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Abstract− Underwater images often exhibit colour variations and poor perceptibility due to wavelength dependent light absorption and 

scattering. In order to address these problems, we introduce a swift algorithm and hue-preserving based mechanism for an effective and 

reliable underwater image enhancement. In order to reduce the excessive pixel values, we initially used a simple logarithmic function as a 

preprocessing step. The brightness and contrast are then altered using a novel nonlinear enhancement operation that was developed 

empirically on the basis of mathematical, statistical and spatial data. Additionally, as a post-processing step, a regularisation function is 

used to rearrange image pixels in the natural dynamic range. We also used CHS and WDF techniques which perform on HIS and HSV 

colour models, respectively. Prior to applying a WDF method to the S and I components, the degraded images are initially transformed 

from RGB color model to HIS colour model. This model preserves hue component H. The image is then changed in the HSV color model 

in a similar way, with the H component being kept invariant and the S and V components being process using CHS method. Experimental 

findings shows that the enhancement of image quality in terms of qualitative and quantitative evaluation in the proposed method. Our 

method has been demonstrated successfully enhancing underwater images having colour distortion, poor contrast and detail loss.  

Keywords− Image enhancement, underwater image, swift algorithm, constrained histogram stretching (CHS), wavelet domain filtering 

(WDF).   

1.Introduction  

The advancement of marine resource development, 

marine biological research, and undersea environmental 

evaluation is being accelerated by researchers' interest in 

underwater computer vision technologies. These 

accomplishments have made it possible for underwater 

imaging research to have strategic significance and 

practical application value [1]. However, an imaging 

component is not able to produce better quality 

underwater photographs since light is particularly 

observed by water throughout its propagation and the 

scatter by suspended microparticles as shown in Fig.1. 

The degraded photographs frequently suffered from low 

contrast and colour cast concerns. Therefore, there is still 

a need for study in the domain of computer vision to 

overcome the poor-quality underwater photographs. The 

target distance as well as underwater depth have an impact 

on the imaging quality of underwater images. The Jaffe 

McGlamery underwater optical imaging model considers 

light source, medium, sensor and object reflection 

qualities. The three forms of light scattering caused by 

water in this model are forward, backward and back 

scattering.

        Fig.1. Underwater imaging through a scattering 

medium [1] 
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These three scattering components are processed as a 

linear sum to create the total light scattering effect in 

underwater imaging. The forward scattering is slight 

angular deviation of the light reflected through water 

elements during its transmission in the lens. The direct 

scattering is the scattering of the target items to the 

imaging system. Details become hazy because the 

dispersed light's path diverges from its original 

transmission direction. When light strikes water 

impurities, it scatters, a phenomenon known as 

backscattering. Depth and the angle of imaging system as 

well as the level of colour attenuation of underwater 

photographs are all affected differently by backscattering. 

However, the majority of documented underwater 

photography improvement techniques typically ignore the 

colour cast quality. Rather, they apply global processing 

to the whole image where it causes local RGB three-

channel region to be overcompensated. 

This study develops a novel method for underwater image 

enhancement using a swift algorithm and hue preserving 

based mechanism. The key contributions of this study are 

summarised as follows.   

1) This study presents a competent image enhancing 

method by combining the hue saturation intensity 

(HIS) and hue saturation value (HSV) color models.   

2) The noncomplex logarithmic function is applied as 

the preprocessing stage to obtain a reasonable 

intensity equalisation and remove immoderate pixel 

values.   

3) The method used wavelet domain filtering (WDF) 

and constrained histogram stretching (CHS) schemes 

operated on HIS and HSV colour models, 

respectively wherein the hue component (H) is 

preserved in both operations.  

4) The experimental findings support the accuracy of the 

color characteristic analysis, the generalizability of 

underwater photograph improvement techniques and 

the viability of underwater imaging improvement in a 

range of settings. Empirical results assures that the 

proposed method generates better results than other 

widely popular underwater enhancement algorithms in 

terms of both visually and quantitative analysis.   

The rest part of this paper is structured as follows. A 

comprehensive study of related works is presented in 

Section 2 and Section 3 gives a detailed introduction to the 

enhancement techniques for underwater imaging 

including the swift algorithm, colour models and 

enhancement algorithms. The experimental validation of 

our strategy and discussion of the qualitative and 

quantitative evaluation are covered in Section 4. The 

proposed method is finally summarised in Section 5.  

2. Literature Survey  

The underwater enhancement methods such as 

underwater image restoration techniques [3]– [5], 

underwater image enhancement [6]– [8], and data-

driven techniques [9]– [11] has been put forward 

successively to enhance image quality. To reconstruct 

high-quality underwater photograph, image restoration 

methods account for the degraded physical model. 

Because of the many complicated underwater physical 

and optical aspects, restoration techniques are not 

easily adaptable. Without taking underwater imaging 

parameters into account, enhancement methods 

concentrate on modifying pixel values to improve 

underwater images [11]. Even though the enhancement 

methods are quick and easy, they often over-or under-

enhanced because underwater optical imaging 

parameters are not taken into consideration. Data-

driven techniques training is relied on artificial pairs 

of low- and high-quality images. Though, data driven 

approaches rely on the large numbers of training data 

as well as complex network architectures. By reversing 

the degraded procedures and computing parameters of 

degraded model, the underwater image restoration 

strategy aims to restore underwater images. The 

recovery of underwater images using polarization-

based techniques [12], [13] may increase the clarity 

and contrast of the images. Moreover, to acquire 

features of deep scene of multiple degrees of 

polarization, hardware devices are required. The dark 

channel prior (DCP) [14] has recently proved its 

dominance in the domain of image enhancement. Other 

algorithms are utilised for restoring the underwater 

images [16]– [18]. From the stance of a physical 

degeneration, Zhou et al. [2] presented a technique on 

the basis of for removal of color cast and backscatter 

pixel prior. Backscatter map, illumination map and 

depth map can all be accurately estimated using this 

strategy with just single underwater image as an input. 

