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Abstract: This study presents an inventory model that incorporates interval-valued inventory expenses and the effect of 

pre-payment (PP). The PP is a fixed proportion of the cycle's total procurement expense; this results in a discount on 

procurement expense but a loss of interest on the PP. It is assumed that the inventory expenses, including ordering, 

purchase, shortage, and carrying expenses, are interval-valued. We examine two scenarios: one with no shortages and the 

other allowing for partially backlogged deficiencies. Due to loyal customers and some customers transferring shops, the 

demand rate is projected to fall over a limited interval in the second case. Both cases use interval arithmetic to design 

mixed integer restricted optimization issues with interval targets. We proposed a Modified Reptile Search Optimization 

(MRSO) algorithm to tackle these issues. The suggested model is demonstrated numerically, and sensitivity analysis are 

carried out to determine the effects of various inventory factors on optimal profit. The inventory model with interval-valued 

(IV) expenses can be solved most effectively using the MRSO method. The results emphasize PP, IV expenses, and 

shortage cases in inventory management. The model and MRSO algorithms assist decision-makers in improving their 

inventory strategies and optimizing profitability under uncertain expense and demand conditions. 

Keywords: Inventory model, advance payment, IV expenses, Modified Reptile Search Optimization (MRSO) 

1. Introduction 

Inventory management involves overseeing and controlling 

the acquisition, storage, and utilization of a business or 

organization's materials, goods, and products. An effective 

inventory model gives businesses insights and strategies to 

optimize inventory levels, streamline operations, and 

enhance overall performance [1]. An inventory model aims 

to determine the optimal inventory policies that minimize 

expenses while ensuring adequate stock availability. These 

policies include order quantities, reorder points, lead times, 

and replenishment strategies. By employing mathematical 

modeling and optimization techniques, businesses can 

analyze these factors and make informed decisions to 

achieve optimal inventory management [2]. 

Inventory models take into account several important 

considerations. These include demand patterns, such as 

seasonal fluctuations, trends, and variability, which affect  

 

the quantity and timing of inventory replenishment. 

Additionally, expenses associated with inventory play a 

significant role in the model. These expenses encompass 

holding expenses, ordering expenses, stock-out expenses, 

and other relevant expenses that directly impact the overall 

inventory investment [3,4]. However, traditional inventory 

models often assume deterministic expenses, overlooking 

the inherent uncertainty associated with inventory 

expenses. Inventory expenses can fluctuate within certain 

intervals due to various factors such as market conditions, 

supplier pricing, and economic fluctuations. 

This paper addresses these challenges by developing an 

inventory model that incorporates the effect of pre-

payment (PP) and considers IV inventory expenses. PP is a 

proportion of the total purchasing expenses every cycle 

paid beforehand to receive a price reduction. While this 

discount is advantageous, the opportunity expenses of the 

interest on the advanced payment must also be considered. 

Additionally, the inventory expenses, including carrying, 

ordering, purchase, and shortage expenses, are considered 

to be interval-valued, acknowledging the uncertainty 

associated with these expenses. 

Two cases are studied in this research. The first case 

focuses on inventory management without shortage, where 

the objective is to optimize inventory policies to minimize 

expenses and maximize profitability. In the second case, 
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partially backlogged shortages are permitted, considering 

the impact on the demand rate during the shortage period. 

During a time of shortage, only loyal consumers would 

wait for subsequent purchases from the business, while a 

portion of customers may switch to other shops. 

To tackle these inventory optimization problems, mixed 

integer-constrained optimization models with interval 

objectives (IO) are formulated using interval arithmetic. To 

solve these models, a Modified Reptile Search 

Optimization (MRSO) algorithm is developed, inspired by 

the search behavior of reptiles. The MRSO algorithm is 

designed to handle IV expenses and uncertainties in 

inventory optimization. 

2. Related Works 

In a study [5], a novel mathematical framework for multi-

site ordering issues with an “all-unit discount policy and 

multi-mode RCPSP (MRCPSP)” was suggested. The 

model reduces project expenses and duration. A hybrid 

multi-objective uncertainty strategy for IV fuzzy 

mathematical model was also offered. Study [6] examines 

the benefits of simultaneously investing in "greening 

innovation (GI) and emissions-reducing technology 

(ERTs)” in a greenery production inventory model with 

carbon emission parameters and IV inventory expenses 

components. ERT investment determines the model. Both 

approaches consider defective manufacturing and 

reworking. The quantum-behaved particle swarm 

optimisation method achieves the IV optimal profit. 

The study [7] has three phases. In the first step, a novel 

“interval-valued fuzzy (IVF) determines provider and 

circular economy grade. In the second step, a “multi-

objective mathematical model” reduces expenses, 

environmental consequences, and social sustainability. 

IVF-robust solution technique addresses mathematical 

model instabilities. In the third step, the solution is 

combined with the “AUGMECON2” approach to 

providing Pareto-optimal solutions that balance expenses, 

emissions, and social accountability. IV functional 

clustering using Wasserstein distance is proposed in [8]. 

