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Abstract: Introduce autonomous mobile robot navigation in a few sentences, along with its significance in numerous industries. A 

discussion of the difficulties in attaining effective and adaptable movement scheduling and management for autonomous robots is 

required. Emphasize the advantages of using machine learning approaches to solve these problems. In this study, we recommend 

movement scheduling and management based on an Augmented Gradient Support Vector Machine (AG-SVM) for autonomous mobile 

robot navigation.  Assemble a comprehensive dataset with historical information on the movements of mobile autonomous robots in 

different contexts. Gather data on the positions and speeds of the robots, the environment, the order of the tasks, and any pertinent sensor 

data. By removing outliers, dealing with missing values, and normalizing the data, we can clean and preprocess the acquired dataset. To 

extract pertinent features for the movement scheduling and management activity, if necessary, perform feature engineering. The dataset's 

most beneficial components that help with movement planning and management are taken out using the Histogram of Oriented Gradients 

(HOG). This technique helps to reduce dimensionality and improve the efficiency of learning algorithms. AG-SVM is used to manage 

and schedule movements. To improve the deployment of autonomous robots in various industries, it is important to emphasize the 

importance of adaptive and effective movement scheduling and management. 

Keywords: autonomous mobile robot navigation, Augmented Gradient Support Vector Machine (AG-SVM), movement scheduling, 

management, Histogram of Oriented Gradients (HOG) 

1. Introduction 

Machine learning-based movement is the application of 

machine learning algorithms and methods to allow 

autonomous or semi-autonomous movement in a variety of 

systems, including robots, autonomous vehicles, drones, 

and virtual characters. It entails teaching these systems to 

continuously increase their mobility capabilities over time 

without explicit programming. In machine learning-based 

mobility, the system often makes use of sensor inputs, such 

as camera pictures, lidar data, or other environmental 

information, to detect and comprehend its surroundings 

[1]. Once this data has been processed and analyzed, it 

employs machine learning algorithms to identify and 

extract pertinent patterns and characteristics. The system 

can create suitable movement instructions based on the 

learned patterns and make intelligent judgments. A large 

collection of samples, either labeled or unlabeled, 

representing various movement circumstances is often 

gathered throughout the training phase. The objective is to 

allow the system to generalize from training data and 

modify its movement tactics for novel, unforeseen 

scenarios. The term "machine learning-based movement" 

refers to a variety of activities, including navigation, route 

planning, obstacle avoidance, object tracking, gesture 

recognition, and locomotion control [2]. These systems 

may be made more effective, adaptable, and responsive by 

using machine learning, which will also increase their 

reactivity to changing settings. The capacity of a robot to 

travel through its surroundings autonomously and without 

human assistance is referred to as autonomous mobile 

robot navigation. To help the robot detect its surroundings, 

plot a course, and carry out the essential operations to get 

where it's going, it makes use of a variety of algorithms, 

sensors, and control systems. The robot senses its 

surroundings using sensors like cameras, lidar, sonar, or 

infrared sensors. Obstacles, landmarks, and other important 

elements are all provided by these sensors [3]. Based on 

the sensor data, the robot creates a map or model of its 

surroundings. To comprehend the layout, the placements of 

obstacles, and other navigational signals, utilize this map. 

The robot decides where it is in the mapped surroundings 

on its own. Simultaneous localization and mapping 

(SLAM) methods, which integrate sensor data and 

movement information to properly predict the robot's 

location, may help with this. The robot plots a collision-

free route from its present location to the intended site after 
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it has a map of the surrounding area and is aware of its 

location. To create a viable or ideal route, robot dynamics, 

& other restrictions [4]. A robot continually recognizes and 

avoids obstacles in its path while it is moving. To safely 

navigate around obstacles, it makes adjustments to its 

trajectory, speed, or direction based on real-time sensor 

data. The intended course is converted into real robot 

movements by the control system. To guarantee the correct 

execution of the planned trajectory, this comprises motor 

control, motion planning, and feedback systems. Machine 

learning methods may be used by autonomous mobile 

robots to enhance their navigational skills [5]. They may 

adjust their behavior in response to changing 

environmental circumstances, improve their route planning 

algorithms, or learn from prior experiences. An 

autonomous mobile robot can move on its own in a range 

of contexts, such as confined areas, rough terrain, or 

intricate industrial settings, by combining these 

components. The objective is to make it possible for the 

robot to go quickly and securely to its destination while 

avoiding hazards and making deft judgments based on its 

observation of the surroundings [6]. Utilizing machine 

learning methods to optimize the scheduling and 

administration of robot movements in a dynamic 

environment is known as machine learning-based 

movement scheduling and management for autonomous 

mobile robot navigation. The motions of many robots 

working in the same space may be planned using machine 

learning. Machine learning models can discover the most 

effective way to distribute movement duties while taking 

into account elements like robot capabilities, energy 

consumption, workload balance, and job prioritization [7]. 