In order to enhancing contrast, the backscatter 

estimation strategy is introduced on the basis of depth 

map for underwater images. Further on the basis of 

illumination map, a method is established to eliminate 

color variations. In precise a color compensation 

method was developed to totally remove artifacts that 

have been caused by the robust removal of red channel. 

An underwater restoration approach on the basis of 

distribution of information and light scattering prior 

was presented to solve the degradation concerns [3]. In 

accordance with the details distributions as well as 

light scattering attributes of the background light 

region, it first estimates the background light. The 

relation between the brightness details as well as color 

attenuation is then used to achieve scene depth map as 

well as transmission map. To obtain a restored image, 
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an underwater image details method is subsequently 

reversed. To remove color distortion, a method based 

on scene depth map as well as the color correction 

technique was put forth [4]. To construct the depth 

map, this technique first designs a technique for 

estimating the depth of underwater images. 

Backscatter is then computed and eliminated by the 

channel using this model in accordance with depth 

value of each pixel. A secondary guided transmission 

map-based technique was put forth that can 

successfully reconstruct the color, visibility, and 

authentic appearance of underwater images [17]. The 

enhancement of transmission map is carried out using 

optimised guided filtering. After processing the 

images, a polished transmission map is then restored. 

The restored image is then subjected to auto level 

processing to enhance the contrast.  

Sharma et al. [16] demonstrates by assigning the 

proper receptive filed size on the basis of traversing 

range of color channel that could result in a significant 

performance improvement. This method also 

incorporated attentive skip operation to iteratively 

improve learned multi-contextual properties. Feature 

priors influenced by underwater scene priors were 

recently proposed [15]. In more detail, this strategy 

creates a strong model for calculating the background 

light based on hue, brightness, and flatness feature 

priors that could efficiently decrease color distortion. 

The improved contrast is achieved while maintaining 

edge information with the finely tuned transmission 

map. By changing the pixel values of images, 

underwater image enhancing approach could improve 

the contrast and brightness. It mostly consists of 

histogram based [19]– [21], Retinex-based [22]– [24], 

and fusion-based  [25]. To enhance the visual quality 

while improving contrast, Ulutas et al. [5] combines 

local as well as global contrast enhancing techniques. 

Meanwhile local technique takes into consideration the 

local brightness properties, global technique 

guarantees the complete enhancing of image. Local 

color correction is also used on underwater images 

using this technique. This technique splits photograph 

into non-over-lapping sub blocks and employ 

histogram to them whereas methods in the literature 

used numerous methods to the global histogram of 

channels.  The technique corrects color using HSV 

color space, precisely the S and V components.  

Hu et al. [18] proposes a competent polarimetric 

recovery approach to enhance image quality on the 

basis of histogram attenuation prior while keeping in 

mind the benefit of the polarisation filter that contains 

a precisely constructed histogram processing 

technique called “cut-tail histogram stretching. The 

performance of the restoration can be further enhanced 

by this processing, which gets around the limitation of 

conventional histogram-based techniques. The use of 

physics-based dichromatic modelling (PDM) in 

combination with a method based on histogram-

equalization (HE) approximation was also proposed 

[19]. Images that have been degraded by nature, 

including such underwater images, can be restored 

using the PDM, which explains the image formation 

process. However, it cannot guarantee that 

reconstructed image has better contrast. To reconstruct 

color irregularities and enhancement underwater 

photographs via context optimisation, this method 

suggests for approximating the traditional HE on the 

basis of PDM. Address the issues of color cast as well 

as poor contrast, a method to enhance underwater 

images related to colour correction and three-interval 

histograms stretching is presented [20]. Initially, a sub-

interval linear transformation related color 

improvement technique is intended to correct color. In 

the meantime, the contrast is improved utilising three 

adaptive sub-histogram equalisation algorithms, and 

the images produced by the aforementioned techniques 

are then blended using multi-scale fusion. A Bayesian 

retinex method is introduced by Zhuang et al. [6] 

utilising multi-order gradient reflectance and 

illumination priors. An efficient color correction 

technique is used for removal of color casts and restore 

naturalness. An underwater enhancing procedure on 

the basis of retinex inspired color correction and 

information preservation fusion method is presented 

[21] to address various issues in underwater images. 

To start, this technique uses a Retinex inspired color 

correction method modelled for getting rid of color 

casts caused via scattering of lights. Further, blend 

three images obtained from color corrected local 

contrast improved version, global contrast improved 

and detail version of underwater images.  

     A method based on Retinex is introduced by Hassan 

et al. [22]. The underwater image is first enhanced 

utilising CLAHE that reduces noise while enhancing 

brightness of image components at the expense of 

blurring the visual details. This strategy further 

performs Retinex based enhancement to recover the 

distorted colours. The novel enhancement was recently 

presented [23]. The lighting components are obtained 

utilising multiscale retinex approach. By linear 

quantisation, mean as well as mean square errors are 

introduced, and recovery of color factors are utilised 

for adjusting three channels for color improvement. 

Next, image noise is removed and the edge information 

are retained by considering image as anisotropic 

thermal diffusion in whole directions. Multi-featured 

prior fusion (MFPF) approach is proposed for 

improving perceptual quality of images [7]. Thus, the 
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final obtained underwater images will have better 

visual quality thanks to complementary multi-features. 

