selection model which performed iterative feature addition 

and feature deletion concept to achieve higher accuracy. 

However, this approach was computationally exhaustive 

and even limited for large input data size with high 

dimensional features. As an enhanced solution, Qian et al., 

[18] proposed a simultaneous addition and deletion-based 

feature set selection model by executing knowledge 

granulation updates within systems dealing with sets of 

information. Jing et al., [19] assessed the efficacy of IFS by 

applying knowledge granularity information. This method, 

initially evaluated a granular feature matrix, which were 

subsequently utilized it incrementally to identify the most 

suitable set of features.  
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To cope up with dynamic data, [20] have proposed 

streaming feature selection methods. Javidi and Eskandari 

[20] began by estimating the significance level of each 

feature, and later utilized a rough set algorithm to conduct 

feature selection on a per stream basis. An improved 

solution was suggested by Liu et al., [10] developed a 

method for real time multi-label streaming feature selection. 

Unlike [21], in [10] applied neighborhood rough sets 

algorithm to perform incremental feature selection. Zhou et 

al., [22] contributed a real time dynamic feature selection 

model on the basis of proximity rough sets algorithm, which 

was especially designed to operate with an imbalanced 

dataset. Towards feature value variation cases, authors 

employed rough set-based IFS. Wang et al., [23] designed 

an IFS model by applying information entropy estimates. 

Exploiting the variances in feature values over one to 

another instance, Shu et al., [24] applied two IFS methods 

for incremental values associated with positive region.  

Initially the instance variation information of dynamic 

instance is applied for only one instance. For the newcomer 

instance, Liu et al., [25] intended to identify the minimum 

values within an information system devoid of decision 

labels to perform incremental feature selection. Chen et al., 

[26] developed an IFS concept by using rough sets variable 

precision. Yet these techniques were inadequate in 

addressing BigData analytics challenges, especially high 

dimensionality and large instances over multiple features. 

Unlike above stated approaches, an efforts have been made 

towards increasing instance sets dynamically. Das et al., 

[27] focused on increasing instance sets rather than reducing 

the feature sets. For instance, Liang et al., [28] proposed for 

group instance addition to achieve better performance. A 

group incremental feature selection concept by applying 

three entropy measures using rough sets. Here, rough-sets 

helped in deciding the group of instances to be added 

iteratively to achieve better performance. Zeng et al., [29] 

developed single addition and deletion (of feature) model 

for incremental feature selection. Gaussian kernelized fuzzy 

rough sets is used to estimate the dependency amongst 

feature for incremental feature selection. Yang et al., [30] 

applied a fuzzy rough set algorithm towards incremental 

feature selection. To update the relative discernibility 

relations with the old instances and the incoming one 

instance to perform continuous instance increment. In 

subsequent work, Yang et al., [31] developed two feature 

selection models using fuzzy rough sets. This approach, 

initially they chop the input data into multiple chunks and 

estimating the incremental relative discernibility 

associations to iteratively refine the feature subsets. 

Noticeably, estimating the relative discernibility 

relationship involves a computationally exhaustive process, 

as it necessitates n x n comparative discernibility relation 

matrices for every individual feature. The n denotes the 

amount of instances associated with each feature. In such 

conditions, [30] and [31] can be limited due to large 

instances in each feature. It indicates the scope of both 

features as well as associated instance selection, 

simultaneously. Though researchers claimed that 

information entropy does not consume more memory and 

computation in comparison to the relative discernibility 

relations the iterative fuzzy rough-set for entropy estimation 

and feature update makes it more complex and exhausting. 

Although, entropy information can aid in achieving feature 

selection [32], it fails to consider the combined aspects of 

both features and instances simultaneously.  

Moreover, the above stated methods do not address the 

problem when a large instance including both old data as 

well as newcomer one possesses the same level of 

significance or values. Addressing this problem can lead to 

improvements in both computational cost and accuracy. The 

utilization of active incremental feature selection [33] 

emerges as a promising solution, enabling the dynamic 

update of features based on representative instances.   

3. Problem Statement and Objectives  

3.1 Problem Statement 

To develop a highly robust improved Chi-Square driven 

Select-k-Best algorithm with feature sensitive incremental 

instance selection model. 

3.2 Objectives 

1. To minimizing the suitable set of features. 

2. To maximizing the output accuracy, and 

3. To reduce the computational time. 

4. System Model  

The key intend of FSPIS model is to design a robust feature 

selection method which could ensure superior performance 

with low-redundant computation and higher accuracy. The 

matter of fact is that the optimality of a feature selection 

method depends on the fact that how significant feature it 

retains, and with what optimal learning environment it 

classifies the data to ensure better performance. In other 

words, a feature selection algorithm can be effective only 

when it is armoured with suitable feature extraction, sample 

selection, and classification methods. Considering this fact, 

FSPIS model intends to improve feature selection, sample 

selection, and classification functions. To analyse efficacy 

of the FSPIS model under various data conditions, FSPIS 

model is employed on different benchmark data for BigData 

analytics, such as Breast Cancer, Sonar, Lung Cancer, 

Parkinsons, WDBC, Ionosphere, KC1, Page Blocks, PC1 

and Scene. Noticeably, these datasets possess the different 

features along with the different data sizes, and therefore 

satisfactory performance over the different data can enable 

the FSPIS model to be generalized for BigData analytics. 

Noticeably, the aforesaid data is considered in this study and 

did not require more sophisticated pre-processing or feature 
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extraction algorithms, and hence, focused more on feature 

selection, sample selection and classification problems. In 

this reference, the FSPIS model introduces a ground-

breaking incremental feature selection method that retains 

minimum possible features while ensuring minimal 

(corresponding) samples from the selected features so as to 

ensure optimal performance. Undeniably, in the efficacy or 

limitation of a feature selection method or resulting selected 

features. Over the same selected features, the different 

classifiers can perform distinctly and hence generalizing 

suitability of a feature selection method and allied feature 

sets can be challenging.                                                                                                                                                                                        

To alleviate this problem, in the FSPIS model a maximum 

voting ensemble driven consensus model is designed to 

perform classification. Unlike traditional standalone 

classifier-driven prediction, the proposed model employs k-

NN, Bagging, AdaBoost, Random Forest and Extended 

Tree Classifier as foundational classifiers. These basic 

classifiers perform distinct classification and label each 

instance with corresponding class-label. Subsequently, the 

proposed ensemble model estimates consensus for each data 

element by employing labels given by each base-classifier. 

