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Abstract: Cognitive radio networks (CRNs) make it possible for opportunistic spectrum access by dynamically identifying and utilising 

underutilised frequency bands. In this research, we provide a spectrum sensor architecture for CRNs that is hardware-efficient and based 

on simulated Maximum Eigenvalue Detection (MED). The suggested architecture makes use of MED, a dependable technique for 

locating signals in noisy situations. We address the resource limitations of actual CRN devices as we propose a hardware-efficient 

version of this detection algorithm. A combination of analogue and digital processing steps is used in the architecture. The signal that has 

been previously established undergoes initial filtration and amplification via the analogue front-end. Subsequently, it undergoes a 

conversion process from analogue to digital format. The next step in the digital processing stage is pre-processing, which includes feature 

extraction and noise removal. The covariance matrix (CM) is built using the retrieved characteristics, and the greatest eigenvalue is 

determined from this matrix. Offer a Simulated Maximum Eigenvalue Detection (SMED) method to increase hardware effectiveness. 

Employ a portion of the conventional signal illustrations to estimate the greatest eigenvalue rather than computing the whole covariance 

matrix. This maintains detection performance while substantially reducing computing complexity. Using effective parallel processing 

units and improved memory management, create a hardware architecture especially suited for the suggested approach. The architecture 

guarantees energy economy and real-time processing, which are essential for CRN devices with limited resources. Numerous simulations 

and comparisons with current spectrum sensing methods show how effective and efficient the suggested architecture is. Software from 

Xilinx was used to develop a hardware-efficient architecture with a fast spectrum sensor based on MED. The findings demonstrate that 

SMED-based spectrum sensors, which are hardware-efficient, can identify signals with high reliability while using a fraction of the 

resources. Spectrum sensing in CRNs is made simple and hardware-friendly by the suggested architecture. Because of its effective 

implementation, cognitive radio devices can use the spectrum more effectively, improving overall network performance 

Keywords: Eigenvalue Detection, Cognitive Radio Network, Triangular Systolic Array (TSA), Maximum Eigenvalue Detection (MED), 

Fusion Centre (FC), Empirical Mode Decomposition 

1. Introduction 

The mandate for radio spectrum has risen substantially due 

to the fast expansion of diverse wireless communication 

applications, and it now appears to be very challenging to 

accommodate every new technology within an insufficient 

frequency spectrum due to the already highly constrained 

distribution of frequency resources. Because spectrum 

resources, which are essential to mobile communication, 

are currently underutilised, the development of wireless 

communication technology is significantly constrained [1-

2]. In the post-5G era, planning and allocating spectrum 

resources will be crucial. A Cognitive Radio Network 

(CRN) has been suggested by some experts as a smart 

spectrum-sharing system to make the most of available 

spectrum because it is now being wasted mainly in terms 

of time and space [3]. Unlicensed or secondary users (SU) 

are given opportunistic spectrum access through CRN, 

which has lately become recognised as a novel technique 

for enhancing spectrum utilisation. CR is capable of 

detecting both a particular portion of the spectrum and a 

wide variety of its surroundings. The successful detection 

of the spectrum is therefore the most important first step 

for cognitive radio systems. Numerous strategies based on 

single threshold techniques are suggested to achieve 

successful spectrum sensing performance. As a result of 

low SNR, unpredictable noise, and multi-path fading, 

single-threshold techniques can perform poorly. These 

problems are addressed by the introduction of double-

threshold spectrum sensing techniques, which further 

increase the likelihood of detection even at low SNR levels 

[4-5].  

The two main categories of traditional spectrum sensing 

methods are narrowband and wideband methods. 

Wideband sensing simultaneously analyses numerous 
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frequencies, as opposed to narrowband sensing's single-

frequency channel focus. Instances of the former comprise 

energy detection, covariance-based detection, matching 

filter detection, cyclostationary features detection, and 

ML-based sensing. The spectrum is then regularly divided 

into numerous sub-bands, which are then detected using 

narrowband sensing techniques, either successively or 

concurrently [6–8]. However, a common issue with 

conventional spectrum sensing or detection methods is 

noise uncertainty. At low SNR, noise barriers exist, 

severely impairing the presentation of the detector. As a 

result, when using spectrum sensing devices that are 

vulnerable to noise uncertainty, CNR may interfere with 

Primary User (PU) communication at low SNR [9]. 

Despite the additional hardware complexity and sensing 

time, cyclostationary detection-based spectrum sensing 

methods perform well for strongly correlated signals at 

lower SNR [10]. Therefore, to address this issue, a sensor 

of the spectrum that is more hardware efficient, has faster 

sensing times, and performs better even in the worst 

channel conditions must be created. Image processing, 

audio identification, radio signal classification, and natural 

language processing are just some of the many fields that 

have found success with deep learning [11]. In this paper, 

we reformulate spectrum sensing as a two-class 

classification issue and solve it using a deep convolutional 

neural network (CNN). To perform eigenvalue-based 

spectrum sensing, in-depth background knowledge of the 

primary user signals and noise power is unnecessary. 

Using random-matrix theory, researchers tested hypotheses 

and settled on cutoff values for eigenvalue-based spectrum 

measuring methods [12]. The test statistic used to identify 

the presence or absence of the principal user indication is 

obtained by calculating the ratio between the greatest or 

median eigenvalue and the lowest eigenvalue. This test 

statistic is then compared to a decision threshold. The 

considerable operational complexity of this system, 

however, is a drawback. If the precise material about the 

PUs is unknown, eigenvalue detection-based approaches 

are employed instead [13]. These approaches have little 

mathematical and hardware complexities. 

The primary heavy force behind the current endeavour is 

the issue of obtaining sufficient precision while having a 

quick sensing time. This issue represents a significant 

technological hurdle that must be overcome to build a 

wideband sensing strategy that is computationally modest. 

Future wideband spectrum usage is anticipated to be more 

efficient thanks to CRN, with signals expected to fill 

several sub-bands. Compressed sensing could fail as a 

result of the non-sparsity. Ineffective compressed sensing 

may also emerge from wideband operation with a variable 

noise floor due to low SNR and noise uncertainty. It is 

vital to change both the hardware and the environment as 

communication technologies advance from 5G to 6G. 

Existing approaches to spectrum sensing for CRN must 

incorporate artificial intelligence elements [14–15]. For 

resolving the spectrum scarcity issue, a quick and efficient 

spectrum sensing paradigm is preferred for MED spectrum 

sensors. Following is the arrangement of the remaining 

sections: Section 2 included a review of the literature; 

Section 3 the identification and motivation of the study's 

problems; Section 4 the recommended technique; Section 5 

discussion of the results; and Section 6 the paper's 

conclusion. 