This method proposed a self-adaptive standard 

deviation based on color improvement technique that 

realizes color offset improvement on the basis of 

dominant color of an image. The brightness and 

structural details of the dark region were improved and 

are used to generate group of synthetic exposure maps 

arrangements from the low contrast images. For 

enhancing image quality, Wu et al.[24] developed a 

multiscale fusion GAN. This technique uses four 

convolutional branches to polish the information of 

three prior inputs as well as encode a source input, and 

blend the prior features utilising multiscale fusion 

networks that have been introduced, and then employs 

a channel attention decoder to produce better results. 

To boost the visual presentation of images, a two-stage 

approach on the basis of color correction and image 

fusion by combination of deep learning and traditional 

image enhancing method was proposed [25]. First, a 

method for adaptive color compensation is traduced to 

replace the strongly attenuated channels that were lost. 

Color restoration is also used to compute the 

illumination of color casts triggered through selective 

attenuation light. Due to the fact that underwater 

photograph still has scattering and blurring after color 

restoration, a powerful technique on the basis of DIWF 

and GAN is developed that will additionally improve 

edge and contrast information. An effective and 

reliable enhancement of underwater images method 

called MLLE is developed by Zhang et al. [26]. This 

technique starts by locally adjusting the color of source 

image and information. Mean as well as variance of 

local image block are then computed using integral and 

squared maps that are used for adaptively control 

image contrast. Recently, Ucolor, a network for 

enhancement of underwater photograph was 

introduced [27]. In practice, this method first uses a 

multicolour space encoder network by fusing 

information of different color spaces into a single 

structure that enhances a variety of feature 

representations. Combined with the attenuation 

process, the maximum discriminative features that are 

obtained from many color-space that are adaptively 

incorporated and highlighted. In order to enhancing 

underwater images, Zhuang et al. [28] introduces a 

hyper Laplacian reflectance priors influenced retinex 

variational model. In precise, first and the second order 

reflectance gradient l1/2-norm penalty is used to define 

the hyper-Laplacian. 

Table 1. Summary of some of the underwater image enhancing models. 

Ref. Year Method Approach used 
Performance 

metrics 
Advantage 

Zhuang  

et al. 

[6] 

2021 

Bayesian 

retinex 

algorithm 

The multiorder gradient priors is 

used to create a maximum a poste-

riori (MAP) formulation that applies 

1st order and 2nd order gradient 

priors to both reflectance and 

illumination in order to better 

capture the finer scale and full 

structures.   

UIQM, 

UICM, 

UIConM, 

UISM, CCF, 

UCIQE, 

NIQMC and 

Entropy 

The extensive investigations 

demonstrate the successful 

results in case of colour 

accuracy, parameter 

evaluation, and algorithm 

convergence   

Liu et 

al.  

[8] 

2019 Deep learning 

The CycleGAN are presented to 

generate synthetic underwater 

photographs as training dataset for 

CNN models and underwater 

RasNet model which is the residual 

learning model is applied for 

enhancement tasks.   

PSNR, SSIM, 

UICM, 

UISM, 

UIConM and 

UIQM 

The visual effects of 

underwater images are 

greatly enhanced, which is 

beneficial for the execution 

of vision related underwater 

tasks.   

Yang 

et al.  

[9] 

2021 

 

Deep 

convolutional 

neural 

networks 

(CNNs) 

An encoder decoder method with 

numerous AAF schemes composed 

of lightweight adaptive feature 

fusion network (LAFFNet). AAF 

generates multi-scale feature maps 

by combining branches with various 

kernel sizes. Furthermore, these 

PSNR, SSIM, 

UIQM 

 

In this model, AAF schemes 

were able to extract 

multiscale features and 

combine them by channel 

attention instead of down- 

and up-sampling. In 

addition, it designs the 

lightweight model quicker 
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reflectance priors. Such priors make use of complete-

comprehensive and sparsity-promoting reflectance to 

improve both salient structures and tiny information, 

and restore the authenticity of real color. Furthermore, 

it is observed that l1/2-norm tends to work well for 

calculating illumination accurately. 

      The deep learning has recently demonstrated to 

perform exceptional in different computer vison works 

such as image segmentation [29], image defogging 

[30], super-resolutions [31], [32], and salient objection 

detection [33]. Furthermore, deep learning-based 

methods are steadily used to enhancing underwater 

images [34], [35]. The strategy developed by Liu et al. 

[8]  uses a deep residual structure. First, convolution 

neural network (CNN) models are trained using 

synthetic underwater images produced by CycleGAN. 

The Underwater Resnet model, a residual learning 

model for improving enhancing tasks is introduced 

along with a VDSR. Recently use of a LAFFNet was 

for enhancing underwater images [9]. An encoder-

decoder design along with many AAF schemes 

constitute this model. The AAF generates multi-scale 

feature maps by combining branches with various 

kernel sizes. Moreover, these feature maps are 

adaptively combined using channel attention. To 

accomplish both perceptibility and task-oriented 

enhancement, a new enhancement model was proposed 

[10]. In order to put it more precisely, it reduces the 

need of paired data when using an un-supervised 

method and maintains highly significant details by 

combining with “twin inverse mapping. Besides, it 

uses contrastive cues during training phase to give 

reconstructed image more realistic appearance. The 

novel enhancing model was presented by Lin et al. [35] 

and can asymptotically improve underwater image 

quality. The generator specifically includes an 

advanced enhancement system and two independent 

networks. The base image as well as several other 

parameter maps are needed for progressive 

enhancement are produce by dual-branch framework, 

respectively. It is suggested that underwater image 

quality be iteratively increased using the progressive 

enhancement algorithm. According to Huang et al. 