Thus, a data with the higher class-label is predicted as that 

(corresponding) class. In this manner, being consensus-

driven classification, the FSPIS model provides more 

accurate and reliable performance. Thus, aligned with the 

aforementioned research implementation modality, FSPIS 

model encircled with the subsequent key phases: 

1. Data Acquisition and Preprocessing 

2. Incremental Feature Selection 

3. Feature Sensitive Incremental Instance Selection 

4. Ensemble Learning based Classification. 

Fig. 1 illustrate the overall proposed model and in the 

subsequent section in depth discussion of the model is 

provided. 
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Fig. 1: Overall Proposed BigData Analytics Model with Incremental Feature Selection

4.1 Data Acquisition and Preprocessing 

To evaluate the FSPIS model performance, consider the 

various benchmark datasets possessing the varied number of 

features, classes and instance sizes. Here, the key motive 

was to evaluate whether the FSPIS model can perform 

efficiently over the different data conditions. Obtained a 

total of 10 benchmark datasets from UCI ML Repository, 

accessed on https://www.openml.org/search platform. A 

snippet of the dataset is considered and their corresponding 

features are given in Table I. 

The Table I signifies the diversity of the datasets and hence 

an efficient performance by the proposed feature selection 

model over these datasets can indicate its suitability towards 

real-time BigData analytics tasks. In sync with the original 

data and the different non-linear ranges, to alleviate any 

possibility of over-fitting during training, before executing 

the feature selection, processed for Min-Max normalization.  
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Table I. Dataset Collection 

Datasets Instances Features Classes 

Breast Cancer 0699    009          2 

Sonar 0208 060 2 

Lung Cancer 0226 024 2 

Parkinson 0195 022 2 

WDBC 0569 030 2 

Ionosphere 0351 034 2 

KC1 2110 021 2 

Page Blocks 5473 010 2 

PC1 1109 021 2 

Scene 2407 299 2 

 

The proposed normalization model mapped the input data 

into the range of 0 to 1, and thus alleviated any possibility 

of convergence and over-fitting due to data non-linearity. 

Functionally, in the proposed method, each data element pi 

of the selected features P is assigned a normalized value pi, 

ensuring it falls within the range of [0, 1].  An equation (1) 

is used to calculate normalized value(s) of the data input pi.   

 

𝑁𝑜𝑟𝑚(𝑝𝑖) =
𝑝𝑖 −𝑚𝑖𝑛(𝑃)

𝑚𝑎𝑥(𝑃) − 𝑚𝑖𝑛(𝑃)
 

(1) 

   

4.2 Incremental Feature Selection (IFS) 

As stated above, this work primarily focused on designing a 

powerful and efficient incremental feature selection model 

followed by incremental instance selection. The key motive 

is to maintain the important features while processing the 

minimum possible instances for the selected features to 

make the computation more efficient. To achieve it, 

developed a state-of-art a novel and robust incremental 

feature selection method using improved dual-objective 

driven Chi-Squared concept. This approach uses the SkB 

method to evaluate significant rank of the features. To 

achieve it, applied dual objects driven Chi-Squared concept 

which aid in evaluating a set of suitable important features 

(say, top-k features). These top-k features have been later 

processed for instance selection using Feature Sensitive 

Progressive Sampling (FSPS) method.  

4.2.1 Single Variable Chi-Squared Test 

The Chi-Squared feature selection employs the 𝜒2 statistics 

to estimate the significance level of a feature by comparing 

it to the target class. This method assesses each feature 

individually to understand the level of significance or the 

strength of its relationship with the variable target. 

Functionally, it acts as a vital semi-parametric evaluation 

method especially applied to contrast more than two 

variables within arbitrarily selected datasets. Sometimes, it 

is also called the independence-test approach, as it enables 

finding the independence in between two arbitrary values or 

variables. Thus, it estimates a value on the basis of the 

associations in between the instance and the class it should 

belong to. In case of 0-value, it signifies the absence of any 

association between the instance and the class. In contrast, 

higher value, signifies the stronger relationship between the 

instance and corresponding class. In the FSPIS model, 

applied Chi-Squared method from the scikit-learn library to 

conduct initial feature estimation. SkB method which 

selected the k-highest scoring features from the complete 

feature space. Functionally, Chi-squares statistics 

estimation acts in sync with the information-theoretic 

feature selection method, where it intends to retrieve the 

intuition that the best terms 𝑡𝑘 for certain class 𝑐𝑖 exhibit 

distinctive distribution among both positive and negative 

examples of the class 𝑐𝑖. In this reference, Chi-squares 

assessment is performed using the equation (2).  

𝐶ℎ𝑖 − 𝑆𝑞𝑟(𝑡𝑘, 𝑐𝑖) =
𝑁(𝐴𝐷 − 𝐶𝐵)2

(𝐴 + 𝐶)(𝐵 + 𝐷)(𝐶 + 𝐷)
 

(2) 

The equation (2) signifies the Chi-Square estimation, which 

assigns a score to each feature within each class. The 

description of the symbols is provided in the Table II.
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Table II. Notations 

Symbol Description 

N The total numbers of data or documents in 

the corpus 

A The data within class 𝑐𝑖 that contain the 

term 𝑡𝑘
 

B The count of documents containing the term 

𝑡𝑘 in different classes 

C The count of documents within class 𝑐𝑖 

which do not encompass any term of 𝑡𝑘 

D The count of documents which do not 

encompass any term  𝑡𝑘in different classes 

 

Subsequently, the individual scores were combined into a 

final composite score as in equation (3).    

𝑀𝐴𝑋(𝐶ℎ𝑖 − 𝑆𝑞𝑟(𝑡𝑘, 𝑐𝑖)) (3) 

Now, unlike classical Chi-Squared methods [34], [35], [36] 

where merely the highest score of the feature is considered 

as the decision variable for feature selection, and the dual 

objective driven score estimation. In other words, FSPIS 

model aims to identify or retain a feature subset capable of 

achieving improved accuracy, when dealing with minimal 

features. In the FSPIS model, this fitness estimation as in 

equation (4) is obtained for each feature. 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛼𝐴 + 𝛽𝐵 (4) 

  

The parameters A and B represents the amount of features 

and the minimal expected accuracy, in equation (4).  

Noticeably, being an incremental feature method, the values 

of 𝛼 and 𝛽 are dynamically  fine-tuned to  align with the 

desired objective function (4). In the FSPIS model, the 

𝛼and 𝛽are assigned to lower threshold. A majority of the 

classical feature selection estimates feature rank (Example, 

Chi-Squared rank, or Pearson Correlation Coefficient) and 

retains those features having higher rank, irrespective of the 

fact that such selected features might impact the overall 

accuracy over run-time execution. To alleviate this problem, 

FSPIS model is utilized as a dual-objective driven fitness 

function. It aims to minimize the value of X while 

simultaneously maximizing accuracy (Y).   