2. Literature Survey  

The great recital of eigenvalue-based detectors in SU 

detection in CRN has attracted a lot of interest. In order to 

enhance the efficacy of detection, Giri and Majumder et al 

[16] developed a cooperative spectrum sensing (CSS) 

technique that relies on eigenvalues and employs Kernel 

fuzzy c-means (KFCM) clustering. The test vectors 

obtained from the constrained eigenvalues are categorized 

into distinct clusters based on the availability and 

unavailability of channels using clustering techniques in 

two-dimensional or three-dimensional space. This 

approach deviates from existing systems that rely on a 

singular test statistic inside a solitary dimension to make 

sensing judgments. In their study, Du et al. [17] introduced 

the Average Circulant Matrix (CM) -based Roy's Largest 

Root Test (ACM-RLRT) and ACM-based Generalized 

Likelihood Ratio Test (ACM-GLRT) detectors. The 

covariance matrix of the samples from the statistical units 

(SUs) at each specific time instant is computed, and 

afterwards, the covariance matrix of the SUs is averaged 

over a short duration. The detectors are constructed using 

the obtained ACM Eigenvalues. Even with short samples, 

utilizing a CM can increase the covariance matrix's 

dominant eigenvalue of signals, as well as the detection 

efficiency. It is, nonetheless, a necessary process that has 

the highest influence on the reliability of CRNs. Therefore, 

Chaurasiya et al [18] focused on the CSS in VLSI 

architecture. CSS is a modern method of determining 

spectrum possession by licenced users in the CRN. The 

CRN, which is based on data fusion, employs CSS 

algorithms that apply maximum-minimum eigenvalue 

(MME) and maximum eigenvalue (MED) approaches to 

calculate the maximum and minimum eigenvalues inside 

the MME and MED algorithms. Liu et al [19] introduced a 

space-air-ground integrated network (SAGIN) for high-

area connections. While advances in allowing access to the 

dynamic spectrum demonstrate potential in advancing 

higher spectrum sensing sharing, one of the fundamental 

issues encountered by spectrum management is dependable 

spectrum sensing below low SNR. To enhance the 

performance of sensing, deep learning-based spectrum 

sensing has been developed utilizing the concepts of data 

mining.  On the basis of the covariance matrix of the 
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received signal vector, Jie et al. (2020) presented three 

high-performance detectors for determining the survival of 

a single passive emitter. This concept draws inspiration 

from detection principles used in radio discovery and radar 

systems. The MME and MED algorithms are used to 

develop the framework. The ratio test achieves less than 

0.3 false alarm probability. However, in cognitive radio 

systems, there is a spectrum sensing problem that can be 

handled by by means of multi-input and multi-output 

(MIMO).  

Al-Amidie et al [21] investigated the estimation and 

detection structure for the MIMO system with faultless 

channel state evidence where the NCM is unknown. In 

cognitive radio, GLRT was utilised to solve the spectrum 

sensing problem when the NCM was unknown and had 

imperfect channel data. The proposed approach delivers 

the greatest performance under stated assumptions, as 

shown by the results. In order to achieve a hybrid 

Spectrum sensing solution in CRN, Nasser et al. [22] 

suggested using ANN. Data can be characterised as tabular 

because it is made up of the test statistics of numerous 

detectors. The most appropriate ANN model is fully 

connected neural networks. To achieve an accurate 

solution, a cutting-edge deep learning technique was 

utilized for spectrum sensing.  In implantable medical 

devices (IMDs), one of the design issues is the power need, 

which must be kept to a bare minimum to avoid repeated 

battery replacements and procedures. Therefore, Biswas 

and Mahbub et al [23] demonstrated a duty-cycled IR-

UWB transmitter that achieves energy efficiency using a 

typical 180 nm CMOS technology. The proposed 

transmitter's wide frequency and bandwidth range make it 

ideal for distributed brain transplant applications in UWB 

higher and lower frequency bands. Soundararaj et al [24] 

used the NI-USRP hardware platform to introduce a CSS-

based eigenvalue scheme and achieved good efficiency. 

The PU is a transmitter, which is implemented in hardware 

utilizing two cognitive radio users. In their study, Feng et 

al. (25) proposed a novel approach in the field of cognitive 

unmanned aerial vehicle networks (CUAVNs) to enhance 

spectrum utilization. This approach involves the use of a 

continuous hidden Markov model (CHMM) in conjunction 

with a distinctive signal-to-noise ratio (SNR) estimation 

method, as suggested by the authors. Furthermore, the 

authors drew inspiration from signal reconstruction on 

graphs to enhance the suggested sensing system based on 

the Continuous Hidden Markov Model (CHMM). This 

enhancement specifically addresses the issue of erroneous 

Signal-to-Noise Ratio (SNR) estimates in real-world 

applications. According to simulation findings, the sensing 

technique based on projected Continuous Hidden Markov 

Models (CHMM) has superior performance compared to 

methods that do not use CHMM. Furthermore, the 

CHMM-based sensing strategy, when combined with the 

recommended Signal-to-Noise Ratio (SNR) estimator, 

exhibits a considerable improvement over the traditional 

approach[26-30]. 

3. Research Problem Definition and Motivation 

Due to its precision and dependability, cooperative 

spectrum sensing (CSS), a family of well-known 

approaches in the spectrum detecting field, has lately 

garnered significant attention. Many CSS approaches 

based on random matrix (RM) theory have been described, 

in which the Fusion Centre (FC) assembled the signal 

vectors from all of the SUs into a signal matrix and 

calculated the appropriate covariance matrix. In this 

situation, an amount of spectrum sensing schemes have 

been put forth over the past few years. Among these 

methods are energy-based detectors (EBD), eigenvalue-

based spectrum sensing, matched-filter detection 

covariance, and cyclostationary - based spectrum sensing. 

The EBD methods are typically straightforward to use, but 

they also call for an understanding of the noise variability 

that is involved. For certain signal categories, the EBSS 

approaches, in particular the MMED and GLRT, may 

operate without being aware of the variance in noise and 

provide noticeably better performance. 

Spectrum prediction, signal categorization, signal 

enumeration, spectrum handover, etc. are just some of the 

cognitive radio applications that have found success using 

machine learning (ML) approaches. A feature vector is 

taken from the signal and sent to the classifier in order to 

conduct spectrum sensing. The signal is then split by the 

classifier into classes of accessible and unavailable 

channels. Several well-known machine learning (ML) 

techniques include support vector machines (SVM), neural 

networks, and various clustering techniques. The training 

and inference durations of CSS have been decreased 

because to the usage of an extreme learning machine 

(ELM), a kind of neural network. There have been several 

attempts to solve the CSS problem by using various 

clustering techniques. The dominating eigenvalue, the 

maximum eigenvalue, and the MEV from a sensing signal 

CM were formed into signal feature vectors, which are 

then utilised to train the classifier for spectrum sensing. In 

a real-world situation, noise and sensing speed contaminate 

the gathered sensory data, lowering the routine of 

detection. This drives the development of a maximum 

eigenvalue-based detection system, which will reduce 

noise sources and enhance detection efficiency. 