[36], an AGA could dynamically choose visually 

feature maps are adaptively 

combined via channel attention. 

than other cutting-edge 

models by reducing the 

channel of convolutions. 

Hu et 

al. 

 [18] 

2021 

Histogram 

attenuation 

prior 

It combines the polarimetric 

recovery model with a specific kind 

of local histogram processing. By 

employing a polarisation filter to 

create a cross-linear image, it further 

improves the contrast. 

BRISQUE, 

EME, NIQE, 

Entropy 

An efficient local histogram-

based polarimetric recovery 

technique that can greatly 

improve image contrast and 

partially correct colour 

distortion. 

Zhuang 

et 

 al. 

[28] 

2022 

Retinex 

variational 

model 

The retinex variational model was 

influenced by hyper-Laplacian 

reflectance priors.  In particular, the 

1st order and 2nd order reflectance 

gradients' 𝑙1/2-norm penalties are 

used to generate the hyper Laplacian 

reflectance priors.   

UCIQE, 

PCQI, UIQM 

and Entropy 

This technique is more 

effective at penalising multi-

order gradients in terms of 

reflectance that enhances 

edges and details as well as 

restores the true colours. 𝑙2-

norm is also useful for 

enforcing linear smoothness 

on the illumination as well 

as spatial smoothness. 

Jiang 

et al.  

[34] 

2022 

Adversarial  

fusion 

network 

Using manually created multi-scale 

dense enhanced muddy restoration 

and deep aesthetic colour correction 

schemes, we create a target oriented 

perceptual adversarial fusion 

network.   

UCIQE, 

UIQM, UISM, 

UICM, 

UIConM, 

PSNR, SSIM, 

PCQI 

The restoration of 

photographs with vibrant 

appearances and substantial 

contents works better with 

this technique. 
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complementary channels on the basis of dependencies 

thereby requiring fewer additional attention 

parameters. The TOPEL was recently proposed [34]. 

This method precisely considers the turbidity and 

chromatism factors that contribute to underwater 

image degradation. The process first makes a deep 

aesthetic render scheme in order to fortify perceptual 

contrast and implement color correction, respectively. 

The DCAM is then used which is followed by a guided 

adaptive fusion of latent features that incorporates 

manifold information and showcase appropriate 

perceptibility. In the reconstruction, a global local 

adversarial system is incorporated to close the gap 

across synthetic and real-world datasets. Summery of 

some of the methods has been tabulated in Table 1. 

 

Fig.2. Methodological flowchart of the proposed algorithm   

3. Methodology  

This section summarises overall stages of the proposed 

algorithm The schematic flowchart for our method is 

shown in Fig. 2. A swift algorithm for enhancing 

contrast in images is introduced in the first stage. It 

consists of three distinct steps: (a) a preliminary 

preprocessing step for reducing the excessive pixels 

values, (b) a subsequent processing step for modifying 

brightness and contrast, (c) a concluding 

postprocessing stage to rearrange pixels to their natural 

dynamic range. In addition, as illustrated in Sections 

2.1.1 and 2.1.2, a conversion across RGB color models 

and the HSV/HIS color model is provided. Then, in 

Section 2.2, the enhancement model for underwater 

colour model utilising the hue preservation technique 

is described. 

3.1 Swift algorithm   

This algorithm attenuates the immoderate pixel values 

and modify the contrast of both images[37]. At pre-

processing phase, it uses a non-complex logarithmic 

function to obtains a suited intensity equalization and 

remove immoderate pixel values. If not managed 

properly such immoderate levels can result in 

excessive whiteness. The following is how the 

logarithmic operation is computed [38] as 
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u(x,y)

= log(1

+ G̅(x,y))                                                                        (1) 

where G̅(x,y) represents an above filtered image having 

intensity in the range [0, -1], u(x,y) represents an output 

image from preprocessing stage, and (x, y) indicate the 

special coordinates. The adjustment function is 

determined and will be utilized later in novel 

constructed magnitude modification function. The 

initial adjustment parameter ϛ, that is a rectified 

sample standard deviation of an image 𝑢(𝑥,𝑦) is the 

technique which can be used to compute an extant of 

variation and distribution in the set of pixel scores. In 

computer vision, ϛ is a sensible to contrast attributes 

where image having poor contrast will carry low ϛ 

scores than image having high contrast. The 

adjustment factor ϛ is determined by [39] as 

ϛ

= √
1

n − 1
∑(ui − u̅)

2

n

i=1

                                                           (2) 

u̅

=
1

n
∑ui
n

i=1

                                                                                       (3) 

where ui represents vector representation of an image 

𝑢(𝑥,𝑦) and �̅� represent average of ui. Further, n  

represents number of components at maximum size in 

ui . Therefore, the second adjustment function η is 

computed utilizing following equations. 

η

=
(𝑢(𝑥,𝑦))

𝜆

𝜆!
                                                                                    (4) 

where λ denotes a tweaking function that is set as 

default (λ = 3). An image u(x,y) is next subjected to the 

actual processing step which adjust the brightness and 

contrast. This process entails the implementation of a 

new nonlinear function relating to mathematical, 

statistical, and spatial details designed experimentally. 