The trajectory planning process for autonomous mobile 

robots may be improved with the use of machine learning 

techniques. These algorithms gain knowledge from past or 

simulated data to forecast ideal courses and provide 

smooth trajectories that save energy, lessen the danger of 

collisions, and take into consideration robot dynamics and 

environmental limits. Management of traffic Machine 

learning approaches may assist in traffic management and 

collision avoidance in areas where several autonomous 

mobility robots coexist. Robots can make smart choices to 

avoid traffic, negotiate lanes, and coordinate their 

movements to maximize overall efficiency by assessing 

sensor data and learning from prior encounters [8]. 

Autonomous mobile robots can make adaptive judgments 

while navigating thanks to machine learning methods. 

Robots may dynamically change their movement methods, 

choose other routes, or vary their behaviors to improve 

performance and adapt to changing situations by 

continually learning from sensor inputs, environmental 

changes, and human preferences. To find irregularities in 

robot motions or system problems, machine learning 

methods may be applied. Machine learning models can 

detect anomalous behavior, raise alarms, and start remedial 

steps to guarantee safe and dependable navigation by 

continuously monitoring sensor data, control signals, and 

robot responses [9]. Mobile autonomous robots may pick 

up information from user interactions and feedback. 

Machine learning models may modify their movement 

tactics to match user expectations by taking into account 

user choices, comments, or demonstrations. This boosts 

user happiness and the caliber of the navigation 

experience.  Autonomous mobile robots can navigate 

effectively, adapt to changing situations, and optimize their 

motions for better performance thanks to machine 

learning-based movement scheduling and management 

algorithms. These methods employ previous and current 

data as well as human interactions to identify trends, 

anticipate outcomes, and improve the ability of 

autonomous robot navigation [10].  

2. Related Works 

This study provides a standardized structure for 

incorporating task scheduling and routing control on a 

shop floor powered by mobile autonomous robots, a more 

and more popular IM pattern. We explicitly suggest a 

multi-agent architecture that includes human beings, 

machines, and mobile robots. Like any other cyber-

physical system, the design of the fundamental software 

platform and the selection of the underlying algorithm 

affect how well IM systems work [11]. The study suggests 

a reinforcement learning method in which an agent 

constructs pathways on a predetermined layout while being 

rewarded based on several parameters that reflect the 

intended properties of the system. The findings 

demonstrate that, for an elevated amount of AMRs running 

in the system, the suggested technique outperforms the 

conventional shortest-path-based strategy in terms of 

throughput and reliability. while the demand for high 

throughput necessitates the operation of a relatively high 

number of AMRs in comparison to the size of the area in 

which the robots work, the adoption of the suggested 

technique is advised [12]. The question under study was 

whether geographic data mining, digital twins based on 

simulation, and real-time monitoring technologies might 

enhance remote sensing robots. Shiny software was used to 

produce the flow diagram of evidence-based data that was 

gathered and handled using the Preferred Reporting Items 

for Systematic Reviews and Meta-analysis (PRISMA) 

criteria. For the first bibliometric mapping (data 

visualization) Dimensions was used, while VOSviewer 

was used for the layout algorithms [13]. The complexity of 

robotic jobs and settings tends to increase along with the 

complexity of control interfaces. Traditional input methods 

including touch, voice, and gesture may not be appropriate 

for all users. Participants with glide limitations may not be 

able to manage such systems, even though they are the 

ones who require robotic aid the most. Although some 

users can put out the effort to get comfortable with a 
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robotic system [14]. This study, to design a special 

architecture that allows these users to converse with a 

robotic service assistant only by thinking in a closed-loop 

setting. One of the system's interconnected components is 

the brain-computer interface (BCI), which uses non-

invasive neuronal signal recording and co-adaptive deep 

learning. Other components include high-level task 

planning based on referring expressions, navigation and 

manipulation planning, as well as environmental 

perception [15]. This work tackles the problem of 

autonomously mapping unknown small celestial bodies 

while passing by them close by. Here, a Deep 

Reinforcement Learning (DRL)-based forecast approach is 

proposed to increase surface mapping effectiveness by the 

intelligent autonomous selection of the image capture 

epochs. Learned policies are compared to standard policies 

in a series of conceivable scenarios, and the Neural Fitted 

Q (NFQ) and Deep Q Network (DQN) techniques are 

examined [16]. 