Thus, in order to meet the requirements for higher accuracy, 

assigned a weight of 20% (𝛼) to the features and a weight of 

80% (𝛽) to the accuracy. The parameters assigned 𝛼 = 0.2, 

while 𝛽 = 0.8. As stated, in the FSPIS model, the value of 𝛼 

is dynamically tuned to achieve the desired fitness value. 

Mathematically, updated the value of feature sets weight 𝛼 

using equation (5). 

𝐴 = 1 − (
𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠

𝑇𝑜𝑡𝑎𝑙𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠
) 

(5) 

Thus, the fitness function is updated by incorporating the 

tuned number of features in equation (5), and obtained 

Fitness as in equation (6). 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = [1 − (
𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠

𝑇𝑜𝑡𝑎𝑙𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠
)

+ 0.8 ∗ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦] 

(6) 

Thus, applying above stated fitness value, FSPIS 

Incremental Feature Selection method gradually increases 

the features from 20% to 80%, with 20% (0.2) serving as the 

lower bound and 0.8 defining the upper bound. To be noted, 

to achieve higher accuracy with minimum features, FSPIS 

method increases the number of features (i.e., the nominator 

in the first component of equation (6)) by the fraction of 5% 

(i.e., here, assigned increment factor as 0.5). Using this 

approach, features are progressively added to the existing 

feature sets until the desired accuracy level or region is 

attained. Noticeably, here the new feature is appended to (6) 

by picking the top-k feature obtained by means of Chi-

Square selected feature set, where the use of SkB method 

features are retained in the order or decreasing score. Thus, 

the FSPIS model achieves a minimal feature sets that 

maximizes possible accuracy to perform generalizable 

classification. IFS and progressive sampling is performed 

after selecting the features in the FSPIS model. 

4.3 Feature Sensitive Progressive Instance Selection 

(FSPIS) 

It is evident that utilizing a reduced feature set can have 

better computational efficiency, and hence in this 

conjunction the proposed Incremental Feature Selection 

method that even considers accuracy as well as selection 

criteria can yield superior performance. However, in typical 

BigData analytics problems, where each feature can have 
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gigantically huge data size or the instance size. Similar to 

the redundant feature processing problem, the likelihood of 

redundant instance processing cannot be ignored. In other 

words, amongst the gigantically large sample size, there can 

be the set of minimum samples which can help the analytics 

model to yield the same level of accuracy, as is expected 

from the complete data size. Therefore, dropping such 

redundant samples or instances can help an analytics model 

to perform superior. To achieve it, recently a new 

technology called progressive sampling has been proposed 

[37], [38] that intends to retain minimum possible samples 

from each selected feature to perform prediction or 

classification, without compromising the accuracy. 

Considering it as motivation, in this work in addition to the 

above discussed Incremental Feature Selection method, we 

developed a state-of-art novel and robust clustering driven 

feature sensitive instance selection (FSPIS) or FSPS model. 

Unlike traditional resampling techniques such as up-

sampling, down-sampling, random sampling or Synthetic 

Minority Over Sampling (SMOTE) methods, which often 

undergo class-imbalance, this study introduces a model 

called feature sensitive progressive sampling and allied 

instance selection model (FSPIS), which is the first of its 

kind. 

As stated above the random instance selection from a feature 

set might cause class-imbalance where the selected 

instances might skew the overall feature pattern or the data 

pattern. 

𝐹1 𝐹𝑠11 𝐹𝑠12 … 𝐹𝑠1𝑛
𝐹2 𝐹𝑠21 𝐹𝑠22 … 𝐹𝑠2𝑛
⋮
𝐹𝑠𝑛

𝐹
…
𝑠𝑛1

⋯
𝐹𝑠𝑛2

… …

… 𝐹𝑠𝑛𝑛

 

(7) 

 

Let, (7) be the input feature cum data space, where  

𝐹𝑛 represents the selected features, while  

𝑠𝑛 be the data or instance pertaining to the  

𝐹1 feature. In this case, the classical instance selection or 

sampling method randomly picks up the sample 𝑠𝑛 from 

each feature for subsequent learning and classification. 

Although, the significance of 𝑠𝑛1 can be different than 𝑠𝑛𝑛 

from 𝐹𝑛  feature set. Therefore, the random selection of 

𝑠𝑛(1) might either cause an instance set to undergo minority 

or majority, and this process can be continued iteratively 

due to random sample selection. Moreover, presence of data 

skewness can potentially lead to the learning model to get 

skewed towards a specific class due to improper sampling. 

Additionally, the minority class may not be classified 

accurately. Consequently, it can compel the entire learning 

model to exhibit false positives, thereby negatively affecting 

real-time analytics decisions. Considering this problem, this 

work hypothesized that retaining stratified samples from the 

different features can help a learning model learn better. In 

this relation, the FSPIS model, in which clustered the 

instances of each selected feature using K-Means clustering 

algorithm. In this method, once estimating the set of 𝐹𝑛 

features, applied K-Means clustering over each feature 

where the samples or the instances per feature vector were 

clustered into five distinct clusters. Subsequently, applied 

incremental Stratified Progressive Sampling (SPS) or 

instance selection concept that selects a specific quantity of 

instances from each cluster belonging to each feature 

depicted in Fig. 2. This process is continued till the selected 

features and corresponding instance yields expected 

performance. 

Noticeably, unlike classical stratified sampling-based 

instance selection, the proposed FSPIS model is executed as 

an incremental instance selection method, where it updates 

the sample size iteratively by selecting the same number of 

instances from each cluster (per feature) dynamically to 

achieve target performance. Mathematically, it applies 

equation (8) to perform (dynamic) instance selection. 

𝑆𝑖 = 𝑆0 + ∆𝑆𝜃  (8) 

In (8), 𝑆𝑖 denotes the updated size of the data, whereas 𝑆0 

represents the initial size of the sample chosen as 20%.  

Another parameter ∆𝑆𝜃 denotes the progressive addition 

value, ranging between 0.5% to 5%. Through iterative steps 

∆𝑆𝜃 is successively added to 𝑆0 until expected performance 

(accuracy) is achieved.
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Fig. 2. Proposed Feature Sensitive Progressive Instance Selection (FSPIS) Model 

Unlike to sampling approaches based on random selection 

and feature selection method [39], in the proposed FSPIS 

model, the samples selected from each cluster, taking into 

account the different features. This approach ensures 

maximum diversity of features in the training of the model, 

resulting in improved accuracy. Additionally, by extracting 

an equal number of samples from K1 cluster to K5 cluster 

for every feature, as presented in Fig. 3. It aims to mitigate 

data skewness and prevent overfitting. 