This distance completely exploits the data patterns by 

considering the data distribution's core and spread. This 

study also suggests using the IV functional entropy 

technique to thoroughly explain phenomena with 

numerous variables. Finally, a stock market example 

demonstrates the suggested method's efficacy and 

superiority.  

In research [9], neural networks estimate the shortest and 

highest daily prices and then develop a daily scalping 

trading system that purchases and sells in the anticipated 

quantities. The most effective mean-variance daily 

scalping trading portfolio reduces trading system risk and 

increases trading positions. Paper [10] develops an 

incomplete production inventory model under various 

carbon emission regulation strategies using interval 

numbers for carbon emission features. Four inventory 

models are established based on four policies: basic tax 

policy, cap and buy policy, cap and incentive policy, and 

strictly within authorised cap policy. The manufacturer's 

optimal profit was found using the “Quantum behaved 

Particle Swarm Optimisation (QPSO)” method.  

The study's major goal [11] was to examine how product 

warranties affect the production firm's optimal strategy. 

This paper also examines how carbon pricing legislation 

affects manufacturing income. Centre-radius optimisation 

solves interval optimisation problems. Green production in 

interval environments was investigated in [12]. Due to IV 

demand and faulty rates, the suggested model's differential 

equations of inventory levels have an interval form. 

Interval order relations and centre-radius optimisation are 

employed to organise the optimisation issue into crisp 

form, and various metaheuristic algorithms are utilised to 

solve it. Study [13] used intervals for inventory 

parameters. They created a two-warehouse inventory 

model with advanced payment and partly backlogged 

shortages using this concept. Direct/indirect optimisation 

cannot handle this problem due to uncertainty. For this, 

several particle swarm optimisation approaches have been 

developed to tackle the suggested inventory model's 

problem, utilising interval arithmetic and interval order 

relations. 

3. Method 

3.1. Bounded intervals arithmetic 

A closed interval that is specified by either its left and right 

bounds or its centre and radius is referred to as an interval-

valued (IV) number.  

𝐵 = [𝑏𝐿𝑇 , 𝑏𝑅𝐺] = {𝑦: 𝑏𝐿𝑇 ≤ 𝑦 ≤ 𝑏𝑅𝐺 , 𝑦𝜖𝑆} or = 〈𝑏𝑑 , 𝑏𝑥〉 =

{𝑦: 𝑏𝑑 − 𝑏𝑥 ≤ 𝑦 ≤ 𝑏𝑑 + 𝑏𝑥 , 𝑦 ∈ 𝑆}   (1) 

Here, 

𝑏𝐿𝑇 , 𝑏𝑅𝐺  – Right and left limits, respectively, 

𝑏𝑑 = (𝑏𝐿𝑇 + 𝑏𝑅𝐺) 2⁄  and 𝑏𝑥 = (𝑏𝐿𝑇 − 𝑏𝑅𝐺) 2⁄ - radius and 

centre of the interval, 

𝑆 – set of the real number 

For example, for any 𝑦 ∈ 𝑆, 𝑥 may be expressed as an 

interval[𝑦, 𝑦] with zero width. Each real number can be 

thought of specifically as an interval. Here, we will provide 

brief descriptions of the four interval arithmetical 

operations used in every standard interval analysis. 

The definitions and concepts related to interval arithmetic 

are as follows: 

Interval Arithmetic Operation: For a binary operation 
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(∗) such as addition (+), subtraction (−), multiplication (·

), or division (/) on the set of real numbers, the operation 

can be extended to closed intervals 𝐵 and 𝐶 as follows:  

𝐵 ∗  𝐶 =  {𝑏 ∗  𝑐: 𝑏 ∈  𝐵 𝑎𝑛𝑑 𝑐 ∈  𝐶}    (2) 

Interval Addition: For two interval numbers 𝐵 =

 [𝑏𝐿𝑇 , 𝑏𝑅𝐺] and 𝐶 =  [𝑐𝐿𝑇 , 𝑐𝑅𝐺], the addition of intervals 𝐵 

and 𝐶 is defined as 𝐵 +  𝐶 =  [𝑏𝐿𝑇 + 𝑏𝑅𝐺 , 𝑐𝐿𝑇 + 𝑐𝑅𝐺] 

Interval Subtraction: For two interval numbers 𝐵 =

 [𝑏𝐿𝑇 , 𝑏𝑅𝐺]  and 𝐶 =  [𝑐𝐿𝑇 , 𝑐𝑅𝐺], the subtraction of interval 

𝐶 from interval 𝐵 is defined as 𝐵 −  𝐶 =  [𝑏𝐿𝑇 −

𝑏𝑅𝐺 , 𝑐𝐿𝑇 − 𝑐𝑅𝐺]  (3) 

Interval Scalar Multiplication: For an interval number 

𝐵 =  [𝑏𝐿𝑇 , 𝑏𝑅𝐺] and a scalar value 𝜆, the scalar 

multiplication of interval 𝐵 by 𝜆 is defined as:  

𝜆𝐵 =  [𝜆𝑏𝐿𝑇 , 𝜆𝑏𝑅𝐺] 𝑖𝑓 𝜆 ≥  0    (4) 

𝜆𝐵 =  [𝜆𝑏𝑅𝐺 , 𝜆𝑏𝐿𝑇] 𝑖𝑓 𝜆 <  0    (5) 

Order Relations of Interval Numbers: In the context of 

optimization problems, when comparing two interval 

numbers B = [𝑏𝐿𝑇, 𝑏𝑅𝐺] and C = [𝑏𝐿𝑇, 𝑏𝑅𝐺], the following 

types of interval relationships can occur: 

Type-1: Disjoint Intervals: 𝐵 and 𝐶 have no overlap. 