The following is how the nonlinear function is 

determined as 

𝑓(𝑥,𝑦)

= exp (
𝑡𝑎𝑛(𝑢(𝑥,𝑦) − ϛ)

exp(𝑢(𝑥,𝑦) − η)
)

Г

                                                       (5) 

where tan represents a tangent in radius of each image 

pixel u(x,y) and f(x,y) represents a photograph with 

improved tonality. Where г denotes an adjustment 

factor which governs a level of enhancement and must 

fulfil г > 0, where a low г value resulting in brighter 

contrast enhancement results and a high г value 

resulting in less-bright contrast enhancement results. 

Above equation has the substantial impact on image 

tonality enhancement. Thus, using the tangent in 

radians and elementwise exponential parameters helps 

to generate two dissimilar curve transformation for 

filtered images. When these two parameters are 

utilized with adjustment factors ϛ and η, they prefer for 

enhancing brightness and generate perceptible tone 

shift in some situations. The values and experimental 

function are decreased by two separate adjustment 

factors ς  and η , and to overcome such effects. Both 

functions could provide an enhanced curvilinear 

transformation for the utilized functions.  The 

parameter ϛ id the common measure which can be 

utilized in numerous real-world applications however 

η are obtains experimentally. One last hurdle that 

should be deal with is a photograph contrast f(x,y) is 

restricted for the specific dynamic range. Therefore, it 

must be regularized to provide suited quality 

performance. Thus, as a last postprocessing step, a 

regularization function is used for redistribution of 

image pixels to their native dynamic range. The 

regularisation operator that was used could be 

determined as in [40]. 

3.2 Colour models  

The RGB model which is most widely used and is present 

in practically each computer system, TV and video is 

described by three chromaticity of green, red and blue 

addictive primaries. A unit cube is typically used to 

display the RGB model, which is sensitive to variations in 

lighting intensity. We therefore look for other 

illumination-invariant color model. The HSV/HIS model 

is a nonlinear version of RGB colour model and it defines 

colour highly accurate for human interpretation than the 

RGB model does [41]. Three components make up the 

HSI/HSV colour model: HSI/V. Both colour models are 

broadly utilised in the fields of computer vision since each 

one's three components may be handled independently 

and separately.  

3.2.1 RGB-HIS conversion: The results range from 0-

360 for H and from 0-1 for S and I when RGB variables 

have values between 0 and 255. The HSI formulas are 

[42]: 

𝐻 = {
𝜃                        𝑖𝑓 𝐵 ≤ 𝐺
360 − 𝜃            𝑖𝑓 𝐵 > 𝐺

  

𝑤𝑖𝑡ℎ 𝜃

=  𝑐𝑜𝑠−1
{(1/2)[𝑅 − 𝐺] + (𝑅 − 𝐵)}

[(𝑅 − 𝐺)2 + (𝑅 − 𝐺)(𝑅 − 𝐵)]1/2
                                              (6) 
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𝑆

= 1

−
3[𝑚𝑖𝑛(𝑅, 𝐺, 𝐵)]

(𝑅 + 𝐺 + 𝐵)
                                                           (7) 

𝐼 =
1

2
(𝑅 + 𝐺 + 𝐵)                                                            (8) 

3.2.2 RGB–HSV conversion: According to Travis [43], 

the conversion of RGB to HSV is based on the normalised 

RGB values: 

𝐻 =

{
 
 

 
 
5 + 𝐵′        𝑖𝑓 𝑅 = 𝑀𝐴𝑋 𝑎𝑛𝑑 𝐺 = 𝑀𝐼𝑁 

1 − 𝐺′        𝑖𝑓 𝑅 = 𝑀𝐴𝑋 𝑎𝑛𝑑 𝐺 ≠ 𝑀𝐼𝑁

1 + 𝑅′        𝑖𝑓 𝐺 = 𝑀𝐴𝑋 𝑎𝑛𝑑 𝐵 = 𝑀𝐼𝑁

3 − 𝐵′        𝑖𝑓 𝐺 = 𝑀𝐴𝑋 𝑎𝑛𝑑 𝐵 ≠ 𝑀𝐼𝑁

5 + 𝐺′                                   𝑖𝑓 𝑅 = 𝑀𝐴𝑋

5 − 𝑅′                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

× 60                                    (9) 

 

S

= 1

−
MIN

MAX
                                                                            (10) 

𝑉 = 𝑀𝐴𝑋,                                                                       (11) 

MAX = max (R, G, B)           MIN = min (R, G, B 

𝑅′ =
𝑀𝐴𝑋−𝑅

𝑀𝐴𝑋−𝑀𝐼𝑁
       𝐺′ =

𝑀𝐴𝑋−𝐺

𝑀𝐴𝑋−𝑀𝐼𝑁
      𝐵′ =

𝑀𝐴𝑋−𝐵

𝑀𝐴𝑋−𝑀𝐼𝑁
 

3.3 Enhancement algorithms 

This strategy uses a two-step method. Prior to using WDF 

technique on the saturation coefficient of S and intensity 

coefficient I, an image is first transformed from RGB 

model to HIS model while preserving hue coefficient H. 

The component H is then continuously kept during the 

conversion to HSV color model and the CHS scheme is 

utilised to stretch S and V components. As previously 

said, the proposed method contains various stages. Fig. 2 

depicts the processing flowchart for our method.  