4.3.1 K-Means Clustering Algorithm 

Typically, it is a kind of unsupervised machine learning 

method that clusters a large number of data instances into  

corresponding groups. In other words, K-Means groups a 

large number of unannotated or unlabeled data instances to 

the specific group. Functionally, it intends to estimate the 

groups in a large set of data based on their respective 

features. The amount number of clusters is denoted by the 

K. To perform clustering this algorithm is executed 

iteratively where in each iteration it intends to assign a data 

element to the most relevant cluster and thus continues 

assigning the data to one of the K-clusters based on 

respective features (9).

Feature 1 Feature-2 ... Feature (n-1) Feature (n)

K5

K4

K3

K2

K1

K5

K4

K3

K2

K1

K5

K4

K3

K2

K1

K5

K4

K3

K2

K1

K5

K4

K3

K2

K1

K-
M

ea
ns

 Cl
us

te
rs

Fe
at

ur
es

20%

0.5-5%

Lower Bound Upper Bound-80%Progressive Addition (0.5-5%)

0% 100%

 

Fig. 3. Proposed Progressive Instance Selection (PIS) Model

Thus, employing feature similarity it maps or assigns each 

data element to their corresponding cluster. Functionally, it 

applies two key functions, data assignment and centroid 

update to perform data clustering.  

4.3.1.1 Data Assignment 

In the data assignment phase, it randomly selects one 

centroid for each cluster arbitrarily. Subsequently, each data 

element is allocated to the closest centroid, determined by 

calculating the squared Euclidean distance (inter-element 

distance information). Let 𝑐𝑗 be the centroid for the cluster 

C, then in this reference each data or instance x is assigned 

to a group based on the distance-driven condition (9).  

𝑎𝑟𝑔𝑚𝑖𝑛
𝑐𝑗∈𝐶

𝑑𝑖𝑠𝑡(𝑐𝑗 , 𝑥)
2
 (9) 

In (9), the function dist (.) signifies a distance function that 

is considered as the Euclidean distance. Equation (9) 

indicates that those data elements having minimum distance 

from the centroid of a cluster j would form a cluster. In this  

manner, the set of data elements are mapped and allocated 

to each ith centroid, si. The centroid is updated as per the 

following process.  
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4.3.1.2 Centroid Update 

In this mechanism, the centroid for each cluster is updated 

iteratively by applying the average value of all data elements 

mapped to that specific cluster's centroid. It applies (10) to 

update the centroid iteratively.  

𝑐𝑖 =
1

|𝑠𝑖|
∑ 𝑥𝑖

𝑥𝑖∈𝑠𝑖

 
(10) 

The algorithm continues until all the data elements are 

assigned to the allied cluster. To perform clustering, K-

means algorithm applies a centroid value with respect to 

which the other data elements having the similar or close 

feature are clustered together. Functionally, with provided 

input data, K-means algorithm exploits features of each 

participating data element and maps them to the most related 

or relevant cluster. In the proposed FSPIS model, K-means 

algorithm was applied over each selected feature that 

generated five distinct clusters from each feature. 

Subsequently, the proposed FSPIS Model appended the 

final feature vector or allied sample (incremental volume of 

samples) from each cluster and executed the proposed 

ensemble learning model to perform classification. 

4.4 Ensemble Learning Driven Consensus based 

Classification 

In contrast to conventional self-contained classifier-based 

learning methods, this study adopts an ensemble learning-

supported consensus-based classification framework. In the 

context of a binary classification problem (as shown in 

Table I), each classifier assigns a label of 1 or 0 to the data 

during the classification process. Thus, employing the 

MVE, estimated the consensus for each data and predicted 

the data as the class with the higher voting score. In the 

proposed ensemble model, four base-classifiers have been 

applied. They are:  

1. k-NN 

2. Random Forest  

3. AdaBoost 

4. Extended Tree Ensemble Classifier. 

4.4.1 k-NN Algorithm 

It is a well-known classifier, is widely recognized and 

popular model used to classify unlabelled observations.  It 

assigns the unlabelled data to the class associated with the 

most related labelled examples. While k-NN offers a 

straightforward implementation, making it suitable for 

various data mining tasks involving regression prediction, it 

has proven to be robust in various classification 

frameworks. By default, the classifier utilizes Euclidean 

distance metric to calculate inter-attribute distance using 

(11). 

𝐷(𝑝, 𝑞) = 𝑆𝑞𝑟𝑡((𝑝1 − 𝑞1)
2 + (𝑝2 − 𝑞2)

2

+ (𝑝𝑛 − 𝑞𝑛)
2) 

(11) 

  

In (11), both r and s are subjected to comparison across n 

number of features. 

The k-NN algorithm effectiveness relies on the choice of K, 

which determines the number of neighbors needed for 

classification. Optimal selection of K leads to improved 

performance. When K is large, it reduces the impact of 

random errors and requires a smaller number of sample 

training data to be utilized. In essence, finding the right 

balance between overfitting and underfitting, which is 

important for achieving optimal performance while 

managing computational resources, depends on selecting 

the appropriate K value. Traditionally, researchers have 

often assigned K to be the square root of the number of 

observations or instances in the training data in traditional 

approaches. However, this technique may not guarantee 

efficacy when handling extensive datasers exhibiting 

diverse patterns. In many of the current approaches, K 

values are determined based on the size of the sample using 

the cross-validation scheme, although, leads to significant 

time consumption. 

Unlike conventional k-NN algorithm, applied a kTree 

learning that enables learning distinct k values for the 

various training samples. During the training process, the 

kTree model initially learns the optimal value of k for each 

data sample through the utilization of a sparse 

reconstruction mechanism. Consequently, a decision tree 

(kTree) is constructed using the training samples and the 

optimal k values that were learned. The proposed kTree 

model rapidly outputs the value of K for each testing data 

sample during the testing phase. This is followed by 

performing k-NN classification using the learned optimal k 

value and training data. The proposed FSPIS model enables 

comparable running cost with better accuracy that makes it 

a potential candidate towards BigData analytics. 

4.4.2 Adaboost 

It is an adaptive boosting method, is a widely used learning 

paradigm known for enhancing the classification capability 

iteratively. During initialization, a set of prerequisite tests is 

allocated equal weights to achieve weak learners with 

limited training focus. In each iteration, the error rate of the 

weak classifier is evaluated, leading to an increase in the 

weight of correctly classified samples and a decrease in 

weight for misclassified samples. Eventually, this process 

strengthens the weak learner and enables successful 

classification [40]. 