4. Proposed Research Methodology 

The crucial technique of spectrum sensing largely impacts 

the dependability of CRNs. The modern method for 

determining if licenced users are using spectrum in CRN is 

CSS. The traditional stand-alone spectrum-sensing (SSS) 
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methods are outperformed by this one. However, compared 

to SSS algorithms, such CSS algorithms require a more 

sophisticated implementation, which increases resource 

usage and decreases hardware efficiency. Therefore, the 

focus of the study is on developing a MED-based CSS 

algorithm that runs efficiently on a VLSI hardware 

architecture. Figure 1 is a flowchart depicting the planned 

process. 

 

Fig. 1: Flow Chart of the Proposed Work 

The suggested work's block diagram is shown in Figure 1. 

Technology-dependent optimal VLSI architecture 

necessitates the characterisation of key functional units for 

power, area, and speed. The MED computation is 

performed using the TSA architecture, which is based on 

the iterative power approach. To eliminate the noise 

components included in the spectrum sensing signal, the 

initial step involves pre-processing the identified primary 

user (PU) signal at secondary users (SUs) via the use of the 

Empirical Mode Decomposition (EMD) and Improved 

Thresholding Function (ITF) algorithms. The eigenvalues 

of the covariance matrix (CM) of the received signal are 

used as attributes for detection in the feature extraction 

process at the fusion center (FC) by using the pre-

processed signal. A quadratic CM of cooperative SUs 

serves as the characteristic matrix for feature extraction. 

The features are chosen according to their maximum 

eigenvalues to construct a dimensional feature vector. The 

research proposed the use of a Modified Adaptive Cluster-

Based Heuristic Approach (MACBHA) in spectrum 

sensing, based on the identified characteristics. This 

decreases the requirement for complex threshold 

computation while increasing detection performance.  

(a) VLSI Architecture of MED-Based Spectrum Sensor 

Recent research has introduced a hardware-efficient layout 

with a fast spectrum sensor based on MED. Our talks will 

initially center on this setup, which we will describe to as a 

"standard MED-based spectrum sensor" for the duration of 

this research. Maximum eigenvalue computation & 

decision module, covariance-matrix creation module, and 

auto-correlation computation module are the three primary 

modules of a traditional MED sensor. This typical MED 

sensor architecture has been further optimised by us and is 

shown to you in this part. Choosing the right initial vector 

𝒙 𝒌 and taking advantage of the symmetry of the 𝒚 𝒌 

matrix, the computation of the lower 𝑳/𝟐 rows of the 𝒚 𝒌 

the matrix can be derived from the upper L/2 rows of the 

𝑹𝒙 (𝑵𝒔)  matrix. This computation can be done by ACM 

and CFM architectures. One suggests employing only 𝑳/

𝟐 commotions of the matrix 𝑹𝒙 (𝑵𝒔)  rather than the 𝑳 

rows used in the traditional MED spectrum sensor to 

compute y kof size 𝑳 × 𝟏. This optimisation reduces the 

hardware requirements of the CFM and MECDM in the 

traditional MED design while also speeding up the sensing 

process. For the sake of clarity, assume that [�̂�  𝒙(𝑵𝒔)]𝟒×𝟒 

and [𝒙𝒌−𝟏]𝟒×𝟏are both true for 𝑳 =  𝟒. Consequently, the 

matrix [𝒚 𝒌]𝟒×𝟏 is calculated as 

𝒚 𝒌 = [

𝒂 𝒙 + 𝒊𝒚 𝒄 + 𝒊𝒅    
𝒙 − 𝒊𝒚 𝒂 𝒙 + 𝒊𝒚

𝒄 − 𝒊𝒅
𝒎 − 𝒊𝒏

𝒙 − 𝒊𝒚
𝒄 − 𝒊𝒅

𝒂
𝒙 − 𝒊𝒚

𝒎 + 𝒊𝒏
𝒄 + 𝒊𝒅
𝒙 + 𝒊𝒚

𝒂

] × [

𝟏
𝟏
𝟏
𝟏

]        (1) 

𝒚 𝒌 =

[
 
 
 
(𝒂 + 𝒙 + 𝒄 + 𝒎) + 𝒊(𝒏 + 𝒚 + 𝒅)

(𝒙 + 𝒂 + 𝒙 + 𝒄) + 𝒊(𝒅)

(𝒙 + 𝒂 + 𝒙 + 𝒄) − 𝒊(𝒅)

(𝒂 + 𝒙 + 𝒄 + 𝒎) − 𝒊(𝒏 + 𝒚 + 𝒅)]
 
 
 
      (2)  

The elements of the 𝒚 𝒌 matrix's bottom half third and 

fourth rows are complex conjugates of those in the third 

and first rows in the upper half, respectively. 

Consequently, it is sufficient to use just the top half of the 

elements in the matrix 〖R ̂ 〗_x (Ns) for the construction 

of both 〖y 〗^k and 〖x 〗^k. The proposed 

modification to the architecture of the MED spectrum 

sensor involves the construction of the 〖R ̂ 〗_x (Ns) 

matrix using just a subset of components from L/2 rows, 

rather than using all L rows (where L = 8 in our specific 

design). Consequently, the CFM and MECDM designs that 

have been suggested exhibit reduced area overhead and 

routing complexity. The new CFM architecture uses three 

complex conjugate modules (CCMs) as opposed to seven 

CCMs and a 4:1 multiplexer in place of an 8:1 multiplexer 

found in the standard CFM module from [20]. The 

multiplexer size has been decreased from 8:1 to 4:1, and 

both of the MECDM architecture's 1:8 de-multiplexers 

have been converted to their respective 4:1 variants. 

Furthermore, compared to the six MAX modules required 

by a traditional MED sensor, MECDM only requires three 

MAX modules.  