Type-2: Partially Overlapping Intervals: 𝐵 and 𝐶 have 

some overlap but are not contained in each other. 

Type-3: One Interval Contained in the Other: One interval 

is completely contained within the other interval. 

These definitions and types of interval relationships are 

relevant for analyzing and solving optimization problems 

involving IV parameters, such as in the context of the 

inventory system discussed in the paper. 

3.2. Optimistic decision-making 

In the context of maximization problems and considering 

the order relation ≥𝑜𝑚𝑎𝑥  defined in Definition 2, the 

decision maker's approach is to choose the interval with the 

highest profit without taking uncertainty into account. The 

order relation ≥𝑜𝑚𝑎𝑥is defined as follows: 

𝐵 ≥𝑜𝑚𝑎𝑥 𝐶: Interval 𝐵 is considered superior to interval 

𝐶 if the right limit of 𝐵 (𝑏𝑅𝐺) is greater than or equal to the 

right limit of 𝐶 (𝑏𝑅𝐺). In other words, if the potential upper 

bound of 𝐵′𝑠 profit is greater than or equal to the potential 

upper bound of 𝐶′𝑠 profit. 

𝐵 >𝑜𝑚𝑎𝑥 𝐶: Interval 𝐵 is strictly superior to interval 𝐶 if 

𝐵 ≥𝑜𝑚𝑎𝑥 𝐶 and 𝐵 is not equal to 𝐶. This means that 𝐵 has 

a higher potential upper bound of profit compared to 𝐶 and 

is preferred by the optimistic decision maker. 

It's important to note that the order relation ≥𝑜𝑚𝑎𝑥 is not 

symmetric, meaning that if B is considered superior to C, it 

does not necessarily mean that C is considered superior to 

B. However, the relation is transitive. 

In optimistic decision-making for maximization problems, 

the decision-maker focuses on the potential high-end 

outcomes and chooses the interval with the highest profit, 

ignoring the uncertainty associated with the intervals. This 

approach assumes that the optimal-case scenario will 

materialize and seeks to maximize the potential gains 

without considering the potential downside or risks. 

3.3. Pessimistic decision-making 

In the given context, the decision maker aims to maximize 

profit and follows the principle that "Less uncertainty is 

better than more uncertainty" or "More uncertainty is 

worse than less uncertainty." Based on this principle, a 

specific order relation is defined for maximization 

problems denoted as >𝑝𝑚𝑎𝑥 , which allows the decision 

maker to compare and prioritize different intervals. 

For type 1 and type 2 intervals, the order relation >𝑝𝑚𝑎𝑥  is 

determined by comparing the central values (𝑏𝐷 𝑎𝑛𝑑 𝑐𝐷) 

of the intervals. If the central value of interval B is greater 

than the central value of interval 𝐶 (𝑏𝐷  >  𝑐𝐷), then B is 

considered greater than 𝐶 (𝐵 >𝑝𝑚𝑎𝑥 𝐶). 

For type 3 intervals, the order relation >𝑝𝑚𝑎𝑥  is 

determined by considering both the central values 

(𝑏𝐷  𝑎𝑛𝑑 𝑐𝐷) and the widths (𝑏𝑥 𝑎𝑛𝑑 𝑐𝑥) of the intervals. If 

the central value of interval B is greater than or equal to 

the central value of interval 𝐶 (𝑏𝐷  ≥  𝑐𝐷), and the width of 

interval B is strictly less than the width of interval 𝐶(𝑏𝑋 <

𝑐𝑋), then B is considered greater than 𝐶 (𝐵 >𝑝𝑚𝑎𝑥 𝐶). 

However, there is a scenario where the order relation 

cannot be determined using the pessimistic approach for 

type-III intervals. This occurs when both the central value 

and the width of interval A are greater than the 

corresponding values of interval 𝐶 (𝑏𝐷  >  𝑐𝐷  ∧  𝑏𝑋  >

 𝑐𝑋). In this case, the pessimistic decision cannot be made 

based on the given principle. Instead, an optimistic 

decision may be considered, implying that a different 

approach or criteria may need to be employed to make the 

decision. 

It's important to note that this approach and order relation 

is specific to the given context and principle stated in the 

question. Different decision-makers or decision contexts 

may have alternative principles or criteria for making 

decisions in maximization problems. 