3.3.1 WDF in HIS color model  

The conventional HF [44] is generalised in image 

processing technique that combines grey-level 

transformation and frequency filtering. It could be utilised 

in reducing effects of uneven lighting and improve image 

information. Here, the WDF method that could be reduce 

noise that is amplified by enhancement process. A 

photograph is made up of frequency component 𝑖 (𝑥, 𝑦)  

as well as reflectance component 𝑟 (𝑥, 𝑦) of lightning 

when the image formation is taken into account, as well as 

the characteristics of light. The illustration in provided by  

𝑓(𝑥, 𝑦)

= 𝑖(𝑥, 𝑦)  

× 𝑟(𝑥, 𝑦)                                                                 (12) 

The following six steps composed the WD filter method 

implementation: 

Step 1: Using the logarithm of the image to separate the 

components of illumination and reflectance: 

𝑔(𝑥, 𝑦) = ln(𝑓(𝑥, 𝑦)) 

= ln(𝑖(𝑥, 𝑦)) × 𝑟(𝑥, 𝑦)                                                    (13) 

= ln(𝑖(𝑥, 𝑦)) + ln(𝑟(𝑥, 𝑦)) 

Step 2: After taking a logarithm, calculate the fourier 

transform of an image; 

𝐺(𝜔𝑥, 𝜔𝑦)

= 𝐼(𝜔𝑥 , 𝜔𝑦)

+ 𝑅(𝜔𝑥 , 𝜔𝑦)                                                          (14) 

Step 3: Filtering in the frequency domain using the 

homomorphic filter H (u, v). 

𝑆(𝜔𝑥 , 𝜔𝑦)

= 𝐻(𝜔𝑥, 𝜔𝑦)  × 𝐼(𝜔𝑥 , 𝜔𝑦)

+ 𝐻(𝜔𝑥 , 𝜔𝑦)  × 𝑅(𝜔𝑥 , 𝜔𝑦)                                            (15) 

where 𝐻(𝜔𝑥 , 𝜔𝑦) = (1 − exp (−(
𝜔𝑥
2+𝜔𝑦

2

2𝛿𝜔
2 ))) ×  (𝑟𝐻 −

𝑟𝐿) + 𝑟𝐿 , 

where the cut-off frequency is controlled by a factor 𝛿𝜔, 

and the maximal and coefficient values are 𝑟𝐻 = 2.5 and 

𝑟𝐿 = 0.5. These parameters are chosen empirically. 

Step 4: Multiscale soft thresholding for denoising in WD. 

Use the following thresholding formula to the wavelet 

coefficient at each level: 

𝑊′𝑇𝑖,𝑗 = {

𝑊′𝑇𝑖,𝑗 − 𝑇𝑖,𝑗                 𝑊
′𝑇𝑖,𝑗 > 𝑇𝑖,𝑗     

𝑊′𝑇𝑖,𝑗 + 𝑇𝑖,𝑗                𝑊
′𝑇𝑖,𝑗 < −𝑇𝑖,𝑗

0                                    |𝑊′𝑇𝑖,𝑗|  <   𝑇𝑖,𝑗

                                       

(16) 

where  𝑊′𝑇𝑖,𝑗 = 𝜆.𝑊𝑇𝑖,𝑗 

where 𝑇𝑖𝑗 represent threshold value, 𝑖 is the wavelet scale 

coefficient and 𝜆 is the enhancing component where 𝑗 =

1,2,3, (𝐻𝐻,𝐻𝐿, 𝐿𝐻).   

Step 5: Estimation of an inverse wavelet transform as well 

as reconstruction of wavelet component.   

Step 6: An inverse fourier transform are computed to 

restore the spatial domain and the exponent is than used to 

get the filtered image.  

When the WDF method is applied to the degraded image, 

the contrast can be improved, non-uniform lighting issues 

can be resolved, and accidentally amplified noise can be 

suppressed, however colour imbalance could result. 

Similar to the HSI colour model, the elements S and I 
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provide a larger variety of colours while coefficient H 

determines color of an image. Only S and I are used in this 

instance of the WDF method while coefficient H is 

preserved.   

3.3.2 CHS in HSV color model 

It is an easy and simple procedure to enhance images 

which is differs from histogram equalisation, which is 

more complex. The pixel values which aim to improve 

contrast in the image are scaled linearly as a result. To do 

this, a desired range of values is covered through 

stretching a range of I values. The formula below is used 

to scale each pixel individually:  

𝑃𝑜𝑢𝑡

= (𝑃𝑖𝑛 − 𝑐)
(𝑏 − 𝑎)

(𝑑 − 𝑐)

+ 𝑎                                                            (17) 

where 𝑃𝑜𝑢𝑡  represents normalised pixel value and 𝑃𝑖𝑛  

represents pixel value, where a and b upper and lower 

value limits, c and d represent the lowest and higher pixel 

values presently contain in the images, respectively. Same 

as WDF processing approach, component H is preserved 

maintained continuously in this case as well to guarantee 

colour fidelity. Additionally, stretching the S and I values 

of HSV color model utilising an above-mentioned 

transform function on S and V components.   

4. Experimental Results and Discussion  

Several existing methods are utilised to validate the 

performance of the proposed method, namely robust 

back scattered light estimation with polarisation 

(RBLE-P) [13], twin adversarial contrastive learning 

(TACL) [10], Bayesian retinex underwater image 

enhancement (BRUIE) [6], deep residual framework 

(DRF) [8] and LaFFNet [9]. The enhancement 

performance of each algorithm is assessed both 

visually and quantitatively. We run the source code 

with the recommended parameter settings provided by 

the corresponding authors for obtaining best possible 

results for both quantitative and qualitative 

assessments. In terms of quantitative analysis, it is 

primarily computed in terms of SSIM, PSNR [1] [45], 

UIQM [1] and PCQI [1]. An enhanced image with 

higher visibility is signified by an entropy value that is 

high. The high PCQI value signifies an enhancement 

image with higher contrast. The high UIQM value 

signifies that an enhanced image has improved 

luminance, saturation, chroma balance. In the 

experiment, we analysed our method using a standard 

underwater dataset made available by Li et al. [46]. 