(i) Triangular Systolic Array (TSA)  

The power method-based eigenvalue computations-based 

proposed hardware-efficient MME algorithm has been 

provided. Referring, the CM is created by computing the 

autocorrelation of the signal that was received. The 

suggested power approach for calculating the maximum 

eigenvalue is shown in lines. In order to ensure that the 

beginning vector does not align with the non-dominant 
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vector, it is chosen as an arbitrary L×1 vector with 

elements equal to '1' in this particular scenario. In the 

traditional power technique, this calculation is made as 

𝝁𝒌 = 𝒎𝒂𝒙[𝒂𝒃𝒔(𝒚 𝒌 )] = 𝒎𝒂𝒙√(𝕹{𝒚 𝒌})𝟐 + (𝕴{𝒚 𝒌})𝟐, 

requiring a square-root computation unit in addition to the 

squarer and adder blocks. However, the suggested 

optimisation just needs to access the true portion of𝒚 𝒌.  

The algorithm's performance was only slightly harmed as a 

result, and a detailed overview of it is now offered. The 

greatest eigenvalue is then discovered. The least 

eigenvalue of an arbitrary square matrix [𝑨]𝑵×𝑵 may be 

determined using the inverse power technique or the shift 

power method. It can be seen that the contrary of the 

matrix being considered must be determined for the 

converse power approach, which increases the complexity 

of hardware realisation. Additionally, this inverse matrix 

has a maximal eigenvalue that must be found using the 

power approach. Matrix B may be generated by using the 

largest eigenvalue of matrix A by the use of the shift 

Power Method (PM) as outlined in Algorithm 3. The 

resulting matrix B will exclusively consist of negative 

eigenvalues. Moreover, the principal method (PM) is used 

for the computation of the eigenvalue, namely the one with 

the greatest magnitude and most negative value, of matrix 

B. The lowest eigenvalue of matrix A may be found by 

adding the biggest eigenvalue of matrix A to the 

eigenvalue of matrix B. It should be noted that the shift 

PM only works with positive definite matrices.  

(ii) Maximum Eigenvalue Detection (MED) 

The core issue in binary hypothesis testing is in the 

distinction between the H0 and H1 hypotheses, which 

alternately represent the absence and presence of the 

primary user (PU) signal. This constitutes the essential 

framework for spectrum sensing. They are stated 

mathematically as 

𝑯𝟎: 𝒙[𝒏] = 𝜼[𝒏]          (3) 

𝑯𝟏: 𝒙[𝒏] = 𝒉[𝒏]. 𝒔[𝒏] + 𝜼[𝒏]         (4) 

∀ 𝒏 =  {𝟏, 𝟐, 𝟑, . . . . . . 𝑵𝒔} where, 𝑵𝒔 represent the total 

number of samples used for detection. The sent signal 

sample of the primary user PU is denoted as s[n], whereas 

η[n] represents the noise sample. The frequency-flat 

channel response is represented by h[n], and x[n] is the 

received sample or observation. The computation of the 

test statistics value (·) is conducted using the recorded 

observations and afterwards compared to the standard 

decision-threshold value γ, which determines the existence 

or absence of a particular phenomenon of 

PU{𝒊. 𝒆. (𝒙[𝒏] ∀ 𝒏 =  𝟏, 𝟐, . . . , 𝑵𝒔)  ≶ 𝑯𝟎 𝑯𝟏 𝜸 } in 

relation to the hypotheses H0 and H1. In this section, we 

will sequentially provide the theoretical foundations of 

Spectrum Sensing Algorithms (SSA) that are based on 

Minimum Eigenvalue Detection (MED), Energy with 

Minimum Eigenvalue (EME), and Mean-to-Square 

Extreme Eigenvalue (MSEE). The Maximum Eigenvalue 

Detector (MED)-based spectrum sensing method is well-

suited for analyzing correlated received-signal samples. 

This approach involves first calculating the auto-

correlation of the samples denoted as x[n].   

𝝀(𝒍) =
𝟏

𝑵𝒔
∑ 𝒙 ∗ [𝒎].

𝑵𝒔
𝒎=𝟎 𝒙[𝒎 − 𝒍], ∀ 𝒍 = {𝟎, 𝟏,… 𝒍 − 𝟏}   

      (5) 

Where 𝑳 is the lag/smoothing factor. Subsequently, the 

sample covariance matrix of such auto-correlated values is 

constructed as 

�̂�𝒙 (𝑵𝒔) = [

𝝀(𝟎) 𝝀(𝟏) ⋯ 𝝀(𝑳 − 𝟏)

𝝀 ∗ (𝟎) 𝝀(𝟎) ⋯ 𝝀(𝑳 − 𝟐)
⋮

𝝀 ∗ (𝑳 − 𝟏)
⋮

𝝀 ∗ (𝑳 − 𝟐)
⋮ ⋮

⋯ 𝝀(𝟎)

]   

      (6) 

This is the Hermitian-Toeplitz matrix whose maximum 

eigenvalue, represented as 𝝀𝒎𝒂𝒙 , is the test statistics value 

for MED-based SSA (i.e. 𝚪𝑴𝑬𝑫 = 𝝀𝒎𝒂𝒙). The decision 

threshold value, which is given as 𝜸𝑴𝑬𝑫 =  𝜸 · 𝝈𝟐, is 

pre-calculated with unity noise variance (i.e. 𝝈𝟐 = 𝟏) as 

The function F−1 represents the cumulative distribution 

function of the Tracy-Widom distribution with an order of 

1, while 𝑷𝒇𝒂  is the probability associated with a false 

alarm. The aforementioned threshold value is then 

compared with 𝚪𝑴𝑬𝑫 in order to determine the existence or 

absence of PU, as previously explained. The efficacy of the 

MED algorithm's detection capability is contingent upon 

the presence of noise variance and noise uncertainty, both 

of which are inherent in real-world scenarios and may 

detrimentally impact its performance. The real-time 

calculation of noise variance, which is practically 

unfeasible, is necessary to provide accurate identification 

of primary users (PUs) via the use of the Minimum Energy 

Detector (MED) method. 

The EME-based SSA, as suggested by the test statistics 

value, involves the computation of the ratio between the 

energy of received signal samples, x[n] ∀ n={1, 2, 3, ...... 

𝑵𝒔} and the minimum eigenvalue (𝝀 𝒎𝒊𝒏) of sample CM 

�̂�𝒙 (𝑵𝒔), as given below 

𝚪𝑬𝑴𝑬 = (

𝟏

𝑵𝒔
∑ |𝑿[𝒏]|𝟐

𝑵𝒔−𝟏
𝑵=𝟎

𝝀 𝒎𝒊𝒏
)   (8) 

Furthermore, it should be noted that the determination 

threshold for spectrum sensing based on Energy Detection 

(EME) is unaffected by variations in noise variance, hence 

indicating its independence from uncertainties introduced 

by noise.  
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(b) Empirical Mode Decomposition (EMD) 

Assuming 𝒙𝒊 =  [𝒙𝒊(𝟏)𝒙𝒊(𝟐), . . . , 𝒙𝒊(𝑵)], the sample 

vector of the ith secondary user (SU) is denoted as represents. 