3.4. Assumptions 

We are able to make additional improvements to the 

assumptions that are used in the numerical model of the 

suggested inventory system: 

1. Single-item inventory: The system deals with only one 

type of item. 
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2. Single batch delivery: At the initial stage of each cycle, 

there is a single order that is placed, and the entirety of that 

order's quantity arrives in a single batch. 

3. Finite replenishment size: The size of the order amount 

or replacement is limited and specified. 

4. Fixed lead time: The lead time for replenishment 

remains constant and is known in advance. 

5. Partial backlogging: Shortages are allowed in the 

system, and they are partially backlogged. This means that 

if demand exceeds the available inventory, some portion of 

the demand is backlogged while the rest is considered lost 

sales. 

6. Finite planning horizon: The inventory planning horizon 

(PH) is finite and sufficiently longer than the lead time, 

indicating the time period over which the inventory system 

is analyzed and managed. 

7. Advance payment and discounts: A specific portion of 

the overall purchase expenses every cycle is paid in 

advance, and this advance payment entitles the buyer to a 

certain portion of the unit purchase expense as a discount. 

8. Known intervals for inventory expenses: The expenses 

associated with the inventory system, such as holding 

expenses, purchase expenses, ordering expenses, and 

shortage expenses, are known and defined within specific 

intervals. 

9. Uniform demand rate with varying rates during stock-

outs: Except for stock-out instances, when the customer 

demand rate may vary, the demand rate is expected to 

remain constant. 

3.5. Model description in arithmetic 

During the process of developing the model, it was 

assumed that the company had an initial inventory level of 

R units for the item. This was done so that the model could 

be properly validated. When the quantity of goods 

available meets 𝑅𝑎(at time𝑠 = 𝑡1), a fresh order is 

positioned for the subsequent cycle. During the lead time, 

the demand is equal to 𝐸𝑦 . Two cases can arise based on 

the relationship between 𝑅𝑎 and 𝐸𝑦: 

Case 1: 𝑅𝑎 ≥ 𝐸𝑦 

Case 2: 𝑅𝑎  <  𝐸𝑦 

Case 1 

In the given scenario, Case-1 states that 𝑅𝑎 (the reorder 

point) is greater than or equal to 𝐸𝑦 (the demand during the 

lead time). This implies that there will be no shortage 

during the lead time. The total holding expenses𝐼1(𝑦) over 

the PH 𝐼 is given by the following equation: 

𝐼1(𝑦) = 𝐷𝑖 [∫ 𝑟𝑑𝑡 +
𝑡1

0

∑ ∫ 𝑟𝑑𝑡 +
𝑡𝑘+𝑦

𝑡𝑘

𝑛−1
𝑘=1 ∑ ∫ 𝑟𝑑𝑡 +

𝑡𝑘+1

𝑡𝑘+𝑦

𝑛−1
𝑘=1 ∫ 𝑟𝑑𝑡

𝐼

𝑡𝑛
]   (6) 

= 𝐷𝑖 [∫
−𝑟𝑑𝑡

𝐸
+ (𝑛 − 1) ∫

−𝑟𝑑𝑡

𝐸
+ (𝑛 −

𝑅𝑎+𝐸𝑦

𝑅𝑎

𝑅𝑎

𝑅

1) ∫
−𝑟𝑑𝑡

𝐸
+ ∫

−𝑟𝑑𝑡

𝐸

0

𝑅𝑎

𝑅𝑎

𝑅+𝑅𝑎−𝐸𝑦
]  

=
𝐷𝑖

2𝐷
[𝑛𝑅2 + 2(𝑛 − 1){𝑅𝑎 − 𝐸𝑦}]    (7) 

Here, 𝑅 is calculated as 𝐸𝐼/𝑛, and 𝑃𝑝 is defined as 

𝐽𝑑(1 − 𝐽𝑑)𝑅𝐷𝑞 . 

The total profit over the PH I is given by the equation: 

𝐵1 = 𝑛𝑄𝑅 − 𝑛𝑅𝐷𝑞(1 − 𝐽𝑑) − (𝑛 − 1)𝐽𝑑𝑅𝐷𝑞(1 −

𝐽𝑑)𝑦𝐽𝑐 − 𝑛𝐷𝑜 −
𝐷𝑖

2𝐷
[𝑛𝑅2 + 2(𝑛 − 1)(𝑅𝑎 − 𝐸𝑦)  

  (8) 

The IV expenses parameters 𝐷𝑞 , 𝐷𝑜, and 𝐷𝑖  are considered, 

and the total profit B lies within the interval [𝐵𝐿𝑇 , 𝐵𝑅𝐺]. 