The dataset contains 893 underwater images that were 

found online. As can be seen in Fig. 3-7, we selected a 

number of underwater degraded photographs that were 

taken in various challenge scenarios (low-light, bluish, 

turbid, and with artificial lightning) for comparison.  

4.1. Parameters Settings 

In case of existing LDCT image denoising techniques 

(i.e., RBLE-P, TACL, BRUIE, DRF and LaFFNet), 

parameters are set as instructed by the authors of the 

respective articles. In terms of proposed algorithm, the 

parameters. In terms of proposed algorithm, the 

𝜆 indicates a tweaking parameter which by default is 

considered as 3. The maximal and the minimal component 

values represented by 𝑟𝐻 and 𝑟𝐿is 2.5 and 0.5. Further, 𝛿𝜔 

indicates a factor that controls the cutoff frequency. The 

simulations is conducted in MATLAB R2019b on the 

64-bit Windows 10 PC with an Intel (R) Core (TM) i9-

9900k CPU running at 3.6 GHz and 16 GB of RAM.   

4.2. Qualitative evaluation  

This section evaluates the performance of proposed 

method visually along with different image enhancement 

and restoration techniques such as DRF, BRUIE, 

LaFFNet, RBLE-P, and TACL method. Two strategies are 

typically used to assess the results of underwater 

photographs; both qualitative and quantitative assessment. 

In terms of comparison, as seen in Fig. 3-7, we selected a 

number of underwater degraded photographs taken in 

various challenge scenarios. The underwater images in 

Fig. 3 show a variety of greenish conditions, which appear 

to be the norm in coastal waters. It is noticeable that the 

proposed method, the TACL technique and the BRUIE 

method all greatly increase perceptibility. However only 

the proposed approach and TACL can bring back more 

vibrant colour. As observed in 3rd column of Fig. 3(b), the 

BRUIE approach, in contrast, has the issue of injecting 

excessive red colour into the restored output. The natural 

green tones in the image are also aggravated by the DRF 

technique. Both the LaFFNet and RBLE-P techniques fall 

short in terms of revealing scene details, and neither one 

is able to adjust the image's overall tones. The blueish 

image makes it difficult and challenging for most 

underwater dehazing techniques to work. This situation 

prevents the green channel from maintaining its intensity 

which prevents it from offering enough valuable data for 

photograph improvement or restoration. As seen in Fig.4, 

the methods of DRF, BRUIE, LaFFNet, and RBLE-P have 

little impact on resolving this issue. Although it 

contributes to colour correction, TACL appears to be less 

robust as observed in 2nd to final column of Fig.4. 

Fortunately, the obtained findings of our strategy 

successfully address this problem by revealing more 

information and achieving an acceptable colour 

performance. The unfavourable consequences of 

dispersion become more obvious in a setting with murky 

waters. In this situation, it can give the contrasted 

approaches a good opportunity to assess how well they 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 11–27 |  20 

perform when dehazing. Fig. 5 displays the matching 

retrieved results produced from three typical underwater 

images shot in murky conditions. In reality, the 

conventional method contributes to haze removal; 

nevertheless, variations of this algorithm like BRUIE and 

RBLE-P can also significantly reduce the appearance of 

haze. But both of these methods will reduce overall 

brightness of the images by producing unpleasant visual 

effects. Similar to the BRUIE method, the results of 

TACL algorithm are prone to whitening the intended 

situation. Additionally, their inability to discern certain 

features is hampered by their lack of sharpness. The 

reconstructed outputs produced by our technique are 

better to these algorithms in case of dehazing notably for 

maintaining colour accuracy. In addition to colour cast 

and dispersion, restoration of lighting is another problem 

that needs to be resolved for the low-light situation. As 

seen in Fig. 6, while the RBLE-P approach definitely over 

enhances the red and green channel and as a result 

introduces some additional colour deviation, the DRF 

method reduces image brightness. The results of the 

BRUIE, LaFFNet, and TACL based approaches can 

marginally increase visibility, but they are still lacking. 

On the other hand, the method we proposed is more 

effective at colour restoration and illumination recovery, 

and it 

 

Fig.3. Comparative analysis of underwater greenish scene. From left to right; original image and the results generated by 

DRF, BRUIE, LaFFNet, RBLE-P, TACL and ours, respectively. 

 

Fig.4. Comparative analysis of underwater bluish scene. From left to right; original image and the results generated by 

DRF, BRUIE, LaFFNet, RBLE-P, TACL and ours, respectively. 

also reveals more details that were before buried in darker 

regions. The underwater photography with artificial 

lighting is a unique but not uncommon situation. The 

utilisation of artificial lighting is required in some water 

locations where natural light is obstructed or diminished. 

The capacity to isolate its influence and appropriately 

reconstruct or enhance the photograph is the main 

criterion to evaluate the performance of the underwater 

dehazing algorithms because of several light attenuation 

rates in the artificial lighting regions.  The experimental 

results of DRF and LaFFNet approach which are shown 

in Fig. 7 are not as good as anticipated because they 

initially do not take this circumstance into consideration. 

Although the BRUIE method reasonably avoided 

influence of this regions, the overall response of image is 

not immediately apparent. In contrast to BRUIE, the 
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RBLE-P algorithm is unable to prevent the issue of over 

enhancing caused by the uneven illumination. However, 

the TACL method and our technique can discreetly 

brighten the images and improve contrast in the darker 

areas. It has been discovered that our technique can 

produce more precise features and a sharper edge contour 

when compared to the TACL method. We provide several 

additional examples with higher textural structure and 

histogram in Fig. 8 to further demonstrate this superiority. 