In order to mitigate the impact of noise on the spectrum 

sensing system, the present study employs the EMD method 

as a pre-processing technique for the spectrum signal. The 

signals throughout the spectrum exhibit non-stationarity and 

non-linearity within their respective environments. 

Conventional signal processing methods, such as Fourier 

transforms, wavelet transforms, and others, are applicable 

only to signals that possess linear stability. This study 

introduces the EMD method to achieve a better clustering 

result. EMD can effectively process non-linear signals and 

non-stationary as compared to conventional signal processing 

techniques. 

The EMD technique primarily aims to partition the signal 

into many intrinsic modal function components (IMFs) 

arranged in descending order of frequency. Assume that 

the spectrum signal is 𝒙𝒊(𝒏) . After EMD decay, the signal 

 𝒙𝒊(𝒏) may be stated as: 

 𝒙𝒊(𝒏) = ∑ 𝑰𝑴𝑭𝒋(𝒏) + 𝒓(𝒏)
𝒋
𝒋=𝟏          (9)  

𝒓(𝒏) is a representation of the residual. 

The following are the precise stages in the EMD 

decomposition process: 

Step 1: Find the spectrum signal's regional lowest and 

maximum values. 𝒙𝒊(𝒏). 

Step 2: Find the maximum envelope 𝒙𝒊
𝒎𝒂𝒙(𝒏) and 

minimum envelope 𝒙𝒊
𝒎𝒂𝒙(𝒏)  in the spectrum signal 𝒙𝒊(𝒏). 

And then compute their average  𝒎𝟏(𝒏). 

 𝒎𝟏(𝒏) =
𝒙𝒊
𝒎𝒂𝒙(𝒏)−𝒙𝒊

𝒎𝒊𝒏(𝒏)

𝟐
        (10) 

Step 3: Obtaining the 𝒉𝟏(𝒏) component using equation 

(11) 

𝒉𝟏(𝒏) =  𝒙𝒊(𝒏) −  𝒎𝟏(𝒏)                    (11) 

Check to see whether 𝒉𝟏(𝒏) satisfies the IMF's two 

requirements. Once satisfied, go to  

Step 4: If not, repeat Steps 1 and 2 until the IMF 

requirements are satisfied. In order to determine the IMF 

component, use equation (12). 

𝑰𝑴𝑭𝟏  = 𝒉𝟏(𝒏)                                     (12) 

Step 5: Making the residual calculation using equation (13) 

𝒉𝟏(𝒏)  =  𝒙𝒊(𝒏) − 𝑰𝑴𝑭𝒋 (𝒏)      (13) 

Treat  𝒓𝟏(𝒏)as the original signal and repeat Steps 1-5 to 

get 𝒓𝟐(𝒏). And so on until the residual  𝒓𝑱(𝒏)is a 

monotonous function or a constant. 

Real-world perceptual environments often include high-

frequency band (HFB) noise and low-frequency band 

(LFB) usable signal concentrations. To minimize certain 

high-band noise signals and then rebuild the low-frequency 

signals is the basic idea behind EMD denoise. According 

to the continuous mean square error criteria, the low-

frequency band and HFB critical point. Due of the 

expression's clarity, let �̃� represent 𝒙𝒊(𝒏). 

𝑪𝑴𝑺𝑬(�̃�𝒎, �̃�𝒎 + 𝟏) =
𝟏

𝑵
∑ (�̃�𝒎 − �̃�𝒎 + 𝟏)𝟐𝑵

𝒏=𝟏   

=
𝟏

𝑵
∑ (𝑰𝑴𝑭𝒏(𝒏)𝟐)𝑵

𝒏=𝟏                       (14) 

𝒎 =  𝒂𝒓𝒈𝒎𝒊𝒏[𝑪𝑴𝑺𝑬(�̃�𝒎, �̃�𝒎 + 𝟏)](𝟏 ≤ 𝒎 ≤ 𝑱 − 𝟏)          

(15) 

After all the signals collected by the M SUs are processed by 

the EMD denoising process, the processed signals can form a 

new signal matrix 𝒀 = [𝒙𝟏, 𝒙𝟐, . . . ,  �̃�𝑴]𝑻 , where 𝒙𝒊 = 

𝒙𝒊𝟏, 𝒙𝒊𝟐,… . 𝒙𝒊𝑵  represents the signal acquired by the 𝒊th 

noise-reduced SU by the EMD. Therefore, 𝒀 is a 𝑴 ×  𝑵 

dimension matrix 

𝒀 = [𝒙𝟏, 𝒙𝟐, . . . ,  �̃�𝑴]𝑻 = [

𝒙𝟏(𝟏) 𝒙𝟏(𝟐) ⋯ 𝒙𝟏(𝑵)

𝒙𝟐(𝟏) 𝒙𝟐(𝟐) ⋯ 𝒙𝟐(𝑵)
⋮

𝒙𝑴(𝟏)
⋮

𝒙𝑴(𝟐)
⋱ ⋮

⋯ 𝒙𝑴(𝑵)

]  

   (16) 

Order-DAR (O-DAR) and interval-DAR (I-DAR) were 

introduced to increase the sensing performance in the case 

of fewer cooperating SUs after the original signal was 

denoised by the EMD method. Logically, the approach can 

boost spectrum sensing efficiency and the quantity of 

cooperative SUs. 

(i) Improved Thresholding Function (ITF) 

The nonlinear and noisy data are divided using soft 

threshold (ST), hard threshold (HT), and improved 

threshold function (ITF) for evaluation of EBT with 

additional thresholding approaches. For soft, hard, and 

upgraded thresholds, the following mathematical 

formulations are provided: 

𝒄𝒙,𝒍
′ = {𝒅𝒙,𝒍|𝒄𝒙,𝒍| ≥ 𝑻𝒉𝒍𝟎|𝒄𝒙,𝒍|〈𝑻𝒉𝒍〉,   (17) 

𝒄𝒙,𝒍
′ = {𝒔𝒈𝒏(𝒄𝒙,𝒍)(|𝒄𝒙,𝒍| − 𝑻𝒉𝒍)|𝒄𝒙,𝒍| ≥

𝑻𝒉𝒍𝟎|𝒄𝒙,𝒍|〈𝑻𝒉𝒍〉, and  

 𝒄𝒙,𝒍
′ = {𝒔𝒈𝒏(𝒄𝒙,𝒍)|𝒄𝒙,𝒍| −

𝑻𝒉𝒍

[𝜶|𝒄𝒙,𝒍|−𝑻𝒉𝒍 𝑻𝒉𝒍⁄ ]
, |𝒄𝒙,𝒍|〈𝑻𝒉𝒍〉,               

(18) 