3. Methodology 

An advanced method for enabling efficient and intelligent 

navigation of robots in a variety of contexts, machine 

learning-based movement scheduling and management is a 

key component of autonomous mobile robot navigation. 

Fig.1 shows the flow of this study. 

 

Fig.1. Flow of this study 

3.1 Data set 

The suggested adaptive algorithm's inputs consist of the 

distances between the left and right wheels and their 

estimated probabilities from the AMR at each moment. 

The output velocity in this context is referred to as Vout, 

and it is the same as the difference between the calculated 

probabilities of velocities of both wheels. The calculated 

value is contrasted with the intended velocity or VD. The 

difference between VD and VOUT is used to calculate the 

error signal, E(x). The block coordinate descent method 

makes use of this signal to update the weights W1, W2, 

and W3 in each iteration, which is represented by a 

combined weight vector, i.e., Pk = [D P(VRW) P(VLW)]. The 

dataset has 2920 total data points, or (2920 x 6) = 17520, 

for each of the six sets. The remaining 5256 data points are 

used for validation, leaving 12264 data points for training. 

3.2 Preprocessing using Z-Score Normalization 

Z-score normalization, also known as zero-mean 

normalization, is the process of normalizing any output 

descriptors by calculating the normalized mean and 

standard deviation for each parameter over several test 

datasets. Each attribute is given its mean and standard 

deviation. The generalized equation 1 specifies the 

replacement as follows: 

𝑣′ =
𝑣−𝜇𝐴

𝜎𝐴
     

      (1) 

where A differences in values" stands for the attribute's 

standard deviation and A means" stands for the attribute's 

σ_(A )=  As a result, every attribute in the dataset has zero 

fluctuation and zero significance. Before constructing a 

trainee collection and starting the training method, each 

training sample in the data set is first put through the Z-

Score normalization process. A training data collection's 

average, variance, and statistical significance for each 

statistic must be calculated, noted, and utilized as weights 

in the final system design. It is a preprocessing phase in the 

architecture of neural networks. Given that the neural 

network was trained on a different kind of dataset, its 

outputs may vary significantly from the normalized data. 

By reducing their volume, this statistical normalization has 

the benefit of lessening the effects of data abnormalities. 

3.3 Feature extraction using Histogram of Oriented 

Gradients (HOD) 

HOG is a well-liked feature extraction method in computer 

vision that is used for object detection and identification. It 

records the local gradient data existing in a picture and 

transforms it into a feature vector. HOG is often used to 

characterize the quality of a particular local gradient 

distribution. When utilized for identifying targets, it 

achieves excellent results. Because of this, the HOG 

feature may be effectively used to represent the nature of 

the local gradient allocation. 

Determine the gradient's magnitude and orientation: 

Using these formulas, we can calculate the A and B 

orientation intensity gradients: 

𝐻𝑤 = 𝑛(𝑤 + 1, 𝑧) − 𝐽(𝑤 − 1, 𝑧)   (2) 

ℎ𝑧 = 𝑤(𝑤, 𝑧 + 1) − 𝐽(𝑤, 𝑧 − 1)   (3) 

 

where 𝐻𝑤  and ℎ𝑧 are the horizontal and vertical gradients, 

respectively; the gradient amplitude m(x, z) indicates the 

variance in the size of the grey level. 
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Equations (4) and (5) may also be used to compute 

gradient amplitude and direction: 

𝑛(𝑤, 𝑧) = √𝐻𝑤
2 + 𝐻𝑤

2     (4) 

𝜃(𝑤, 𝑧)=arctan(
𝐻𝑧

𝐻𝑤
)     (5) 

3.3.1 The Process of a Cell Histogram 

Histograms are built by tallying the frequency with which 

each orientation of a gradient appears in each of the bins 

designated for that orientation. The direction of each 

gradient is used to determine which bin it is added to. The 

histogram represents regional edge directions via its 

quantification of the cell's internal gradient orientation 

distribution. To make the histogram more forgiving of little 

changes in brightness and contrast, normalization is an 

available option. Each bin value is divided by the total bin 

value in L1 normalization, whereas in L2 normalization, 

each bin value is divided by the Euclidean norm of the 

histogram vector. The local edge information in an image 

is captured by the HOG method as it builds histograms of 

cells based on gradient orientations. To further describe the 

picture in tasks like object identification and recognition, 

these histograms are employed as features. 

