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Abstract: Earthquake prediction holds immense significance for disaster management and public safety. This study presents a novel 

approach for earthquake prediction through spatio-temporal analysis using a Hybrid Convolutional Neural Network (CNN) and Gated 

Recurrent Unit (GRU) model. The methodology integrates the strengths of CNNs in spatial feature extraction and GRUs in temporal pattern 

recognition, offering a comprehensive understanding of seismic events. The research incorporates seismic data enriched with geographical 

parameters, facilitating the analysis of earthquake occurrences across diverse regions. The model's spatial component, CNN, excels in 

capturing intricate spatial features within seismic data. In parallel, the temporal component, GRU, effectively discerns evolving patterns 

of seismic activity over time. This hybrid architecture ensures a holistic analysis of seismic data, enabling early detection and accurate 

earthquake prediction. To evaluate the model's efficacy, extensive experiments are conducted using seismic data from various regions. 

Performance metrics such as mean absolute error, mean squared error, and root-mean-square error are employed to assess predictive 

accuracy. Comparative analysis demonstrates the superiority of the Hybrid CNN-GRU model in earthquake prediction, particularly for 

large seismic events. The proposed methodology offers valuable insights for enhancing earthquake prediction systems, contributing to 

disaster management strategies and bolstering public safety measures. This research represents a significant advancement in the field of 

seismology, providing a robust framework for mitigating the impact of earthquakes on communities worldwide. In our seismic prediction 

study, we achieved remarkable results with our hybrid CNN-GRU model, attaining a high accuracy rate of 98.67%. The proposed model 

exhibited a significantly low loss, indicating its proficiency in capturing intricate spatial-temporal patterns within seismic data. These 

findings underscore the model's potential for enhancing earthquake forecasting accuracy, making it a valuable contribution to early warning 

systems and seismic research. 
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1. Introduction 

The foremost objective of disaster management is to save 

lives. This is achieved through comprehensive disaster 

preparedness plans that include early warning systems, 

evacuation strategies, and the establishment of emergency 

response teams [1]. Timely and well-coordinated responses 

during disasters can significantly reduce casualties. 

Disasters often result in physical injuries and psychological 

trauma. Disaster management teams provide immediate 

relief, including shelter, food, clean water, medical care, and 

counseling services, to alleviate the suffering of those 

affected [2]. This compassionate response is essential for the 

well-being of survivors. Critical infrastructure such as 

roads, bridges, power grids, and communication networks 

are vulnerable during disasters. Effective disaster 

management incorporates risk reduction measures like 

building resilient infrastructure and implementing disaster-

resistant building codes. These actions help minimize 

damage, reduce repair costs, and expedite the recovery 

process [3]. Homes, businesses, and personal property are at 

risk during disasters. Disaster management strategies often 

include promoting insurance options and creating public 

awareness campaigns about the importance of protecting 

assets. This not only safeguards individual property but also 

reduces the financial burden on governments. Disasters can 

lead to chaos and social unrest, particularly in densely 

populated areas. Disaster management plans include 

provisions for law enforcement and maintaining social 

order, preventing looting, violence, and other criminal 

activities that can emerge during or after a disaster. 

Disasters can have severe economic consequences, affecting 

industries, jobs, and livelihoods [4]. Effective disaster 

management helps mitigate economic losses by facilitating 

a quicker recovery, reducing the strain on government 

resources, and ensuring that businesses can resume 

operations as soon as possible. Disasters can harm the 

environment through pollution, habitat destruction, and 

other adverse impacts. Disaster management involves 

strategies for minimizing environmental damage, such as 

containment and cleanup efforts, as well as promoting 

sustainable practices to reduce vulnerability to future 

disasters. Beyond immediate responses, disaster 

management focuses on building resilience within 

communities and regions. This includes education, training, 

and the development of disaster-resistant infrastructure. 

Resilience enables communities to better withstand and 

recover from disasters, reducing their long-term 

vulnerability [5]. Disaster management is a multifaceted 
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approach that encompasses preparedness, response, 

recovery, and resilience-building efforts. Its importance lies 

in its ability to protect lives, alleviate suffering, safeguard 

infrastructure and property, maintain order, stabilize 

economies, and promote sustainability, ultimately 

contributing to the overall safety, security, and well-being 

of society in the face of natural or man-made disasters. 

Predicting earthquakes is a challenging but crucial aspect of 

disaster management aimed at reducing the impact of 

seismic events on people, property, and infrastructure. 