Where, 𝑻𝒉𝒍is the threshold which is calculated as 𝑻𝒉𝒍 =

𝒂√𝟐𝑬𝒍𝑰𝒏(𝑵), 𝒍 = 𝟏, 𝟐, 𝟑, …𝑳, where 𝒂 is constant which 

considers the values between 0.4 and𝑴𝒅�̂�is the median 

deviation, that is, 𝑴𝒅�̂� =median({𝒄𝒍−𝟏𝒍 =

𝟏, 𝟐, 𝟑,… , 𝟐𝒍−𝟏 − 𝟏})/𝟎. 𝟔𝟕𝟒𝟓 
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(ii) Fusion Centre (FC) For Feature Extraction 

The pre-processed signal is directed to the fusion centre 

(FC) for additional examination and decision-making after 

being collected from a source or sensor. In the FC, one of 

the crucial processes is feature extraction, in which 

pertinent data is taken from the signal that has been 

received to help with tasks like detection or classification. 

The feature extraction procedure in this instance entails 

calculating the eigenvalues of the CM of the conventional 

signal. The CM offers details on the statistical correlations 

and variances between various signal constituents or 

properties. We can determine the eigenvalues of this 

matrix and deduce important properties that describe the 

structure and variability of the signal. When the CM is 

multiplied by the associated eigenvectors, eigenvalues 

describe the scaling factors that are applied to those 

eigenvectors. They communicate important details about 

how the data are dispersed and distributed. The 

eigenvalues of the CM can be used as discriminative 

features to help discriminate between various classes or 

states of the signal in the context of feature extraction. 

The eigenvalues can be utilised as characteristics for 

detection. The eigenvalues can capture unique 

characteristics of the received signal that are indicative of 

the target class, for instance in a binary classification issue 

where the objective is to sense the existence or absence of 

a particular signal or event. The fusion centre can identify 

whether or not the desired signal is present by comparing 

the extracted eigenvalues to specified thresholds or by 

applying a statistical decision procedure. The fusion centre 

can efficiently extract pertinent information from the pre-

processed signal by using the eigenvalues as features, 

allowing accurate detection or classification of the 

fundamental phenomenon of interest. This method 

improves the fusion centre's decision-making process by 

taking advantage of the statistical properties of the 

established signal.  

(iii) Quadratic Covariance Matrix 

The distinguishing matrix for feature extraction on a 

cooperative network of secondary users (SUs) is defined as 

the quadratic covariance matrix. The statistical correlations 

and variances between the various characteristics or 

aspects of the data from the cooperative SUs are captured 

in this matrix. The square matrix of size 𝑵 𝒙 𝑵 that makes 

up the quadratic covariance matrix, abbreviated as 𝑪, is 

equal to the number of features or dimensions in the data. 

The covariance between the 𝒊 − 𝒕𝒉 and 𝒋 − 𝒕𝒉 features is 

represented by the (𝒊, 𝒋) −th element of the matrix 𝑪. We 

choose features based on their maximum eigenvalues to 

generate a dimensional feature vector since 𝑪 is a 

symmetric covariance matrix, meaning 𝑪(𝒊, 𝒋)  =  𝑪(𝒋, 𝒊). 

The spread and distribution of the data from the 

cooperative SUs throughout each dimension are shown by 

the eigenvalues of the covariance matrix 𝑪. The scaling 

factors that are applied to the appropriate eigenvectors 

when C is multiplied by them are represented by the 

eigenvalues, indicated as 𝝀𝟏, 𝝀𝟐, . . . , 𝝀𝑵. Pick the 

eigenvectors linked to the biggest eigenvalues to choose 

the features based on maximal eigenvalues. The most 

important directions of variation in the data from the 

cooperative SUs are captured by these eigenvectors. may 

create a feature vector that keeps the most crucial 

information while lowering dimensionality by choosing 

features that are aligned with these dominant eigenvectors. 

The dimensional feature vector, denoted as 𝑭, is a column 

vector of size 𝑴 𝒙 𝟏, where 𝑴 represents the number of 

selected features. Each element of the feature vector, 𝑭(𝒊), 

corresponds to the i-th selected feature. The selection of 

features is contingent upon their maximum eigenvalues, hence 

the features are chosen in decreasing order based on their 

connected eigenvalues. The equation provided may be used to 

generate a dimensional feature vector by considering the 

maximum eigenvalues: 

𝑭 =  [𝒇𝟏, 𝒇𝟐, . . . , 𝒇𝑴]�̂�                      (19) 

Where, 𝒇𝟏represents the 𝒊-th selected feature, and 

𝑻 denotes the transpose operation. Overall, by utilizing the 

quadratic CM and selecting features based on their 

maximal eigenvalues, we can effectively extract the most 

significant information from the cooperative SUs' data and 

construct a dimensional feature vector that captures the 

essential characteristics of the system. 

(c) Adaptive Cluster-Based Heuristic Approach 

The information geometry-based MAC-BHA in 

multidimensional vector space is a technique used for 

spectrum sensing, whereby features are extracted from the 

data and educated judgments are made on the presence or 

absence of signals in the spectrum. This approach involves 

the creation of multidimensional vectors in the feature 

space by using the recovered features obtained through the 

aforementioned procedure. Every vector shows a particular 

occurrence or snapshot of the spectrum. To assess the 

connections and separations between these feature vectors 

and enable efficient spectrum sensing, the information 

geometry framework is then used. In the modified adaptive 

cluster-based heuristic technique, feature vectors are 

grouped or clustered according to their similarity. The 

process of clustering involves grouping or clustering data 

points so that they are more similar to one another than to 

those in other clusters. Let 𝑪 =  {𝑪𝟏, 𝑪𝟐, . . . , 𝑪𝒌} be the 

set of clusters formed from the problem space. Each cluster 

Ci is defined by its centroid 𝝁𝒊 and its associated members 

𝑴𝒊. For each cluster 𝑪𝒊 in 𝑪, apply a heuristic algorithm to 

find a solution Si. Evaluate the solutions 𝑺𝒊 and update the 

performance measures. Based on the performance 
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measures, adapt the heuristic algorithm's parameters, 

search strategy, or cluster configuration. 

The clustering procedure aids in locating structures or 

patterns in the data. The heuristic approach applies 

methods such as density-based clustering or k-means 

clustering to adaptively build clusters in the feature space. 