4.4.3 Random Forest (RF) Algorithm 

It represents an ensemble machine learning approach 

comprising numerous classifiers structured like trees. In the 

ensemble, every individual tree contributes a single vote to 

determine the most probable class for a given input. To 
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construct each tree, a random sample of N cases is selected 

from the original dataset, where N represents the total 

number of cases. Further, the chosen sample is then utilized 

for the training to build the tree. The tree nodes are then split 

based on the best division among the M input variables. The 

value for M maintains constant during the forest 

development, and each tree is grown to its maximum level. 

Compared to other machine learning algorithms such as 

Support Vector Machine, J48, Neural Network, Decision 

Tree (DT), and k-NN, the RF algorithm offers lower 

parameter estimations, making it computationally more 

efficient. 

A group of various classifiers with tree structured is defined 

as (12) in RF algorithm, 

{𝑅𝐹𝑐(𝑝, 𝜃𝑘), 𝑘 = 1,2, … 𝑖 … } (12) 

In (12), RFc denotes the classifier used, and 𝜃𝑘represents 

an identically distributed random vector It contributes that 

each tree has a vote for the class that is most likely to occur 

based on a specific input variable called p. 𝜃𝑘characteristics 

and number of dimensions depends on its usage in the 

building of a tree. The RF algorithm's outcome lies in the 

construction of each decision tree that makes up the forest.  

It involves training each tree on a randomly sampled subset 

of training data, achieved through bootstrapping, which 

allows for the utilization of nearly 70% of the training 

dataset. The portion of the remaining dataset is known as 

Out-Of-Bag (OOB) data samples. These OOB samples are 

commonly used for internal cross-validation to assess the 

classification model's performance.  

As stated above, the random forest algorithm acts as an 

ensemble comprising T trees. In the training phase, the 

decision trees are autonomously constructed using bootstrap 

training set with arbitrarily selected features by means of 

random sub-space selection and bagging approach. Here, 

each DT is formed by applying the following methods.  

Select the training subset from the original training dataset 

S with replacement. The variable significance and 

misclassification error are calculated using OOB samples 

that are not included in the bootstrapped sample. 

Randomly select D ≥ M features and identify the optimal 

split using Gini-Index. 

Without being pruned, the tree should grow its highest 

extent 

In the process of classification, the input data sample s is 

categorized by traversing via individual trees until a leaf 

node is reached. At each leaf node, the classification result 

is assigned (decision function h). In the last step estimated 

class label y is calculated by choosing the class with the 

highest number of vote count among the leaf nodes.  

Mathematically,  

𝑦 = argm1,2, … , Cax
𝑐∈{ }

∑ 1

𝑇

𝑡:ℎ𝑡(𝑥)=𝑐

 

(13) 

4.4.4 Extended Tree (ET) Classifier 

It is a unique ensemble method consisting of a cluster of 

unpruned decision trees. Unlike the RF algorithm, it 

introduces randomness in both choices of attribute and 

selection of cut-point when tree node splitting, resulting in 

the creation of fully randomized trees that are not influenced 

by the output values of the training samples. This classifier 

stands out from other ensemble methods based on tree 

structures for two main factors. Firstly, randomly selects 

cut-points to split nodes, and secondly, it utilizes the 

complete training sample instead of bootstrap replicas to 

facilitate tree growth. To generate the final prediction 

output, the ET classifier combines the classified predictions 

from all the trees using the MVE (Multiple Voting 

Ensemble) method. This approach aims to reduce variance 

more effectively compared to the weaker randomization 

methods employed by other techniques. Additionally, the 

classifier achieves more accurate and effective classification 

results by using original training samples instead of 

bootstrap replicas which decreases the risk of bias. 

4.5 Maximum Voting Ensemble (MVE) Consensus 

Classification 

By utilizing the aforementioned classifiers as the 

foundational classifiers, the model executed an ensemble 

decision using MVE methodology. This approach involved 

aggregating the consensus values derived from the 

foundational classifiers to facilitate two class classification. 

The implemented ET Classifier categorized each data 

element or instance into two distinct categories, denoted by 

the labels 0 or 1. These labelled values were later used to 

build consensus so as to perform final prediction. The 

subsequent sections present the simulation results and 

related findings. 

4.6 Performance Analysis 

In this work performance metrics for the classification 

problem used are Accuracy, AUC, F-Measure and 

Computational Time in seconds. 

5. Results and Discussions 

This paper presents a state-of-art novel and robust 

incremental feature selection designed for BigData 

analytics. In sync with the 4V objectives of BigData 

analytics, in addition to the proposed Incremental Feature 

Selection model, this work incorporated a novel feature 

sensitive progressive instance selection. Thus, in FSPIS 

model, the IFS was targeted to cap the amount of features, 

while the FSPIS model was developed specially to reduce 

the data size (say, instance size or volume) so as to improve 

the analytics performance. To ensure lightweight 
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(incremental) feature selection, this work applied Chi-

Square driven Select-k-Best (SkB) method. However, 

unlike classical Chi-Square approaches, the proposed FSPIS 

model applied an objective function or fitness function that 

aims to attain a minimal feature subset while maintaining 

better levels of accuracy. In other words, the initial step 

involved processing the original data to perform Chi-Square 

evaluation, which aided in determining the ranking of an 

individual feature for subsequent sorting. After sorting the 

features based on their corresponding ranks, the model 

implemented an incremental feature selection method. This 

concept involved selecting a specific amount of features 

based on desired accuracy level. Gradually incremented the 

number of features in ascending order, starting from a lower 

threshold to an upper limit. Specifically, the lower limit for 

the sorted features was set at 20%, with the upper limit 

remaining at 80%. It means that the proposed FSPIS model 

initially uses 20% of the total features. The model evaluates 

its accuracy then keeps increasing the feature percentile 

until it achieves the desired performance. 

However, the highest possible feature selection was fixed at 

80%. Subsequently, once selecting the appropriate feature 

set guaranteeing optimal performance, we initiated FSPIS, 

which applied K-means clustering over each feature. In the 

proposed FSPIS model, clustered each selected feature into 

five (K=5) clusters, and applied incremental stratified 

sampling concept to select instances from each cluster (per 

feature) in an incremental manner. Similar to the 

incremental feature selection method, assigned a lower limit 

of instance as 20% of the total data size (per feature), which 

was increased by 1% iteratively so as to get superior or 

expected accuracy level. Here fixed the highest sample size 

of data size as 80% of the total size. Thus, starting with the 

20% of the instance volume or size, the proposed FSPIS 

model incremented the instance size by 1% iteratively, till it 

meets the expected performance. Unlike [39], where authors 

merely applied static stratified feature selection concept, the 

proposed FSPIS model employs both feature selection as 

well as instance selection in incremental manner which 

could provide the minimum possible feature sets as well as 

instance size while guaranteeing expected performance.  