Earthquake prediction involves the use of scientific methods 

and data analysis to estimate when and where earthquakes 

might occur [6].  Continuous monitoring of seismic activity 

using networks of seismometers and other geophysical 

instruments is essential. These instruments detect ground 

motion and record seismic waves, providing data for 

analysis. Studying historical earthquake records helps 

identify patterns and trends in seismic activity, such as the 

frequency and magnitude of earthquakes in a specific region 

[7]. Identifying active fault lines and studying their 

movements can provide insights into potential earthquake 

sources. Developing early warning systems that can detect 

initial seismic waves and issue alerts before the more 

damaging waves arrive can provide valuable seconds to 

minutes for people to take cover and emergency services to 

prepare [8]. Utilizing machine learning and artificial 

intelligence (AI) algorithms to analyze large datasets can 

help identify potential earthquake precursors or patterns that 

are difficult for humans to discern. Using data from GPS 

stations and satellite imagery can help track ground 

deformation and strain, which are important indicators of 

potential earthquake activity. Educating the public about 

earthquake preparedness and safety measures is critical to 

reducing casualties and damage. This includes teaching 

people what to do during an earthquake and how to create 

earthquake-resistant buildings [9]. Earthquake prediction 

often requires international collaboration because seismic 

activity can cross borders. Sharing data and research 

findings with neighboring countries can improve prediction 

accuracy. Earthquake prediction is an evolving field, and 

ongoing research is essential to improve prediction models 

and techniques. While earthquake prediction has made 

significant advancements, it remains a challenging endeavor 

due to the complex and unpredictable nature of seismic 

events. As a result, most efforts focus on earthquake 

preparedness and early warning systems to mitigate the 

impact of earthquakes when they do occur [10].. 

While traditional machine learning models have been 

employed in some aspects of earthquake prediction, they are 

often limited in their ability to capture the intricate spatio-

temporal patterns of earthquakes. One common approach is 

to use statistical and machine learning techniques to analyze 

historical earthquake data, looking for patterns and trends 

that might indicate future seismic activity [11]. This can 

include the use of regression models, clustering algorithms, 

or time series analysis methods. It’s important to note that 

earthquake prediction is primarily a task that falls within the 

domain of seismology and geophysics, and it often requires 

more specialized techniques and data sources. Traditional 

machine learning models may be used as part of a broader 

earthquake prediction system, but they are typically not the 

sole or primary method for predicting earthquakes. The 

researchers have explored the use of deep learning 

techniques, such as convolutional neural networks (CNNs) 

and recurrent neural networks (RNNs), to analyze seismic 

data and improve earthquake prediction models [12]. These 

deep learning models can capture complex spatio-temporal 

patterns in the data and may offer promise in advancing our 

ability to predict earthquakes, but this remains an active area 

of research and is not yet a widely established method for 

earthquake prediction [13]. 

Predicting earthquakes using deep learning methods, while 

a challenging and ongoing area of research, has the potential 

to offer several advantages and effectiveness in certain 

aspects of earthquake prediction [14]. Deep learning 

models, such as convolutional neural networks (CNNs) and 

recurrent neural networks (RNNs), excel at recognizing 

intricate patterns in data. Earthquake prediction often 

involves analyzing large volumes of complex seismic data, 

which deep learning models can handle effectively. 

Earthquakes are spatio-temporal events, meaning they occur 

in both space and time. Deep learning models can capture 

the spatial and temporal dependencies in seismic data 

simultaneously, which is crucial for understanding 

earthquake patterns. Deep learning models can 

automatically extract relevant features from raw data. In the 

case of seismic data, these models can identify important 

seismic characteristics that might be challenging to extract 

manually. Earthquake prediction relies on various data 

sources, including seismic, geospatial, and environmental 

data. Deep learning models can integrate and analyze 

multiple data modalities effectively, allowing for a more 

comprehensive analysis. Earthquake prediction is inherently 

non-linear, as the relationships between seismic events and 

their precursors can be complex and nonlinear. Deep 

learning models, with their multiple layers and non-linear 

activation functions, can capture these intricate 

relationships. Deep learning models can scale to handle 

large datasets and high-dimensional data, which is essential 

for processing the vast amounts of seismic data generated 

worldwide. Pertained deep learning models can be fine-

tuned for specific earthquake prediction tasks. Transfer 

learning allows researchers to leverage the knowledge 

captured by models trained on other tasks or datasets. Deep 

learning models can be integrated into early warning 

systems that provide advance notice of impending 

earthquakes. These systems can save lives and reduce 

damage by giving people and emergency services crucial 
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seconds or minutes to prepare. It’s important to note that 

while deep learning shows promise in earthquake 

prediction, it is not a panacea. Earthquake prediction 

remains a highly complex and multidisciplinary field, and 

deep learning models are just one piece of the puzzle. 

Traditional seismological methods, geological research, and 

continuous monitoring are also essential components of 

earthquake prediction efforts. Additionally, the accuracy 

and reliability of deep learning models for earthquake 

prediction require ongoing research and validation. 

The use of Convolutional Neural Networks (CNNs) and 

Gated Recurrent Units (GRUs) in a hybrid model is 

particularly noteworthy, as it combines the strengths of 

CNNs in spatial pattern recognition with the temporal 

sequence modeling capabilities of GRUs. This approach 

recognizes the complex and dynamic nature of seismic 

events, which involve both geographical factors (spatial) 

and the progression of time (temporal). By leveraging this 

hybrid model, the research aims to improve the accuracy 

and reliability of earthquake prediction, which is pivotal for 

disaster management and preparedness efforts. Spatio-

temporal analysis, coupled with deep learning techniques, 

holds the promise of enhancing our understanding of 

earthquake patterns and ultimately contributing to more 

effective strategies for mitigating earthquake-related risks 

and minimizing their impact on communities and 

infrastructure. This approach introduces the fundamental 

methodology that underpins our research. Our approach 

combines spatial and temporal data analysis techniques 

through the utilization of a hybrid Convolutional Neural 

Network (CNN) and Gated Recurrent Unit (GRU) model. 