To establish suitable cluster borders, these approaches take 

into account the distribution and density of the feature 

vectors. To detect signals amid noise or interference, the 

clusters act as representations of various signal classes or 

states in the spectrum. This method's information geometry 

component focuses on the geometric characteristics of the 

feature space. Making more educated decisions about 

signal identification and extracting useful information 

about the spectrum is feasible by studying the distances, 

angles, and forms that the feature vectors generated. The 

feature space where the retrieved features are represented 

as vectors is referred to as the multidimensional vector 

space. The vectors collectively capture the fundamental 

properties of the spectrum at a specific instance, with each 

dimension of the vector correlating to a different aspect. 

Spectrum sensing is made more reliable and precise by 

using the information geometry-based MACBHA in this 

multidimensional vector space. The method makes use of 

the geometric characteristics of the feature vectors to 

locate clusters that represent various signal classes, 

enabling accurate signal detection and classification in the 

spectrum. This approach works especially well in 

situations where the spectrum is complicated and has a 

variety of signals and interference. 

5. Experimentation and Result Discussion  

For the cognitive radio networks (CRNs), we describe the 

outcomes of the hardware-efficient SMED-based spectrum 

sensor design in this section. The presentation of the 

suggested design was discussed, along with comparisons to 

other spectrum sensing methods, emphasising the benefits 

of the projected architecture in standings of hardware 

effectiveness and detection precision. The suggested 

architecture is deliberately made to be hardware-efficient, 

taking into account the resource limitations of actual CRN 

devices. We assess the architecture's resource use and 

hardware complexity, taking into account the needed 

power, memory, and computing units. The findings show 

that, as compared to conventional spectrum sensing 

methods, the suggested design significantly improves 

hardware efficiency. It is suited for use in CRN devices 

with limited resources because it strikes a compromise 

between accurate detection performance and reduced 

resource requirements. The energy detector-based 

sensing technique was implemented using VLSI 

architecture. The architecture implementation was studied 

and simulated using the simulator tool Xilinx 14.7. The 

results of the proposed circuit's synthesis are then taken 

into account in this section's timing analysis. The initial 

module design is done independently, while the final 

model implementation is done jointly. The suggested 

architecture of the energy detector was developed in 

Verilog, a standardised hardware description language. By 

doing so, it is decided whether the signal is present or not. 

The following is a presentation of the study's simulation 

results. 

  

(a) Compression Ratio (b) Number Of Data Samples 

 

(c) Filter Coefficients 

Fig. 2: Comprehensive Performance Analyses of Proposed 

WSSR 

 It should be noted that the 𝑷𝒅value is directly related to 

the channel signal-to-noise ratios (SNRs) and the power-

to-load 𝑷/𝑳 compression ratio (CR). The compression 

ratio is a factor used in determining the decrease in 

multicast sampling frequency. The data clearly indicates a 

positive correlation between the value of the 𝑷𝒅 and the 

CR value. Therefore, it can be inferred that the proposed 

Wideband Spectrum Sensing Receiver (WSSR) achieves 

improved detection performance at lower Signal-to-Noise 

Ratio (SNR) levels by using a higher Compression Ratio 

(CR) value together with a significant number of samples 

(𝑵 𝒙) and coefficient values (𝑯). The performance analysis 

shown in Figure 2 (a) was conducted using a sample size 

of 𝑵 𝒙= 46 and a value of 𝑯 = 383.In contrast, when the 

CR value is set at 0.36, p is equal to 8, and L is equal to 22, 

we have generated graphs depicting 𝑷𝒅 vs SNR for 

different numbers of 𝑵 𝒙samples, ranging from 20 to 50 

samples. These plots are shown in Figure 2 (b). The 

suggested weighted sum of squared residuals (WSSR) 

demonstrates satisfactory identification performance when 

using a sample size of 𝑵 𝒙 = 46.  

However, any increase in sample size above this threshold 

only yields minimal improvements in performance.In 

addition, the sensing time of the serially linked ODS 

micro-architectures in the SD block of our WSSR 

increases as the value of 𝑵 𝒙 increases. Hence, a sample 

size of 46, denoted as 𝑵 𝒙, is deemed sufficient for 
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ensuring dependable performance and the development of 

a hardware-efficient architecture for the proposed WSSR. 

In a similar manner, the evaluation of its presentation has 

been conducted for different H coefficients of 𝒉[𝒏] values. 

This evaluation was performed using the parameters p = 8, 

L = 22, CR = 0.36, and 𝑵 𝒙 = 50, as seen in Figure 2 (c). In 

this scenario, when the value of H is more than or equal to 

40, the suggested WSSR method demonstrates constant 

performance, even when the signal-to-noise ratio (SNR) is 

reduced. Nevertheless, the incorporation of larger CS 

blocks and steering logic in our WSSR design will result in 

an extended sensing time. 

 

Fig. 3: Fixed-Point Simulation of IQRD with Different 

Word Lengths. 

When the fractional word length surpasses 7 bits, the Bit 

Error Rate (BER) becomes saturated at a Signal-to-Noise 

Ratio (SNR) of 33 dB. Hence, it is advisable to use 

fractional words of 9 bits in hardware implementation. The 

architectural design in question employs an 18-bit 

representation for fractional operations and implements a 

truncation mechanism to reduce word lengths to 9 bits 

prior to output. This approach is used to solve the issue of 

overflow that may arise during the division process. Fixed-

point simulation is also carried out to establish the ideal 

amount of bits for IQRD hardware implementation. The 

relationship between the use and word length is shown in 

Figure 3. The use of the fixed-point and floating-point 

QRD outputs represents the distinction between them. 

Figure 3 displays a saturated curve with a magnitude of 10 

-8mse. The augmentation of bits does not enhance the 

system's appearance. Hence, it is feasible to create the 

hardware for the Integer Quotient and Remainder Division 

(IQRD) algorithm with a fractional word length of 9 bits. 

 

Fig.4: Convergence Analysis of Eigenvalues 

The mean squared error (MSE) serves as a metric to 

quantify the discrepancy between the outputs of the 

floating-point and fixed-point QRD. Figure 3 displays a 

curve that is saturated, with a mean squared error of 10 -8. 

The enhancement in system performance is not achieved 

by increasing the number of bits. Hence, it is possible to 

use a 9-bit fractional word length throughout the process of 

building the IQRD hardware. 

𝑰 = [
𝑶 𝑶 −𝟗𝟒𝟕 + 𝒊 × 𝟔𝟗𝟗

𝟏𝟏𝟎𝟑 𝟎 𝟑𝟎𝟔 − 𝒊 × 𝟑𝟏𝟑𝟗
𝟎 𝟏𝟏𝟎𝟑 𝟐𝟎𝟓𝟖 + 𝒊 × 𝟐𝟑𝟐𝟎

]       (20) 

To the best of our knowledge, there isn't any published 

literature that can be used to compare our results, which 

are being used for the first time. While N is unrelated to 

the suggested design. Compared to previous architectures, 

this significantly reduces the design area of the algorithm. 