Moreover, unlike other approaches employing rough-set or 

entropy driven incremental feature selection methods [18-

31], the proposed FSPIS model is relatively very 

computationally efficient and scalable to meet the desired 

accuracy while retaining minimum feature as well as data 

size. To evaluate performance of the FSPIS model, 

considered a total of 10 benchmark datasets encompassing 

Breast Cancer, Sonar, Lung Cancer, Parkinson, WDBC, 

Ionosphere, KC1, Page Blocks, PC1 and Scene. The 

consider datasets were having different numbers of features 

with varied instance sizes. Though, these data represented 

only two class classification problems. To evaluate 

performance of the FSPIS model, examine the outcome in 

terms of accuracy and the selected feature volume. The 

FSPIS model was implemented using Python 3.7 simulated 

over the Anaconda Jupiter platform. The computer system 

used was armored with Intel i-3 processor, 8GB RAM, 2.86 

GHz frequency. The simulated results and related 

performance inferences are presented as follows.  

To assess the effectiveness of the FSPIS model, performed 

two distinct analyses in the form of intra and inter model 

characterization. The intra-model refers to the analyses of 

the FSPIS model with the different operating conditions or 

algorithmic combinations. On the contrary, inter-model 

comparisons have compared the performance with the other 

related works. The following section provides an analysis of 

the obtained results along with relevant inferences. 

5.1 Intra-Model Comparison 

During this evaluation, compared the performance of the 

proposed model in three different simulating conditions. 

These are: 

1. Original Features  

2. Incremental Feature Selection (IFS) 

3. PIS  

4. FSPIS 

In sync with the above stated simulation conditions, at first, 

executed and performed classification with the original data 

or original features; however, by considering data 

normalization and proposed maximum voting ensemble 

learning model as classifier. Subsequently, simulated the 

proposed IFS model, which is the part of the proposed work, 

and obtained the performance results encompassing selected 

features, computing time and corresponding accuracy. In the 

third simulation condition, mainly focused on reducing the 

feature instances (while keeping the number of features 

same as that of the original features). Finally, by combining 

the proposed IFS feature selection method with FSPIS 

algorithm that intended to retain minimum features as well 

as corresponding (minimum) instance size or volume. The 

simulation results under the different operating conditions 

are given in Table III.  

As depicted in Table II, with the original data the accuracy 

obtained is relatively lower in comparison to the selected 

features (i.e., by IFS feature selection method). Here, the 

impact of redundant feature learning can easily be 

visualized. In major BigData analytics problems, learning 

over the insignificant and relatively redundant features or 

even data elements impact the classification accuracy. On 

the contrary, training over a set of suitable features with the 

optimal data elements helps gaining superior performance. 

In sync with this hypothesis, the results obtained (Table III) 

confirms that the proposed feature selection method (i.e., 

IFS) performs better average accuracy (88.70%) than the 

original data-based simulation (87.51%). On the other hand, 

the proposed K-Means driven progressive instance selection
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Table III. Intra-Model Feature Sensitive Accuracy Assessment 

Datasets 

Original Data IFS PIS FSPIS 

Features              

Accuracy 

  Features        

Accuracy 

 Features       

Accuracy    

   Features               

Accuracy 

Breast 

Cancer 
9 0.8672 3 0.8491 9 0.8632 3 0.943 

Sonar 60 0.7317 11 0.8427 60 0.7864 11 0.877 

Lung 

Cancer 
23 0.7869 4 0.8126 9 0.8357 4 0.873 

Parkinson 22 0.8869 6 0.8894 22 0.859 6 0.929 

WDBC 30 0.9231 6 0.8613 30 0.9071 4 0.969 

Ionosphere 34 0.8686 4 0.9199 34 0.9093 4 0.94 

KC1 21 0.8769 3 0.8894 21 0.779 3 0.909 

Page 

Blocks 
10 0.972 3 0.961 10 0.9737 3 0.927 

PC1 21 0.9247 3 0.9223 21 0.9006 3 0.939 

Scene 299 0.9135 13 0.9229 299 0.9154 13 0.923 

Average  0.8751  0.887  0.8729  0.9229 

model (PIS) focuses on reducing the instance size so as to 

improve learning. Though, this approach applied the same 

features; it reduced the data size or instance size. The 

average accuracy obtained by PIS is 87.29%, which is 

almost near the original data; and its contribution in 

reducing the sample size cannot be ignored. Moreover, 

despite the fact that the use of PIS model would merely 

reduce the same size, while retaining the feature vectors as  

it is, the minimally changed accuracy confirms that the use 

of PIS can be vital to achieve higher accuracy even with 

reduced sample size. It can make the BigData analytics 

model more computationally efficient. Now, realizing the 

fact that the IFS model can reduce the feature size, while the 

PIS model can help reduce both features as well as instances 

and hence can be more appropriate towards real-time 

BigData analytics. Considering this fact, the proposed 

model amalgamated both IFS feature selection and PIS 

sample selection of instance selection method. This as a 

result gave rise to the proposed Feature Sensitive Instance 

Selection model (FSPIS). To be noted, unlike PIS, which 

was executed over the original features only, the proposed 

FSPIS model was applied over the selected feature vector 

(by IFS algorithm). 

Table IV. Intra-Model Feature Sensitive Computational Time Assessment 

 

Datasets 

Original Data 

  Features              

Time (s) 

IFS 

Features               

Time (s) 

PIS 

Features          

Time (s) 

FSPIS 

  Features                  Time 

(s) 

Breast 

Cancer 
009 00.8421 03 0.5245 009 0.5741 03 0.5684 
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The results obtained from Table III demonstrate the superior  

performance of the proposed FSPIS model with IFS. It 

achieves an accuracy of 92.29% and also excels in selecting 

the optimal set of features. Typical BigData analytics 

solutions, there is a constant expectation for execution time 

to remain smaller to meet Velocity demands. Considering 

this fact, we examined the FSPIS model for its 

computational time efficiency. 

Observing the results for the computational time efficiency 

(Table IV), it becomes evident that the proposed ensemble 

learning classifier consumes almost 3.83 seconds (average 

time) to perform computation over the considered datasets 

with the original data. Conversely, the proposed IFS model 

which reduces the size of features significantly takes 0.82 

seconds, which is significantly lower than the original data. 

Similarly, the PIS model retained the original features but 

with reduced samples took almost 1.57 seconds to process 

the data. Interestingly, the proposed model (i.e., FSPIS) took 

the minimum computational time (only 0.78 second) to 

process the entire data. Here, the role of IFS and PIS can 

easily be visualized. In other words, the proposed FSPIS 

model, IFS helped in reducing the feature set or size, while 

PIS helped in reducing the instance sizes of the IFS selected 

features. As a result, contributed in reducing the 

computational time. In addition to the accuracy assessment, 

it measured F-Measure as well as AUC performances.