This methodology is at the heart of our efforts to address the 

formidable challenge of earthquake prediction, a task of 

immense importance for disaster management and public 

safety. By simultaneously examining the geographical 

parameters and the temporal progression of seismic events, 

our hybrid model seeks to provide a comprehensive 

understanding of earthquake patterns, enabling more 

accurate predictions. The integration of deep learning 

techniques, along with the optional incorporation of an 

attention mechanism, promises to advance our 

understanding of earthquake dynamics, ultimately 

contributing to improved strategies for disaster mitigation 

and preparedness. The Key Contributions of the research 

study are as follows, 

1. The study introduces a novel approach by integrating 

Convolutional Neural Network (CNN) and Gated Recurrent 

Unit (GRU) models into hybrid architecture. This 

integration capitalizes on the strengths of both models, 

effectively handling the spatial and temporal aspects of 

seismic data, thus providing a more comprehensive analysis. 

2. The hybrid CNN-GRU model enables a comprehensive 

spatio-temporal analysis of seismic data. By simultaneously 

considering geographical parameters and the temporal 

evolution of seismic events, it captures complex patterns 

that were previously challenging to discern using 

conventional methods. 

3. The research demonstrates the potential for enhanced 

earthquake prediction accuracy. By leveraging deep 

learning techniques and the hybrid model, the study aims to 

provide more reliable predictions, which is critical for early 

warning systems and disaster preparedness. 

4. The study's focus on earthquake prediction for disaster 

management underscores its practical relevance. Effective 

earthquake prediction can significantly contribute to early 

warning systems, evacuation planning, and mitigation 

strategies, ultimately minimizing the impact of seismic 

events on communities and infrastructure. 

The Section 1 provides an overview of the paper. The 

Section 2 reviews existing literature and emphasizes the gap 

in addressing individual driver differences in drowsiness 

detection. The Section 3 defines the central research 

problem concerning driver drowsiness detection 

complexities. Section 4 outlines data collection, 

preprocessing, feature extraction, and the integration of 

Hybrid CNN-GRU. Section 5 presents empirical findings, 

compares classifier performance, and explores implications 

and future research directions, solidifying the research's 

significance in Earth quake prediction. 

2. Literture Review 

Berhich, Belouadha, and Kabbaj [15] outlines a fresh and 

creative method for predicting earthquakes that relies on the 

geographic characteristics of seismic data. The study splits 

each cluster into subsets and distinguishes between seismic 

occurrences with magnitudes ranging from 2 to 5 and those 

beyond a volume of 5 by using the K-Means technique to 

cluster earthquake data concerning longitude and latitude. 

The models may independently focus on particular 

geographic regions thanks to this clustering and sub setting 

technique, which enables the discovery of region-specific 

seismic phenomena. The research also proposes an 

important idea whereby huge earthquakes with rare 

occurrences are trained individually, guaranteeing that their 

prediction is unaffected by the existence of other significant 

seismic occurrences. Three recurrent neural network 

methods commonly used in the study are Long Short 

Memory, Gated Recurrent Network, and a hybrid LSTM-

GRU model. Seismic data from Morocco, Japan, and 

Turkey are used to evaluate the models, and their 

performance is evaluated using important metrics such as 

mean absolute error, mean squared error, and root-mean-

square error. The paper's models usually show good 

predictive ability when compared to previous research, 

especially in the prediction of major earthquakes. Through 

location-dependent analyses and specialized modeling 
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tools, this research offers a viable path towards enhancing 

earthquake prediction accuracy. 

Bilal et al. [16] focuses on the crucial topic of earthquake 

detection, which is essential for protecting infrastructure 

and lives. The research correctly emphasizes the special 

difficulty of earthquake detection because, unlike more 

organized tasks like object identification in photos, there are 

no clear patterns. It recognizes the drawbacks of 

conventional Convolutional Neural Networks in processing 

seismic data, such as difficulties with parameter 

optimization and disappearing or bursting gradients. The 

research offers an ensemble learning strategy that takes 

advantage of the strengths of many models to make up for 

each other's flaws and improve performance in order to 

address these problems. A notable addition to earthquake 

detection is the suggested SNRNN model. It combines batch 

normalization and layer normalization methods with three 

distinct recurrent neural network models (RNN, GRU, and 

LSTM). This combination considerably improves the 

stability as well as the effectiveness of the training of models 

while successfully extracting features from seismic 

waveform data. The model's usefulness to real-world 

earthquake prediction scenarios is demonstrated by the 

focus on the specifically targeted region of Turkey over a 

significant 18-year time period. One of the main advantages 

of the SNRNN model is its remarkable ability to achieve low 

Root Mean Square Error values of 3.16 for magnitude and 

3.24 for depth detection. These values indicate that the 

model is highly accurate in estimating earthquake 

parameters. By contrasting the SNRNN model with three 

baseline models, the study shows how better it is and 

emphasizes how successful it is at detecting earthquakes. 

The research makes a significant addition to earthquake 

detection by tackling the difficulties in seismic data analysis 

and attaining very accurate depth and magnitude estimation. 

Combining batch and layer normalization with the ensemble 

learning technique exhibits the model's higher performance 

and resilience. This study has important ramifications for 

earthquake detection systems that will ultimately improve 

public safety and catastrophe preparation. 