There is a clear difference between the TACL and our 

approach. We also include histogram of 

 

 

Fig.5. Comparative analysis of underwater turbid scene. From left to right; original image and the results generated by 

DRF, BRUIE, LaFFNet, RBLE-P, TACL and ours, respectively. 

 

Fig.6. Comparative analysis of underwater low light scene. From left to right; original image and the results generated by 

DRF, BRUIE, LaFFNet, RBLE-P, TACL and ours, respectively. 

 

Fig.7. Comparative analysis of underwater artificial lighting scene. From left to right; original image and the results 

generated by DRF, BRUIE, LaFFNet, RBLE-P, TACL and ours, respectively. 

RGB colours of some original and restored images in Fig. 

8. Clearly, the proposed technique surpasses the TACL 

method in case of edge performance and discloses more 

information 

4.3. Quantitative evaluation  

We use a number of objective indicators including PSNR, 

SSIM, UIQM, and PCQI, which are frequently used to 

analyse performance for the underwater image 

enhancement quantitative assessment. The PSNR 

calculates the intensity difference across the ground truth 

photograph and the enhanced photograph. The SSIM 

metric measures how similar two images are to one 

another. On the basis of structural data, SSIM offers 

accuracy. The UIQM and PCQI measures are specifically 
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made for evaluating underwater images, whereas SSIM 

and PSNR are general-purpose metrics for evaluating 

image contrast. While the PCQI measure us utilised to 

assess the visual distortion of a photograph by 

decomposing an image mean intensity, signal intensity 

and signal structural components by adaptive 

representation of local patches, the UIQM

 

Table 2. Quantitative analysis of the reconstructed images presented in Figs. 3-7 using PSNR, SSIM, PCQI and UIQM 

measures. The bold values indicate the best scores. 

Assessments for underwater images with greenish scene (Fig.3) 
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Assessments for underwater images with blueish scene (Fig.4) 

 DRF BRUIE LaFFNet RBLE-P TACL Proposed 
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Assessments for underwater images with turbid scene (Fig.5) 

 DRF BRUIE LaFFNet RBLE-P TACL Proposed 
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Assessments for underwater images with low-light scene (Fig.6) 

 DRF BRUIE LaFFNet RBLE-P TACL Proposed 
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Fig.8. Comparisons of histograms distributions of R, G, B channels; (a) Original images and (b) the results of proposed 

method 

measures image performance through a linear 

combination of colourfulness. Table 2 displays the 

quantitative evaluation findings from Figs. 3–7 produced 

by the five comparative approaches and the proposed 

methodology. The higher values show the better 

performance for all metrics. Regarding the greenish image 

and the image taken under artificial illumination, it could 

be observed that proposed technique achieves nearly the 

better values across all parameters due to its excellent 

effectiveness in boosting contrast and reviving bright 

colour. Since DRF, BRUIE, and LaFFNet technique 

scores are typically close to 1, they have little impact on 

contrast for blueish images. Although TACL performs 

better in terms of PCQI and UIQM, its limited resilience 

and colour accuracy render it useless. The results that 

BRUIE and LaFFNet techniques obtained in the murky 

water and dimly lit scenario have a lot of dark patches. 

Additionally, their irregular high PCQI and UIQM 

readings are aberrant and at odds with the subjective 

perceptual assessment. In spite of this, the proposed 

technique still obtains ideal results in terms of PCQI and 

UIQM metrics when compared to other methods. It can be 

observed from the Table 2, the more PSNR and SSIM 

scores verify that the proposed method contributes on 

improving the contrast of the underwater photographs. 

Additionally, the PCQI and UIQM measures are generally 

above 0.8 and 1.5, respectively that further indicates 

superiority of the proposed method in robustness for 

dehazing and colour correction. The average values of 

measures SSIM, PSNR, UIQM, and PCQI for the restored 

images produced by all of the methods that were 

compared. We may conclude from Table 2 that, in case of 

ideal values of the four metrics the proposed technique 

performs better than other comparative methodologies in 

terms of both visually and quantitative evaluation.  

5. Conclusion and Future Work  

In this research, we introduce a competent underwater 

image enhancing strategy based on swift algorithm and 

hue-preserving based method. There are three distinct 

steps in the swift algorithm: a preliminary preprocessing 

stage to reduce an excessive pixel value, a follow-up stage 

for modifying contrast and brightness and the final 

postprocessing stage for rearranging pixels to their native 

dynamic range. On the HIS and HSV color models, 

respectively, we used WDF and CHS techniques. The 

method is applied to a collection of underwater colour 

photographs and the experimental findings demonstrates 

how successfully the real-color image dynamic range can 

be compressed while maintaining accurate colour 

reproduction and resolving non-uniform illumination. In 

terms of experimental findings, fifteen representative 

poor-quality photographs with several challenge scenes 

are chosen and compared to the other five popular 
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methods. The significant visual and quantitative results 

demonstrates that our strategy obtains better in case of 

improving visibility and colour interpretation. The great 

natural appearance and detail preservation are adequate to 

prove that proposed method is capable to eliminate noise 

generated by suspended particles.  Additionally, the 

proposed framework can broaden its application in 

underwater computer visions and image processing such 

as target identification and image recognition in addition 

to contribution for better technique to address the 

problems of underwater image enhancement. We are 

constantly extending our framework to considers more 

elements that might damage underwater image quality. 

For instance, underwater images frequently experience 

motion blurring, yet this phenomenon is rarely deliberated 

in restoration and enhancement techniques. Additionally, 

one of our future research focuses will be on adapting our 

approach to handle video processing.  
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