    

Table V. F-Measure and AUC Performance 

Sonar 060 00.8118 11 0.5804 060 0.6711 11 0.5696 

Lung Cancer 023 00.8332 04 0.7503 009 0.9567 04 0.5265 

Parkinson 022 00.6701 06 0.5365 022 0.7599 06 0.6941 

WDBC 030 01.0465 06 0.6223 030 0.6123 04 0.8856 

Ionosphere 034 00.7400 04 0.5654 034 0.5951 04 0.7579 

KC1 021 01.7619 03 0.8796 021 0.6964 03 0.6921 

Page Blocks 010 02.8750 03 1.4241 010 0.8992 03 0.9015 

PC1 021 01.1837 03 0.7639 021 0.5804 03 0.8008 

Scene 299 27.5499 13 1.6327 299 9.4098 13 1.4860 

Average   3.831  0.8279  1.5755  0.7882 

 

Datasets 

Original Data 

F-Measure            

AUC 

       IFS 

 F-Measure           

AUC 

   PIS 

F-Measure        

AUC 

FSPIS 

F-Measure                  AUC 

Breast 

Cancer 
0.8697 0.7740 0.9289 0.6808 0.7919 0.8945 0.8966 0.8626 
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The results presented in Table V highlight the proposed 

model with IFS+PIS (say, FSPIS) exhibits superior F-

Measure (0.89) and AUC performance (0.86), which is 

higher in comparison to the original data, PIS and FIS as 

standalone simulation. The result confirms that the proposed 

FSPIS model achieves superior performance towards 

BigData analytics tasks, even under diverse non-linear 

features and class-imbalance conditions. It can be affirmed 

due to higher value of AUC (the AUC more than 0.66 

confirms robustness of the proposed model). Meanwhile, 

higher F-score or F-Measure too confirms robustness of the 

proposed system in context of real-time BigData analytics. 

In sync with the above discussed results and allied 

inferences, we consider FSPIS as the proposed model for 

BigData analytics. For further inter-model comparison the 

performance by FSPIS is considered as the reference value.  

5.2 Inter-Model Assessment 

To assess the relative effectiveness of the proposed system 

in comparison to existing methods, FSPIS model considered 

as the proposed system, while a few recent works like [41], 

[42]. Noticeably, in [41] authors proposed a feature 

selection model based on heuristic. Authors applied Gray 

Wolf Optimizer (GWO) and Particle Swarm Optimization 

(PSO) algorithms in their approach. 

 

Table VI. Comparison of Results with Related Works 

  
Original 

Data 
        GWO + PSO [41]     DFRS [42] Proposed System 

Datasets Features        Features         Accuracy 
   Features           

Accuracy 

   Features                

Accuracy 

Breast 

Cancer 
9 2.25 0.967 - - 3 0.943 

Sonar 60 14.65 0.855 26 0.8558 11 0.877 

Sonar 0.7498 0.8093 0.9193 0.8110 0.8124 0.8348 0.8482 0.8266 

Lung Cancer 0.7512 0.8082 0.9033 0.8056 0.7429 0.8077 0.8909 0.8196 

Parkinson 0.8320 0.8531 0.9220 0.9277 0.9073 0.7790 0.8871 0.8468 

WDBC 0.9507 0.9869 0.9256 0.9593 0.9640 0.9832 0.9289 0.9534 

Ionosphere 0.8984 0.9417 0.8629 0.8714 0.8733 0.9321 0.8981 0.8533 

KC1 0.8110 0.7667 0.9178 0.7802 0.7960 0.7389 0.8155 0.8171 

Page Blocks 0.9574 0.6680 0.9442 0.6113 0.9666 0.6914 0.9400 0.8380 

PC1 0.9038 0.5223 0.9261 0.6843 0.9075 0.6688 0.9109 0.8766 

Scene 0.9439 0.9489 0.9159 0.9794 0.9135 0.9445 0.9485 0.9678 

Average 

 

0.8667 

 

0.8079 0.9166 

 

0.8111 
0.8675 0.8274 0.8964 0.8661 
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Lung 

Cancer 
23 5.45 0.882 - - 4 0.873 

Parkinson 22 4.25 0.92 - - 6 0.929 

WDBC 30 3.8 0.97 13 0.9631 4 0.969 

Ionosphere 34 3.9 0.901 32 0.8519 4 0.94 

KC1 21 4.65 0.821 - - 3 0.909 

Page 

Blocks 
10 2.3 0.955 - - 3 0.927 

PC1 21 3.1 0.931 - - 3 0.939 

Scene 299 101 0.919 - - 13 0.923 

        

 

Noticeably, these state-of-the-art methods primarily 

prioritize the selection of feature sets without considering 

the size of the sample. In such cases, when dealing with 

gigantically large data sizes and reduced feature vectors, the 

model may undergo challenges related to local minima and 

convergence. Authors [41] and [42] did not this problem. 

Moreover, heuristic-based approaches are mainly executed 

in an offline manner as it might take significantly large time 

to estimate the execution parameters and solution tuning. To 

perform relative performance analysis, consider average 

performance by both GWO and PSO in [41], while in [42] 

the performance outputs for the common data elements were 

taken into consideration. To be noted, in sync with 

performance characterization, for inter-model assessment, 

consider only those algorithms applying the same 

benchmark datasets.  

The results presented in Table VI show that the FSPIS 

model exhibits superior accuracy.  

By examining the above Table VI results, it is revealed that 

the proposed model amount of features selected is superior 

(i.e., lower) even without losing accuracy performance. In 

other words, the average performance in [41] exhibited that 

the minimum features possible for breast cancer was 2.25, 

while the proposed FSPIS model identifies 3 crucial that 

have significant impact on the classification performance. 

Except for the performance with breast cancer data, the 

FSPIS model with other datasets has exhibited 
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superior results. In reference to the Sonar dataset, the 

method proposed in [41] identified a total of 26 features as 

vital. On the other hand, GWO+PSO selected 14.65 features 

as the key features to be retained. While the proposed FSPIS 

model identified merely 11 features as significant (feature) 

to perform classification. Interestingly, with this dataset, the 

accuracy obtained with merely 11 features is 87.7%, which 

is better than DFRS [42] (85.58%) and GWO+PSO [41] 

(85.5%). It confirms that the proposed FSPIS model can 

obtain better accuracy even with the lower feature and 

instance volume. It backs up the proposed FSPIS model to 

real-time BigData analytics. Similar to these results, the 

Lung Cancer dataset performance demonstrated that the 

proposed FSPIS model identifies merely 4 features, while 

GWO+PSO chose 5.45 features for classification. The 

relative accuracy performance too confirms that the 

proposed FSPIS model maintains near [41] performance 

even with minimized feature set. Noticeably, as opposed to 

[41] or [42], the proposed FSPIS model performs both 

features as well as instance selection and therefore can be 

more computationally efficient towards real-time BigData 

analytics tasks. Considering the KC1 dataset, the existing 

GWO+PSO model selected an average of 4.65 feature sets, 

whereas the proposed FSPIS model selected merely 3 

features to accomplish classification. In relation to, the 

proposed FSPIS model showcased an accuracy of 92.3%, 

which is better than the GWO+PSO model (i.e., 91.2%). 