Xiong et al. [17] focuses on earthquake forecasting, a 

critical worldwide issue. Enhancing our capacity to forecast 

earthquakes is essential given their tremendous effect on 

infrastructure and human lives. The research correctly 

highlights the difficulties in predicting earthquakes, such as 

the elusiveness of precursors and challenges in seeing them 

in seismic data. Due to its speed and broad acquisition range, 

it highlights the value of remote sensing, particularly 

satellite data, for earthquake study. This study stands out for 

its thorough examination of seismic data and its creative 

application of machine learning, particularly the Inverse 

Boosting Pruning Trees (IBPT) technique. The research 

attempts to provide short-term earthquake forecasts by 

analyzing a sizable dataset of 1,371 earthquakes with a 

magnitude of six or higher and using satellite data. The 

research uses 10 separate infrared and hyper spectral data 

spanning many years to thoroughly evaluate the suggested 

IBPT framework with other cutting-edge machine-learning 

techniques. Stunningly, the IBPT technique surpasses each 

of the six baselines that were chosen, highlighting its 

potency in improving earthquake forecasting across various 

seismic databases. The study makes a substantial addition to 

earthquake forecasting. By utilizing satellite data and 

machine learning methodologies, especially IBPT, it 

addresses the complexities of earthquake forecasting. The 

study advances our understanding of earthquake prediction, 

allowing us to better plan for disasters and improve public 

safety throughout the world. By surpassing previous 

approaches, the paper successfully advances our 

understanding of earthquake prediction. 

Jia and Ye [18] explains in detail how Deep Learning (DL) 

is used in earthquake disaster assessment (EDA). The 

discipline of earthquake damage assessment, or EDA, has 

made significant strides thanks to DL's skills in image 

processing, signal classification, and object detection. The 

report provides helpful insights into the present condition, 

development, and issues faced by DL in EDA through a 

rigorous literature assessment of 204 papers. The study 

begins by looking at the numerous assessment items in 

EDA, such as primary catastrophes, secondary disasters, 

and physical objects like infrastructure and buildings. It also 

looks at the three main categories of data sources utilized in 

these studies: social media, seismic, and remote sensing 

data. The systematic reviews further explore the use of six 

regularly used DL models in EDA, from convolutional 

neural networks to generative adversarial networks and 

transfer learning and give a full description of their roles and 

contributions. This review provides a comprehensive 

analysis of DL applications in various earthquake disaster 

phases, including pre-earthquake, during-earthquake, post-

earthquake stages and multi-stage scenarios. The 

application of CNNs in image classification to evaluate 

earthquake-related building damage is highlighted in the 

research, demonstrating the importance of DL in this 

particular area of EDA. The study highlights prospects in 

expanding data sources, multimodal DL techniques, and 

unique concepts while highlighting important problems 

linked to training data and DL models. This paper is a useful 

resource for academics and industry professionals by 

illuminating the merits, weaknesses, and potential 

applications of DL in EDA today. For individuals looking 

to use DL approaches for better seismic hazard assessment, 

prevention, and response activities, it provides as a thorough 

manual. 

Kavianpour et al. [19] focuses on the urgent subject of 

earthquake forecasting, which is essential for reducing the 

catastrophic effects of seismic disasters on infrastructure 

and human life. The research acknowledges the difficulties 
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in constructing effective and trustworthy prediction models 

as well as the inherent difficulties in earthquake prediction 

owing to the stochastic character of earthquakes. In response 

to these difficulties, the research presents a novel method 

that predicts the frequency and maximum magnitude of 

earthquakes in mainland China by combining Convolutional 

neural network, Attention mechanism, and bi-directional 

long short-term memory models. The effectiveness with 

which this suggested model can make use of both 

geographical and temporal information is its main strength. 

It starts by employing the zero-order hold approach to 

preprocess seismic data, which improves the input data's 

quality. Then, to reduce dimensionality and improve data 

representation, the CNN is used to incarceration latitudinal 

relationships in seismic records. By capturing temporal 

dependencies in the following BiLSTM layer, the model is 

able to comprehend how earthquake patterns change over 

time. By emphasizing important information for greater 

accuracy, the attention mechanism (AM) significantly 

improves the model's prediction abilities. The study's 

findings show that the suggested method works better than 

previous prediction techniques, proving both its higher 

performance and generalizability. This study shows how 

combining deep learning models with attention processes 

may provide forecasts that are more accurate, which is a 

significant development in earthquake prediction methods. 

This research offers insightful information and a viable 

strategy for improving earthquake prediction that has the 

potential to make a substantial contribution to efforts for 

public safety and disaster preparedness. 

Huang et.l [20] represents a deep learning-based method for 

predicting earthquakes is introduced in this study, with an 

emphasis on major earthquakes and their potential to cause 

destructive tsunamis. Recognizing the importance of 

accurately forecasting such seismic events on a global scale, 

the authors make use of deep learning technology, which is 

renowned for its ability to automatically extract useful 

features from large datasets and has achieved great success 

in a number of fields, including image recognition and 

natural language processing. The study describes a method 

for predicting earthquakes using historical seismic event 

data and deep learning in this context. The authors build a 

deep learning network model by overlaying these historical 

events on topographical maps and creating labeled datasets. 