𝐵1𝐿𝑇 = 𝑛𝑄𝑅 − 𝑛𝑅𝐷𝑞𝑅𝐺(1 − 𝐽𝑑) − (𝑛 − 1)𝐽𝑑𝑅𝐷𝑞(1 −

𝐽𝑑)𝑦𝐽𝑐𝐷𝑞𝑅𝐺 − 𝑛𝐷𝑜𝑅𝐺 −
𝐷𝑖𝑅𝐺

2𝐷
[𝑛𝑅2 + 2(𝑛 − 1)(𝑅𝑎 − 𝐸𝑦) 

 (9) 

And 

𝐵1𝑅𝐺 = 𝑛𝑄𝑅 − 𝑛𝑅𝐷𝑞𝐿𝑇(1 − 𝐽𝑑) − (𝑛 − 1)𝐽𝑑𝑅(1 −

𝐽𝑑)𝑦𝐽𝑐𝐷𝑞𝐿𝑇 − 𝑛𝐷𝑜𝐿𝑇 −
𝐷𝑖𝐿𝑇

2𝐷
[𝑛𝑅2 + 2(𝑛 − 1)(𝑅𝑎 − 𝐸𝑦) 

 (10) 

The lower bound of 𝐵1, 𝐵1𝐿𝑇, is obtained by substituting 

the interval lower bounds of 𝐷𝑞 , 𝐷𝑜, and 𝐷𝑖  into the 

equation for 𝐵1. Similarly, the upper bound of 𝐵1, 𝐵1𝑅𝐺, is 

obtained using the interval upper bounds of 𝐷𝑞 , 𝐷𝑜, and 𝐷𝑖 . 

Thus, the optimization problem becomes: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐵1(𝑅𝑎, 𝑛) subject to 𝑅𝑎 ≥ 𝐸𝑦, where 𝑛 is an 

integer. 

This problem is a “non-linear maximization problem” with 

an IO. The objective is to maximize the total profit over 

the planning horizon, subject to the constraint that the 

reorder point 𝑅𝑎 must be greater than or equal to the 

demand during the lead time 𝐸𝑦. The solution to this 

problem involves finding the optimal values of 𝑅𝑎 and 𝑛 

that maximize the total profit within the given interval 

bounds. 

Case 2 

In Case-2, where 𝑅𝑎 is less than 𝐸𝑦, shortages occur 

during the lead time. However, it is assumed that shortages 

are not allowed in the last cycle (nth cycle). The total 

holding expenses, 𝐼2(𝑦), over the PH 𝐼 is given by the 

following equation: 

The function 𝐼2(𝑦)  represents the holding expenses in the 

inventory system. It is calculated as the sum of the holding 

expenses during different time periods: the holding 
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expenses in the time interval (0, 𝑡1), the holding expenses 

in the time interval (𝑡𝑘, 𝑡𝑘 + 1) excluding the shortage 

time in the (𝑛 −  1) cycle, and the holding expenses in the 

time interval (𝑡𝑛, 𝐼). This function quantifies the expenses 

associated with holding inventory at different stages of the 

inventory system, taking into account the specific time 

intervals and potential shortages. 

= 𝐷𝑖 [∫
−𝑟𝑑𝑟

𝐸
+

𝑅𝑎

𝑅

∑ ∫
−𝑟𝑑𝑟

𝐸
+

0

𝑅𝑎

𝑛−1
𝑘=1 ∑ ∫

−𝑟𝑑𝑟

𝐸
+

𝑅𝑎

𝑅−𝑅𝑠

𝑛−1
𝑘=1 ∫

−𝑟𝑑𝑟

𝐸

0

𝑅𝑎
]  

= 𝐷𝑖 [∫
𝑟𝑑𝑟

𝐸
+ (𝑛 − 1) ∫

𝑟𝑑𝑟

𝐸
+ (𝑛 − 1) ∫

𝑟𝑑𝑟

𝐸
+

𝑅−𝑅𝑠

𝑅𝑎

𝑅𝑎

0

𝑅

𝑅𝑎

∫
𝑟𝑑𝑟

𝐸

𝑅𝑠

0
]  

=
𝐷𝑖

2𝐷
[𝑅2 + (𝑛 − 1)(𝑅 − 𝑅𝑠)2]    (11) 

Here, 𝑅 is calculated as𝐸𝐼/𝑛 − (1 −  𝜆)(𝑛 −  1) 𝑅𝑠/𝜆𝑛, 

and λ is a parameter. The total shortage expenses, 𝑆𝑑(𝑦), in 

the time horizon 𝐼 is given by: 

𝑆𝑑(𝑦) = (𝑛 − 1)𝐷𝑠 ∫
𝑟𝑑𝑟

𝜆𝐸

𝑅𝑠

0
  

= (𝑛 − 1)
𝑅𝑠

2𝜆𝐸
𝑅𝑠

2      (12) 

The total profit over the PH 𝐼 is given by the equation: 

𝐵2 = 𝑛𝑄𝑅 − 𝑛𝑅𝐷𝑞(1 − 𝐽𝑑) − (𝑛 − 1)𝐴𝑞𝑦𝐽𝑐 − 𝑛𝐷𝑜 −

𝐷𝑖

2𝐷
[𝑅2 + (𝑛 − 1)(𝑅 − 𝑅𝑠)2] −

𝐷𝑠(𝑛−1)𝑅𝑠
2

2𝜆𝐸
   

 (13) 