 

Fig. 5: Clustering Effect of the Ratios of the Maximum 

Eigenvalue 

The mean squared error (MSE) serves as a metric to 

quantify the disparity between the outputs of the floating-

point and fixed-point QRD algorithms. Figure 3 displays a 

curve that is saturated, with a mean squared error (MSE) 

value of 10-8. The enhancement in system performance is 
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not achieved by increasing the amount of bits. Hence, it is 

possible to use a 9-bit fractional word length during the 

hardware construction of the IQRD. 

 
Fig. 6: Analysis of Network Utility and Time 

Figure 6 demonstrates how as sojourn time rises, so does 

network utility. It indicates that as time goes on, the 

cluster's performance remains constant and effective. 

Every node will participate sporadically with time-limited 

access to the network. The stages for network utility 

remain the same when the time approaches a greater limit. 

It means that even when the length of time needed for data 

collection increases the network's data, it will still be used 

without any data loss.  

(a) Comparison Analysis 

The different strategies are compared and analysed for the 

best method as part of the comparative analysis that 

supports the proposed method.  The assessment and 

evaluation of the comparisons and alterations among two 

or more subjects, objects, concepts, or things are done 

methodically using comparative analysis. This analytical 

method is frequently used in a variety of fields, including 

ROC curve comparisons between suggested SVM-based 

approaches and cutting-edge rivals. 

  

Fig. 7: Probability Distribution Comparison Analysis with 

Proposed Technique 

Figure 7 illustrates the contrast between the SVM-based 

technique described in this study and the three existing 

detectors. The performance achieved is noteworthy as it 

surpasses that of covariance-based detectors and 

approaches that of the energy detector. It is important to 

note that this performance is achieved without the need for 

knowledge of the noise power. It should be mentioned that 

in order to estimate the noise power, training data was 

utilized, resulting in the threshold corresponding to the 

nominal probability of false alarm (PFA). Figure 7 

illustrates the contrast between extended and standard 

SVM-based approaches. The use of the noise power level 

in conjunction with the energy detector makes it a valuable 

tool. In general, support vector machine (SVM)-based 

detectors have the potential to achieve superior 

performance even in the absence of the aforementioned 

data, such as comparison plots of the simulated and 

measured results of the recommended wideband spectrum 

sensing receiver (WSSR) output, performance evaluations 

of the proposed minimum error distance (MED)-based 

spectrum sensing approach, or the graphical representation 

depicting the relationship between network utility and 

time. 

 

Fig. 8: Comparison Plots of Simulated and Measured 

Results 

The output waveform has a distinct representation of the 

active channel configuration 𝑷𝑼𝑴𝑼 (�̂�) ∀ �̂� =

 {𝟒, 𝟓, 𝟏𝟏, 𝟏𝟔, 𝟏𝟕} are stated to high value after ∏ = 2162 

clock cycles. Additionally, we have conducted a 

comparison between the MATLAB generated values and 

the values obtained by FPGA 

measurements,𝑷𝑴𝑼 (𝒌) ∀ 𝒌 =  {𝟎, 𝟏, 𝟐,···  𝑳 −  𝟏}, as 

illustrated in figure 8. 
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Fig. 9: SNR Performance Comparison of Proposed MED-

Based Spectrum Sensing Algorithm 

The use of the Monte-Carlo simulation technique has been 

authorized for the purpose of evaluating performance, as 

seen in Figure 8. The results indicate that the hardware-

efficient MED-based spectrum sensor outperforms CSS by 

a margin of 4.5 dB at a probability of detection (Pd) of 0.5. 

Therefore, in the case of signals with strong correlation, 

the MED-based spectrum sensor demonstrates superior 

recital as related to both the energy uncovering founded 

spectrum sensor and CSS. Furthermore, it can be shown 

from Figure 9 that the hardware-efficient MED-based SSA 

exhibits a little decrease of 0.12 dB at a probability of 

detection (Pd) of 0.5 when compared to the traditional 

MED-based SSA. 

6. Research Conclusion 

The research investigated a hardware-effective spectrum 

sensor architecture for CRNs based on SMED. The 

principles of MED were utilised, along with the statistical 

properties of the received signal, to achieve hardware 

efficiency in the projected design. The projected 

architecture greatly reduced the hardware complexity and 

resource needs compared to conventional spectrum sensing 

approaches by making use of a simplified circuitry design. 

The proposed SMED-based spectrum sensor architecture's 

performance evaluation demonstrated its capacity to 

accurately classify the attendance of PUs in the spectrum. 

Its excellent detection accuracy and robustness even in the 

existence of noise, fading, and intrusion make the 

architecture suited for deployments of cognitive radio in 

the real world. In cognitive radio devices with incomplete 

capitals, power consumption is a crucial consideration. By 

reducing computational complexity and omitting pointless 

processing steps, the suggested design achieved impressive 

power efficiency. This power-saving capacity is essential 

for increasing the battery life of cognitive radio devices 

and making it possible for them to be used effectively in 

settings with limited energy resources. 

The development of a hardware-efficient architecture with 

a fast sensing time for spectrum sensors based on the 

Minimum Euclidean Distance (MED) method was 

facilitated by using software provided by Xilinx. A real-

world hardware test setup is used to validate the proposed 

Cooperative Spectrum Sensor (CSR)'s functionality, and an 

FPGA prototype of the CSR is also described here. 

Additionally, this CSR design has been ASIC synthesised 

in the UMC 90 nm-CMOS process through a 1.2 V supply 

and post-layout simulation has been performed on it. In the 

end, a real-world testing environment was used to test and 

verify the CSR-fabricated ASIC chip. The planned CSR is 

area-efficient and takes up less space (0.365mm2) than the 

traditional implementation, according to comparison 

results.  The proposed architecture exhibited scalability 

and adaptability by accommodating different system 

configurations and varying signal environments. It handles 

a wide range of signal bandwidths and adapts to dynamic 

changes in spectrum availability, ensuring the spectrum 

sensing operation's flexibility and versatility. The proposed 

MED spectrum sensor has a reduced sensing time of less 

than 40 microseconds and achieves the lowest area-time-

product among existing implementations, hence 

demonstrating superior hardware efficiency. The 

simulation findings demonstrate that the suggested 

detectors exhibit superior detection performance, 

especially when confronted with limited sample sizes, in 

comparison to other approaches. 
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