The model's ability to forecast whether an earthquake larger 

than M6 would occur within the next 30 days using the input 

data is its major finding. With a R score of 0.303, the results 

show good performance, especially when forecasting 

earthquakes in Taiwan using data from the previous 120 

days. This technique has potential despite not having an 

extraordinarily high R score since it uses patterns in past 

seismic occurrences without requiring human feature vector 

generation, as with conventional neural network 

approaches. The approach presented in the research shows 

promise not just for earthquake prediction in Taiwan but 

also for use in other seismic zones, constituting a substantial 

advancement in the prediction of seismic events. 

3. Problem Statement 

Earthquake prediction stands as a paramount endeavor 

within the realm of disaster management, given the 

substantial risks posed by seismic events to human lives and 

critical infrastructure. Conventional methods of earthquake 

prediction have grappled with the formidable challenge of 

capturing the multifaceted spatio-temporal patterns 

inherently embedded within seismic data. These intricate 

patterns, which encompass both geographical and temporal 

dimensions, are pivotal for understanding the precursors and 

behaviors of seismic events. As a result, there is an 

unmistakable imperative for innovative and more 

sophisticated techniques that can effectively analyze 

seismic data from both spatial and temporal perspectives 

[12] 

To confront these challenges head-on, the fusion of deep 

learning models, exemplified by the hybrid combination of 

Convolutional Neural Networks (CNN) and Gated 

Recurrent Units (GRU), has surfaced as a highly promising 

avenue. The CNN element demonstrates prowess in spatial 

feature extraction, adept at discerning nuanced spatial 

patterns within seismic data linked to geographic 

parameters. Meanwhile, the GRU component, hailing from 

the domain of recurrent neural networks, is tailored for 

capturing the intricate temporal dependencies ingrained in 

the data, thus facilitating a holistic understanding of how 

seismic events unfold and evolve over time. This 

amalgamation of spatial and temporal analysis within the 

CNN-GRU hybrid model offers an innovative solution to 

the age-old problem of earthquake prediction, potentially 

ushering in a new era of improved prediction accuracy and 

enhanced early warning capabilities for seismic events. 

4. Proposed Hybrid CNN-GRU for Earthquake 

Prediction through Spatio-Temporal Analysis 

The methodology of this study follows a systematic flow 

designed to address the challenge of earthquake prediction, 

as illustrated in Figure 1. It initiates with a comprehensive 

data preprocessing phase, which encompasses tasks such as 

data collection, cleaning, and normalization. Geographical 

parameters like longitude and latitude are extracted to 

facilitate spatial analysis. The study introduces a hybrid 

deep learning architecture that combines Convolutional 

Neural Networks (CNN) and Gated Recurrent Units (GRU). 

CNNs are specifically employed for spatial analysis to 

capture spatial patterns and features within the seismic data, 

while GRUs is tasked with temporal analysis to comprehend 

the evolving patterns of seismic activity over time. This 

hybrid CNN-GRU model enriches earthquake prediction by 
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considering both the spatial and temporal dimensions, 

which are crucial for understanding the dynamics of seismic 

events. The methodology culminates with a rigorous 

performance evaluation, involving metrics like mean 

absolute error, mean squared error, and root-mean-square 

error, which assess the model's predictive accuracy and 

effectiveness in comparison to conventional methods. This 

systematic approach ensures the development of a robust 

and accurate earthquake prediction framework, contributing 

to enhanced disaster management and public safety. 

 

Fig. 1. Workflow of Proposed Methodology 

4.1. Data Collection 

The Significant Earthquake Database, gathered from 

Kaggle, serves as a comprehensive global repository 

comprising over 5,700 earthquakes spanning from as far 

back as 2150 BC to the present day [21]. These earthquakes 

are categorized as 'significant,' meeting specific criteria such 

as causing casualties, inflicting substantial economic 

damage (approximately $1 million or more), possessing a 

magnitude of 7.5 or greater, attaining a Modified Mercalli 

Intensity (MMI) rating of X or higher, or generating 

tsunamis. This database offers detailed information for each 

seismic event, including precise date and time, geographical 

coordinates, focal depth, magnitude, maximum MMI 

intensity, and socio-economic data like casualty numbers, 

injuries, and houses destroyed damaged structures, and 

dollar damage estimates. Moreover, references, political 

geography, and additional comments are provided, 

enhancing the depth of knowledge surrounding each 

earthquake. If an earthquake is associated with tsunamis or 

volcanic eruptions, it is flagged and linked to the 

corresponding events, making this database an invaluable 

resource for researchers, geologists, emergency responders, 

and anyone interested in comprehending Earth's dynamic 

and potentially hazardous geological phenomena [21] 

4.2. Data Pre-Processing 

The pre-processing of data is a crucial step to ensure the 

quality and readiness of the dataset for analysis. The 

removal of any data flaws or inconsistencies is imperative 

to enhance the accuracy of prediction models. This pre-

processing phase involves various operations such as data 

normalization, cleansing, and transformation. The input data 

for earthquake prediction encompasses a range of 

environmental parameters, including seismic data, 

geographical information, and historical earthquake 

records. Essential aspect of pre-processing is handling 

missing data, which can significantly impact the quality of 

predictions. In the earthquake prediction dataset, missing 

values are addressed using a mathematical expression:  

𝐴𝑖 =
𝐴𝑖−1+𝐴𝑖+1

2
,   𝑖 ∈ 𝑁  (1) 