The similar performance patterns can be found with other 

datasets as well. In comparison to the efforts made in [41] 

or [42], or any other existing incremental feature selection 

methods (see, Section II), the computational efficiency of 

the proposed FSPIS model makes it more realistic and 

viable towards real-time BigData analytics.  

 

Table VII. Analysis of Computational Time (sec) Comparison 

  
Original 

Data 
                      GWO + PSO                                            Proposed  

Datasets Features                      [41]                                                System 

                         Features Time(s)                   Features  Time (s) 

Breast Cancer 9 2.25 7 3 0.5684 

Sonar 60 14.65 6.3 11 0.5696 

Lung Cancer 23 5.45 4.9 4 0.5265 

Parkinson 22 4.25 6 6 0.6941 

WDBC 30 3.8 6.75 4 0.8856 

Ionosphere 34 3.9 6.1 4 0.7579 

KC1 21 4.65 9.4 3 0.6921 

Page Blocks 10 2.3 13.75 3 0.9015 

PC1 21 3.1 9 3 0.8008 

Scene 299 101 40 13 1.486 

Avg  10.92   0.7882 
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Here, the strength towards both feature selection as well as 

feature sensitive instance selection (as incremental selection 

measure) makes the proposed FSPIS system robust and 

more efficient than other state-of-art methodologies (refer, 

Section II). Aligned with this assertion, the computing time 

analysis substantiates the notion.  

 

In Table VII, presented a computational time consumed by 

the proposed FSPIS model contrasted with other techniques, 

providing insights into its relative computational efficiency 

[41]. 

As already stated, authors in [41] introduced feature 

selection concepts driven by heuristics, which have faced 

criticism due to their extensive computational requirements 

and associated costs. In contrast, the proposed FSPIS model 

employs a straightforward analytical approach for feature 

selection. The results obtained, as presented in Table VI, 

confirms that the FSPIS model significantly reduces the 

time required for feature selection and classification. 

Conversely, despite GWO+PSO estimating same features it 

imposes significant time-related computational expenses, 

measured in seconds. The mean time utilized by the current 

GWO+PSO model amounted to 10.92 seconds, while the 

proposed FSPIS model consumed merely 0.78 seconds to 

carry out the overall task. Here, the efficiency of the 

proposed FSPIS model can easily be confirmed. Thus, 

Considering the comprehensive assessment of performance, 

it is concluded that the FSPIS model surpasses other existing 

approaches in terms of achieving optimal performance with 

fewer feature sets, minimum sample requirements, greater 

accuracy, AUC, and F-Measure. Also, it is crucial to 

emphasize its superior time efficacy. It confirms the 

resilience of the FSPIS model when applied to real-time 

analytics tasks. The comprehensive research findings and 

related deductions are detailed in the following section. 

6. Conclusions 

The exponential advancement of software technologies, 

internet and affordable hardware has revitalized global 

humanity to explore it for more efficient decision-making. 

The technological revolution and up-surging demands 

across the industries have introduced to a new technology 

referred as BigData analytics serving different purposes 

including healthcare, business communication, business 

intelligence, civic management, finance, science and 

technologies, social media, etc. Despite numerous 

significances, BigData analytics require addressing its 

challenges like heterogeneous unstructured data, multi-

dimensional features, large instances, class-imbalance etc., 

to gain optimally accurate target information. On the other 

hand, the key aspects of BigData like volume, variety, 

velocity and veracity too demand an analytics solution to be 

robust, time-efficient and accurate. To ensure fast 

computation, BigData analytics executes feature selection 

technique; however, its resulting accuracy remains a 

challenge.  

Moreover, feature selection using random method results in 

reduced accuracy that make them inferior towards real-time 

purposes. Majority of the current feature selection methods 

apply thresholds, entropy information or level of 

significance to perform feature selection; although, fail in 

addressing large redundant data learning that eventually 

makes it computationally exhaustive and time consuming. 

To simplify this complexity, the paper introduces a robust 

incremental feature selection method was designed that 

intends to maintain lower feature dimension along with 

minimum possible instance set. To achieve it, the FSPIS 

model applied incremental feature selection followed by 

feature sensitive progressive instance selection. For 

incremental feature selection, the model utilizes the select 

k-best method with the Chi-Square algorithm, which 

employs a heuristic fitness function to minimize the number 

of features while maximizing accuracy. Thus, executing the 

proposed feature selection method, we ensure that the 

selected features provide sufficient volume while meeting 

the veracity demands in terms of accuracy. Moreover, the 

use of Chi-Square driven select-k-best model helped 

guaranteeing minimum feature requirement, while feature 

sensitive progressive sampling or instance selection enabled 

retaining minimum possible data size to meet accuracy 

demands. Thus, the proposed model retained minimum 

feature(s) and instance size that helped in achieving higher 

computational efficiency, higher accuracy with minimum 

computation time. It makes the proposed system suitable for 

the real-time BigData analytics tasks. To ensure higher 
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accuracy with minimum features and instances, the 

proposed model applied a maximum voting ensemble 

learning models encompassing Bagging, AdaBoost, k-NN, 

Random Forest and Extended-Tree Classifiers as 

foundational classifiers. Therefore, unlike standalone 

classifier-based model, the use of MVE consensus helped 

achieve highly accurate performance. The statistical 

performance analysis reveals that the proposed model 

estimates almost 18%-20% lower features than other feature 

selection methods. Moreover, with such reduced feature 

sets, it retained superior accuracy of the classification, F-

Measure and AUC across different datasets. It enabled the 

proposed model to be used in different BigData analytics 

problems. Though, the proposed work achieved better 

performance than other state-of-art methods like rough-set 

algorithms, heuristic driven feature selection algorithms; it 

could not address class-imbalance problems which might 

come into picture due to significantly reduced feature size. 

Moreover, there can be a different data environment where 

the probability of class-imbalance cannot be ignored. In 

future, the proposed model can be improved with different 

resampling methods to alleviate class-imbalance 

probability. 
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done by first author. Supervision, review of work and 

managing project work have been done by second and third 
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