= 𝑛𝑄𝑅 − 𝑛𝑅𝐷𝑞(1 − 𝐽𝑑) − (𝑛 − 1)𝐽𝑒𝑅𝐷𝑞(1 − 𝐽𝑐)𝑦𝐽𝑐 −

𝑛𝐷𝑜 −
𝐷𝑖

2𝐷
[𝑅2 + (𝑛 − 1)(𝑅 − 𝑅𝑠)2] −

𝐷𝑠(𝑛−1)𝑅𝑠
2

2𝜆𝐸
   

 (14) 

For the IV expenses parameters 𝐷𝑞 , 𝐷𝑜, and 𝐷𝑖:  

𝐵2 lies within the interval [𝐵𝐿𝑇 , 𝐵𝑅𝐺] 

𝐵2𝐿𝑇 = 𝑛𝑄𝑅 − 𝑛𝑅𝐷𝑞𝑅𝐺(1 − 𝐽𝑑) − (𝑛 − 1)𝐽𝑑𝑅(1 −

𝐽𝑑)𝑦𝐽𝑐𝐷𝑞𝑅𝐺 − 𝑛𝐷𝑜𝑅𝐺 −
𝐷𝑖𝑅𝐺

2𝐷
[𝑅2 + (𝑛 − 1)(𝑅 − 𝑅𝑠)2] −

𝐷𝑠𝑅𝐺(𝑛−1)𝑅𝑠
2

2𝜆𝐸
      (15) 

𝐵2𝑅𝐺 = 𝑛𝑄𝑅 − 𝑛𝑅𝐷𝑞𝐿𝑇(1 − 𝐽𝑑) − (𝑛 − 1)𝐽𝑑𝑅(1 −

𝐽𝑑)𝑦𝐽𝑐𝐷𝑞𝐿𝑇 − 𝑛𝐷𝑜𝐿𝑇 −
𝐷𝑖𝐿𝑇

2𝐷
[𝑅2 + (𝑛 − 1)(𝑅 − 𝑅𝑠)2] −

𝐷𝑠𝑅𝐺(𝑛−1)𝑅𝑠
2

2𝜆𝐸
      (16) 

Therefore, the problem becomes: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐵2(𝑅𝑎, 𝑛) Subject to𝑅𝑎  >  0, where 𝑛 is an 

integer. 

This is a “non-linear maximization problem” with an IO. 

To obtain the optimal solution for the proposed inventory 

system, we need to choose the better solution between the 

two cases. The overall objective is to maximize the total 

profit, so the final solution is determined by comparing the 

results from Case-1 and Case-2 and selecting the 

maximum value: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐵 =  𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒(𝐵1, 𝐵2)  

 (17) 

3.6. Solutions procedure 

For this model solution we introduce MRSA to sove the 

issue. 

3.6.1 . Reptile search optimization 

Reptile search optimization is a metaheuristic algorithm 

inspired by the behavior of reptiles, specifically their 

movement and search patterns. The algorithm aims to 

explore the solution space and find optimal or near-optimal 

solutions for a given problem. It utilizes a population of 

solutions, referred to as reptiles, and simulates their 

behavior to guide the search process. 

The key parameters in reptile search optimization include 

population size (𝑝_𝑠𝑖𝑧𝑒), maximum generation number 

(𝑚_𝑔𝑒𝑛), crossover probability (𝑝_𝑐𝑟𝑜𝑠𝑠), mutation 

probability (𝑝_𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛), fitness function, selection 

mechanism, and search strategy. The population size 

determines the number of reptiles in the population, with 

larger populations enabling more comprehensive 

exploration but potentially increasing computational 

complexity. The maximum generation number sets an 

upper limit on the number of iterations or generations the 

algorithm will run, determining the termination condition. 

Crossover probability (𝑝_𝑐𝑟𝑜𝑠) determines the likelihood 

of performing crossover or recombination between two 

parent solutions within the population. Crossover allows 

the exchange of genetic information between solutions, 

combining beneficial traits from different individuals. 

Mutation probability (𝑝_𝑚𝑢𝑡𝑒) determines the likelihood 

of introducing random variations or mutations into the 

solutions, enabling the exploration of new regions within 

the solution space. 

The fitness function evaluates the quality or fitness of each 

solution in the population based on the problem's 

objectives. It measures how well a solution performs and 

guides the selection process. The selection mechanism 

determines how solutions are chosen for reproduction and 

survival. Various methods can be employed to balance 

exploration and exploitation. 

The search strategy defines the movement and search 

behavior of reptiles within the solution space. It 

encapsulates the exploration-exploitation trade-off and 

guides how the algorithm explores new regions while 

exploiting promising areas. The specific search strategy 

can be designed to suit the problem domain and 

characteristics, incorporating domain knowledge or 

heuristics. 
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To achieve optimal performance with reptile search 

optimization, it is necessary to fine-tune these parameters 

based on problem complexity and domain expertise. It 

involves experimenting with different parameter settings, 

conducting sensitivity analysis, and evaluating the 

algorithm's performance using empirical studies. By 

iteratively adjusting and refining the parameters, the 

algorithm can effectively navigate the solution space and 

find high-quality solutions for the given problem. 