 

In eq. (1), A_i denotes missing value, A i+1 indicates the 

previous value from the missing value, and A i+1  denotes 

the following value from the missing value, 𝑁 represents the 

natural numbers. To standardize the data and fit it into a 

specific range, min-max normalization is employed, despite 

the availability of multiple normalization methods.      To 

standardize the data and bring it within a specific range, a 

common normalization technique known as min-max 

normalization is employed. While there are several 

normalization methods available, min-max normalization is 

chosen for its simplicity and effectiveness. It scales the data 

between 0 and 1, making it consistent for analysis. Equation 

for normalizing the variables is given below; 

𝐷𝑁 =
(|𝑁|)−(10𝑛−1)∗(|𝐷|)

10𝑛−1    (2) 

Where, N is data element, n is number of digits in element 

A, D is first digit of data element A, DN is the scaled one 

value between 0 and 1 

4.3. Feature Extraction with Convolutional Neural 

Networks (CNNs) 

Feature extraction using Convolutional Neural Networks 

(CNNs) in earthquake prediction is a process that harnesses 

the power of deep learning to automatically identify and 

extract meaningful spatial features from seismic data. This 

approach involves designing a CNN architecture tailored for 

earthquake prediction, with initial convolutional layers that 

scan the seismic data for spatial patterns at varying scales. 

Subsequent pooling layers help reduce data dimensions 
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while retaining essential features. Fully connected layers 

then aggregate these features to create higher-level 

representations. During training, the CNN learns to 

associate the extracted features with earthquake 

occurrences, making it adept at recognizing patterns, 

shapes, or characteristics in the data that are indicative of 

seismic events. Once trained and validated, the CNN can be 

deployed to extract features from new seismic data, 

enhancing the predictive capabilities of earthquake 

prediction models and aiding in the interpretation of spatial 

patterns associated with seismic activity. 

The CNN component of our model comprises three one-

dimensional (1D) convolutional layers and one 1D max 

pooling layer, meticulously designed to process the 

temporal aspects of seismic data efficiently. To activate the 

neurons within our CNN, This method employs Scaled 

Exponential Linear Units (SELU) as the activation function. 

This choice brings forth notable advantages when compared 

to conventional activation functions like Rectified Linear 

Units (ReLU). The SELU activation function, represented, 

offers improved convergence properties, thereby enhancing 

the training process of the model. It effectively mitigates the 

issue of gradient vanishing, a crucial consideration in 

earthquake prediction, where capturing and analyzing subtle 

spatio-temporal patterns is imperative for accurate 

predictions [22].  

𝑆𝐸𝐿𝑈 =  𝜆 {𝑥 𝑖𝑓 𝑥 >  0, 𝛼𝑒^𝑥 −  𝛼 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒} (3) 

𝑅𝑒𝐿𝑈 =  𝑚𝑎𝑥 (0, 𝑥)   (4) 

The utilization of SELU activation functions empowers our 

earthquake prediction model to effectively address the 

challenge of capturing intricate seismic patterns and 

mitigates the risk of information loss due to gradient 

vanishing, contributing to the model's overall robustness 

and accuracy. Batch normalization helps in stabilizing 

training by reducing the impact of internal covariate shift. 

This allows for more significant learning rate settings, 

accelerating convergence. 

𝐵𝑁(𝑋)  =  𝛾 ∗  (𝑋 −  𝜇) / 𝜎 +  𝛽  (5) 

Where 𝐵𝑁(𝑋) represents batch-normalized output, ‘γ’ 

Scaling factor, ‘X’ Input data, ‘μ’ Mean of the batch, ‘σ’ 

Standard deviation of the batch, ‘β’ Shifting factor. 

4.4. Spatio-Temporal Analysis of CNNs and GRUs for 

Earthquake Prediction 

The spatio-temporal analysis of Convolutional Neural 

Networks (CNNs) and Gated Recurrent Units (GRUs) for 

earthquake prediction represents a cutting-edge 

methodology that combines the strengths of both these deep 

learning architectures to address the complex task of seismic 

event forecasting. CNNs are employed to analyze the spatial 

aspects of seismic data, effectively identifying intricate 

geographical patterns and features that may serve as 

precursors to earthquakes. CNNs excel at recognizing 

spatial relationships and structures within the data, which is 

vital for understanding the spatial distribution of seismic 

events. Complementing the spatial analysis, GRUs is 

utilized to capture the temporal dependencies within the 

seismic data. GRUs is a type of recurrent neural network 

(RNN) designed to model sequential data. GRUs can track 

how seismic events evolve over time, taking into account 

the sequence of earthquake occurrences and their potential 

precursors. By incorporating both spatial and temporal 

information, this integrated methodology enables a more 

holistic analysis of seismic data. The functions of CNNs and 

GRUs in this spatio-temporal analysis are complementary. 

CNNs are responsible for extracting essential spatial 

features from the data, while GRUs capture the temporal 

patterns and dependencies over time. These extracted 

features and temporal sequences can then be used to train 

predictive models that aim to forecast earthquake events 

with greater accuracy and earlier detection. This 

methodology represents a significant advancement in 

earthquake prediction by enhancing our ability to 

understand and model the complex interplay of spatial and 

temporal factors that contribute to seismic events, ultimately 

contributing to more effective disaster management and 

public safety measures [23]. 
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Fig. 2. Proposed Hybrid CNN-GRU Architecture

The GRU part of the hybrid model is crucial for capturing 

temporal dependencies within the seismic data. GRUs is 

recurrent neural networks designed to work effectively with 

sequences. In the context of earthquake prediction, they 

excel at identifying patterns or trends in the seismic time 

series data. The GRU includes two essential gates: gate for 

the reset (r) and gate for the update (A) and derivation is 

represented in Equation 4-7. These gates control the flow of 

information through the network, allowing it to retain 

relevant past information and adapt to new input. The 

equations for GRU operations have been explained earlier, 

but in brief, the reset gate determines what information from 

the previous time step should be forgotten, while the update 

gate controls how much of the new information should 

replace the old hidden state. The outputs from the CNN, 

which represent spatial features, are merged with the outputs 

from the GRU, which capture temporal dependencies. This 

integration allows the model to correlate spatial patterns 

with temporal sequences, offering a comprehensive 

understanding of seismic data leading up to an earthquake 

event. The last layer of the hybrid prototypical is 

characteristically a classifier that predicts earthquake events 

or related information, such as earthquake magnitude or 

occurrence probability. 

𝐴𝑛 = 𝜎(𝑊𝑎. [ℎ𝑡−1, 𝑥𝑛] + 𝑏𝑎)  (6) 

𝑟𝑛 = 𝜎(𝑊𝑟 . [ℎ𝑛−1, 𝑥𝑛] + 𝑏𝑟)  (7) 

ℎ̃𝑛 = 𝑡𝑎𝑛ℎ(𝑊𝑎. [𝑟𝑛 ∗ ℎ𝑛−1, 𝑥𝑡] + 𝑏𝑎) (8) 

ℎ𝑛 = (1 − 𝐴𝑛) ∗ ℎ𝑛−1 + 𝐴𝑛 ∗ ℎ̃𝑛  (9) 

The update gate ensures the retention of earlier video frame 

information, while the reset gate governs the fusion of input 

sequences from the subsequent frame with the memory of 

the preceding one. These architectural features contribute 

significantly to capturing temporal nuances within the video 

data, a crucial aspect of driver drowsiness detection in real-

time scenarios. Importantly, a multi-layer GRU 

configuration is chosen, a choice that expedited training due 

to its reduced parameter complexity, making it particularly 

suited to the analysis of video surveillance data 

5. Result and Discussion 

In the result section of the earthquake prediction study, 

critical findings and performance metrics are presented. 

This section begins by defining and explaining the 

evaluation metrics employed to gauge the model's 

effectiveness, such as accuracy, precision, recall, F1-score, 

or mean squared error. The primary focus is on comparing 

the performance of different models, including the hybrid 

CNN-GRU model, against one another, highlighting their 

respective accuracies and losses. it discusses the 

significance of these outcomes, emphasizing how well the 

models captured the intricate spatial and temporal patterns 

in seismic data. The result section serves as a crucial 

segment for researchers and readers to comprehend the 

model's predictive capabilities and its potential for real-

world earthquake forecasting applications. 

Table 1 presents the results of various methods or models 

used in a predictive or analytical task, likely within the 

realm of machine learning or data analysis. It provides three 

important performance metrics for each method: RMSE 
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(Root Mean Square Error), MAE (Mean Absolute Error), 

and R2 (R-squared). RMSE and MAE measure the accuracy 

of predictions, with lower values indicating better accuracy. 

R2 assesses how well the model fits the data, with higher 

values signifying a better fit. 

Table 1. Error Rate Comparison 

Methods RMSE MAE R2 

Support Vector 

Machine 

0.103 0.061 0.011 

Decision Tree 0.094 0.044 0.157 

Random Forest 0.094 0.044 0.154 

CNN-Bi-LSTM-

AM 

0.024 0.018 0.256 

Proposed CNN-

GRU 

0.016 0.011 0.468 

 

Notably, the "Proposed CNN-GRU" method stands out as 

the top performer with the lowest RMSE and MAE values 

and the highest R2, suggesting superior predictive accuracy 

and model fit. `The "SVM" method appears to perform 

poorly, as it has the highest error metrics and a negative R2. 

This table serves as a concise reference for comparing the 

performance of different methods in the specific task or 

analysis at hand [4]. 

 

 

Fig. 3. Error Rate comparison 

The graph in Fig. 3 represents the methods (SVM, DT, RF, 

CNN-Bi-LSTM-AM, and Proposed CNN-GRU) 

represented on the x-axis, while the three performance 

metrics (RMSE, MAE, R2) plotted on the y-axis. These 

metrics depicts our proposed methods outperforms the 

existing approaches. 

 

Fig. 4. Training and Testing Loss Graph 

Fig. 4, illustrates how the RMSE value changes during the 

training of a machine learning or regression model. RMSE 

is a common metric used to assess the accuracy of 

predictions made by the model compared to actual data. If 

the model becomes too complex or the training data is 

limited, the RMSE may start to increase after reaching a 

minimum. This is a sign of over fitting, where the model 

starts fitting the training data noise and performs poorly on 

unseen data. 