3.6.2  Modified reptile search optimization 

The Modified Reptile Search Algorithm (MRSA) solves 

high-dimensional nonconvex optimisation issues by 

improving the RSA. The original RSA may be inefficient, 

computationally demanding, and capture local minima. 

MRSA has been modified to address these issues. A sine 

operator while high walking is a key MRSA modification. 

The "Sine Cosine Algorithm (SCA)" dynamic exploration 

mechanism inspired this notion. MRSA option aspirants 

may widen the search space further by adding the sine 

operator. Global exploration assists the algorithm in 

minimising local minima and looking for the solution 

space. 

Another adjustment in the MRSA involves utilizing Levy 

flights, which are random processes following the Levy 

distribution function. The parameter controlling the Levy 

flight, known as the levy flight parameter, determines the 

size of the random steps taken. By using a lower value for 

the levy flight parameter, the MRSA ensures that smaller 

random steps are taken, enabling solution candidates to 

search the areas closest to the obtained solutions. This 

improvement enhances the algorithm's exploitation 

capabilities, leading to improved global convergence. 

These adjustments in the MRSA significantly reduce the 

complexity of the algorithm while simultaneously 

improving its performance. The improved global 

exploration and exploitation capabilities result in higher 

efficiency, faster convergence speed, and lower time 

complexity. As a result, the proposed modifications in the 

MRSA address the limitations of the original RSA and 

make it more suitable for solving high-dimensional 

nonconvex optimization problems. 

4. Result and Discussion 

4.1. Numerical demonstrations 

The following five examples are used to demonstrate the 

suggested model as shown in Table 1. These numerical 

examples' decisions for the model parameters are all 

realistic, but they weren't chosen from any particular case 

study. The suggested MRSA has conducted five separate 

runs for each example, and for each run, the most optimal 

overall profit B value, represented by an interval, has been 

chosen in accordance with Definition 3 of interval order 

relations. The optimal values 𝐵, 𝑅, 𝑅𝑎, 𝑅𝑠, 𝑛, 𝑎𝑛𝑑 𝑃𝑝 have 

been identified for each of the cases. The following MRSA 

parameter values are used in this calculation: 𝑝_𝑠𝑖𝑧𝑒 = 105, 

𝑝_𝑐𝑟𝑜𝑠 = 0.95, 𝑝_𝑚𝑢𝑡𝑒 = 0.3, and 𝑚_𝑔𝑒𝑛 = 550. Figs 1-4 

illustrate the results of our graphic analysis of the effects of 

changes in MRSA parameters such as 𝑝_𝑠𝑖𝑧𝑒, 𝑚_𝑔𝑒𝑛, 

𝑝_𝑐𝑟𝑜𝑠, and 𝑝_𝑚𝑢𝑡𝑒 on the maximum total profit over the 

planning horizon 𝐼, which is a different way we tested the 

performance of MRSA.  

The results depicted in Fig. 1 indicate that the value of the 

optimal found profit reaches a stable state when the 

crossover probability (𝑝_𝑐𝑟𝑜𝑠) exceeds 0.80. Beyond this 

threshold, further increases in p_cros do not significantly 

impact the stability of the solution. 

Fig. 2 illustrates that the Modified Reptile Search 

Algorithm (MRSA) produces stable solutions when the 

mutation probability (𝑝_𝑚𝑢𝑡𝑒) is within the range of 0.07 

to 0.3. Within this range, the algorithm consistently 

converges to reliable solutions, and variations in p_mute 

do not significantly affect the stability of the solution. 

Fig. 3 shows the ideal profit's stability when the maximum 

generation number (𝑚_𝑔𝑒𝑛) surpasses 75. Once the 

algorithm reaches this threshold, additional iterations do 

not significantly impact the stability of the solution, and 

the optimal found profit remains relatively constant. 

Finally, Fig. 4 shows that the MRSA produces stable 

solutions when the population size (𝑝_𝑠𝑖𝑧𝑒) is above 65. 

Beyond this value, increasing 𝑝_𝑠𝑖𝑧𝑒 does not notably 

affect the stability of the solution, and the algorithm 

consistently converges to reliable solutions. 

Table 1. Instances' numerical solutions 

Eg. 

𝑹 𝑹𝒔 𝑹𝒂 𝒏 𝑷𝒑 𝑩 Remark

s 

Solutio

n 

1 63,637 5.657 - 12 [79,85, 

115.06] 

[9080.57, 

10550.73] 

Case-2 

2 58.34 19.668 - 14 [72,31, 

104.30] 

[8941.16, 

10373.53 

Case-2 

3 71.00 12.615 - 11 [87.51, 

126.02] 

[9080.57, 

10541.16] 

Case-2 

4 116.668 - 44.273 07 [148.00, 

211.00] 

[9349.66, 

10074.72] 

Case-1 

5 141.00 - 43.927 06 [176.41, 

253.00] 

[9405,58, 

10866.26] 

Case-1 

 

It can be shown in Fig.1 that when 𝑡ℎ𝑒 𝑝 − 𝑐𝑟𝑜𝑠𝑠 is more 

than 0.76, the value of the optimal discovered profit begins 
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to stabilise. When the value of 𝑝_𝑚𝑢𝑡𝑒 falls within the 

range of 0.07–0.2, it is clear that the MRSA provides a 

stable solution. This may be determined from Fig. 2 when 

𝑚_𝑔𝑒𝑛 is more than 75. The value of the optimal 

discovered profit is shown to remain stable in Fig. 3. Fig. 4 

demonstrates that the MRSA is able to generate a stable 

solution when the 𝑝_𝑠𝑖𝑧𝑒 is greater than 65.  