Table 2. Evaluation Metrics Comparison 

Methods Precision 

(%)  

Recall 

(%) 

F1-Score 

(%) 

Accuracy 

(%) 

ANN 70.13 83.84 76 86.85 

Random 

Tree 

74.27 78.26 76 97.14 

CHAID 72.73 98.25 84 97.57 

Proposed 

CNN-GRU 

89.63 98.89 89.87 98.67 

 

Table 2 presents a comparative analysis of different 

methods or models used for a classification task, displaying 

several key evaluation metrics. Precision reflects the 

model's accuracy in predicting positive cases, with 

"Proposed CNN-GRU" achieving the highest precision at 

89.63%, indicating its ability to make precise positive 

predictions. Recall measures how well the models capture 

actual positive cases, with "CHAID" exhibiting the highest 

recall at 98.25%, suggesting its proficiency in identifying 

positive instances. The F1-Score, which balances precision 

and recall, indicates that "Proposed CNN-GRU" strikes the 

best balance at 89.87%. Lastly, the Accuracy metric 

assesses overall correctness, with "CHAID" achieving the 
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highest accuracy at 97.57%, showcasing its capacity to 

make correct predictions across the dataset. This table offers 

a comprehensive overview of how each method performs in 

terms of these vital classification metrics. 

 

Fig. 5. Comparison of Evaluation Metrics with Existing 

Methods 

Fig. 5 represents each method (ANN, Random Tree, 

CHAID, and Proposed CNN-GRU) and the four evaluation 

metrics (Precision, Recall, F1-Score, and Accuracy) are 

depicted. This graph provides a concise visual summary of 

the model evaluation results, making it easy to identify the 

top-performing method across multiple criteria. 

 

Fig. 6. Training Accuracy 

In Fig. 6, Accuracy graph is a visual representation of how 

the accuracy of a machine learning model changes over the 

course of training epochs. As training progresses through 

more epochs, the model's accuracy tends to improve. This 

suggests that the model is learning from the training data 

and making better predictions over time. After a certain 

number of epochs, the accuracy may stabilize or plateau, 

indicating that the model has learned as much as it can from 

the training data. Further training may not significantly 

enhance accuracy and could potentially lead to overfitting. 

5.1 Discussion 

The comprehensive analysis of various machine learning 

models, including Artificial Neural Networks (ANN), 

Random Tree, CHAID, and our proposed CNN-GRU 

model, we aimed to evaluate their performance in a 

particular task. The results have provided valuable insights 

into the effectiveness of these models. Notably, our 

proposed CNN-GRU model outperformed the other 

methods across multiple evaluation metrics. The attained 

accuracy of the models is a critical indicator of their 

performance. Among the models, the proposed CNN-GRU 

model achieved the highest accuracy, reaching an 

impressive rate of 98.67%. This exceptional accuracy 

signifies the model's ability to make highly accurate 

predictions in the task at hand. It showcases the 

effectiveness of the novel approach employed in the CNN-

GRU architecture. 

The research examined the loss during the training process, 

which is another crucial metric in assessing a model's 

performance. The loss function represents the difference 

between the model's predictions and the actual target values. 

A lower loss indicates that the model's predictions are closer 

to the actual values. In our study, the CNN-GRU model 

exhibited a commendably low loss, demonstrating its 

capability to effectively minimize prediction errors and 

optimize its performance. Also, the other models in our 

analysis also displayed competitive performance. While 

ANN, Random Tree, and CHAID achieved respectable 

accuracy levels, they fell slightly behind the proposed CNN-

GRU model. This suggests that the CNN-GRU architecture 

offers a significant advantage in terms of predictive 

accuracy. The study's results highlight the superiority of the 

proposed CNN-GRU model, which achieved a remarkable 

accuracy rate of 98.67% and demonstrated a low loss during 

training. These findings underscore the potential of this 

novel approach for the specific task examined in our 

analysis. However, it's important to note that model 

selection should be driven by the specific requirements and 

characteristics of the task at hand, and further analysis may 

be needed to assess the model's generalizability and 

suitability for broader applications. 

6. Conclusion and Future Work 

This study has demonstrated the effectiveness of a hybrid 

CNN-GRU model in earthquake prediction, showcasing its 

ability to capture both spatial and temporal patterns within 

seismic data. The results reveal superior performance in 

terms of accuracy and predictive capabilities compared to 

alternative models. This highlights the importance of 

integrating spatial feature extraction with temporal 

modeling, as it significantly enhances the accuracy of 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3s), 270–281 |  280 

earthquake forecasts. The findings of this research hold 

promise for enhancing early warning systems and 

improving our understanding of seismic events. However, 

it's important to note that earthquake prediction remains a 

complex and evolving field, and while this model shows 

promise, further research and real-world validation are 

necessary for practical applications. 

Several avenues can be explored to advance earthquake 

prediction research. Expanding the dataset and 

incorporating real-time data streams for model training and 

validation could improve its accuracy and readiness for 

operational use. Additionally, investigating the model's 

generalizability across diverse geological regions and 

adapting it for different types of seismic data, such as fault 

data or ground motion records, should be pursued. 

Integration with remote sensing technologies and more 

sophisticated spatial-temporal fusion techniques may 

further enhance predictive capabilities. Finally, exploring 

interpretability techniques to understand the model's 

decision-making processes and its robustness in noisy data 

scenarios is an essential direction for future research, 

ultimately contributing to more reliable earthquake 

forecasting systems.  
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