 

 

Fig. 1. Result of profit (𝐵) vs. 𝑝_𝑐𝑟𝑜𝑠𝑠 

 

 

Fig. 2. Result of profit (𝐵) vs. 𝑝_𝑚𝑢𝑡𝑒 

 

 

Fig. 3. Result of profit (𝐵) vs. 𝑚_𝑔𝑒𝑛 

 

 

Fig. 4. Result of profit (𝐵) vs. 𝑝_𝑠𝑖𝑧𝑒 

4.2. Analysis of sensitivity 

Employing numerical demonstration, analyses were 

performed graphically to investigate the impact of under or 

overestimating parameters such as "demand rate, time 

horizon, the percentage of AP with respect to total 

purchase expenses, selling price, bank interest, and the 

percentage of discount on unit expenses on the centre value 

of the IV profit." These investigations were carried out by 

changing only one factor at a time while leaving the others 

(ranging from -15% to 15%) identical. Fifteen replicated 

iterations have been used to determine the optimal profit in 

each situation. These are depicted in the self-explanatory 

Fig. 5–10. Fig. 5 demonstrates that, as could be predicted, 

an increase in the rate of demand (E) has a corresponding 

increase in the optimal discovered profit. Additionally, the 

percentage changes in E are nearly identical to the 

percentage changes in the optimal discovered profit. The 

relationship between the optimal discovered profit and the 

time horizon (I) is evident in Fig. 6. In this instance, the 

optimal noticed profit increases as I grow, and vice versa. 

Fig.7 shows how the "percentage of pre-payment with 

respect to total purchase expenses" affects the optimal 

observed profit. The plot suggests an inverse relationship 

between these two variables. This indicates that changes in 

the percentage of pre-payment have a limited impact on the 

percentage change in the optimal found profit. Other 

factors or parameters may have a more significant 

influence on the optimal profit. 

Fig. 8, the impact of changes in expenses on the optimal 

found profit is examined. The plot indicates a direct effect, 

suggesting that an increase or decrease in expenses leads to 

a corresponding increase or decrease in the optimal found 

profit. However, price changes are slightly more than 

suitable found profit changes. This suggests that variations 

in price have a corresponding influence on the optimal 

discovered profit, although the profit change may be 

partially lower than the price change. 

Fig. 9 shows an inverse relationship between changes in 

bank interest and changes in the optimal found profit. 
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However, the impact of changes in bank interest on the 

profit is relatively low compared to other factors.  

Fig. 10 indicates a direct relationship between changes in 

the percentage of discount on unit expenses and changes in 

the optimal found profit. However, the effect of changes in 

interest on the profit is relatively low compared to changes 

in expenses or demand. 

 

Fig. 5. Demand rate vs. profit (𝑩). 

 

Fig. 6. Time horizon (I) vs profit (B). 

 

Fig. 7. The ratio of AP vs. profit (𝑩). 

 

Fig. 8. Selling price (P) vs profit (𝑩). 

 

Fig. 9. Bank interest vs. profit (𝑩) 

 

Fig.10. Unit expenses discount vs. optimal profit (𝑩). 

5. Conclusion 

In this study, we have presented an inventory model that 

incorporates IV inventory expenses and the impact of pre-

payment (PP). The model considers IV expenses and 

examines two scenarios: one without shortages and another 

allowing for partially backlogged deficiencies. In the 

second scenario, the demand rate is expected to decrease 

over a limited interval due to factors such as loyal 

customers and customers transferring shops. To address 

the optimization problem associated with interval targets, 

we have proposed a Modified Reptile Search Optimization 

(MRSO) algorithm. This algorithm efficiently solves the 

inventory model with interval-valued expenses, allowing 

decision-makers to improve their inventory strategies and 
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optimize profitability under uncertain expense and demand 

conditions. Numerical demonstrations of the proposed 

model have been provided, and sensitivity analysis has 

been conducted to assess the effects of various inventory 

factors on optimal profit. The results highlight the 

significance of pre-payment, IV expenses, and different 

cases of shortages in inventory management. By utilizing 

the model and the MRSO algorithm, decision-makers can 

enhance their inventory management strategies, 

considering uncertain expenses and demands and 

ultimately maximizing profitability. The findings offer 

valuable insights for decision-makers to make informed 

choices regarding inventory strategies and achieve 

profitability in dynamic and uncertain environments. 
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