3.3.2 Block specification 

A single feature vector is constructed by concatenating the 

normalized histograms of each of the image's blocks. In 

addition to encapsulating information about local gradients 

in individual cells, this feature vector also includes spatial 

correlations as measured by block normalization. In HOG, 

the normalizing of cell contributions within blocks is a 

crucial step for dealing with differences in light and 

contrast. When the HOG feature descriptor is applied to a 

group of cells inside a block and then normalized, it 

becomes more resistant to variations in illumination and 

contrast. 

3.3.3 The block's gradient is normalized 

The HOG algorithm is often used to extract features from 

images. By segmenting a picture into tiny cells, generating 

histograms of gradient orientations inside each cell, and 

stringing together the feature vector, it can capture local 

gradient information. Each histogram's density is 

determined. 

𝑈∗ = √
𝑢

||𝑈||𝐿+1.1𝜀′      

 (6) 

One definition of density is the fraction of total 

occurrences or values that fall inside a certain interval. The 

density quantifies the extent to which gradients are 

concentrated across histograms.  

3.4 Augmented Gradient- Support Vector Machine 

(AG-SVM) 

AG-SVM is a kind of supervised learning that uses a 

predefined function to predict the label of an output based 

on the input values. It may improve the model's capacity to 

generalize by minimizing the errors of the sample points 

while lowering the structural hazards. Assume that there 

are l sample points and n indices in the datasets that need 

to be categorised.  

AG-SVM, a well-known supervised ML technique, is used 

for both classification and regression. It can process 

difficult information and work in high-dimensional feature 

spaces. The primary objective of AG-SVM is to locate a 

hyperplane that optimally separates data points into their 

respective classes while reducing the distance between the 

hyperplane and the data points that are closest to the 

hyperplane. AG-SVM aims to maximize the margin and 

minimize the classification error. To get started, amass 

some training data that has already been labeled so that 

each data point already knows what category it belongs to. 

AG-SVM is a binary classifier; hence the data must be 

separated into those two categories. Problems involving 

many types may need multiple methods to solve. Filter the 

information to extract useful properties for the 

classification task. It is possible to encode categorical 

features, although AG-SVM performs better with 

numerical features. If you want to be sure that no one 

feature is overpowering the learning process, you should 

normalize or standardize the feature values. Min-max 

scaling and z-score normalization are two common types 

of scaling employed. The AG-SVM model is trained at the 

SVM Model Training step by feeding it the labeled data. 

The optimal hyperplane is the one that produces the largest 

gap between the two sets of data. Using a technique of 

mathematical optimization, AG-SVM can resolve this 

problem. Data may be moved into a higher dimensional 

space where linear separation is possible by the use of 

kernel functions in AG-SVM. Some typical kernel 

functions are the linear kernel, polynomial kernel, 

Gaussian (RBF) kernel, and sigmoid kernel. Which kernel 

should be utilized is determined by the complexity of the 

problem and the kind of data being processed. To find the 

optimal hyperplane, AG-SVM optimization requires the 

resolution of a quadratic programming problem. The 

optimization process seeks to maximize profit while 

lowering a cost function that punishes poorly classified 

data points. To determine the support vectors, the 

Lagrange multipliers are computed based on the data 

points that are on the boundary or extremely near to it. 

This might be accomplished with the help of strategies like 

grid search or randomized search. AG-SVM has found use 

in many different areas, including text classification, image 

recognition, bioinformatics, and even the financial sector. 

They are widely used because of their robust theoretical 

foundation, ability to deal with a wide variety of data 

distributions and resistance to overfitting. The foregoing 
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discussion allows us to formulate the following constrained 

optimization problem as a definition of the optimal 

separation surface. 

 

𝜙(𝑢) =
1

2
‖𝑢‖2 =

1

2
(𝑢. 𝑢)         

  (7) 

Equation (5-7) allows us to define the Lagrange function as 

follows: 

𝐾(𝑢, 𝑎, 𝛼) =
1

2
(𝑢. 𝑢) − ∑𝑚

𝑗=1 𝛼𝑗{[(𝑢. 𝑣𝑗) + 𝑎] − 1}     

  (8) 

∑𝑚
𝑗=1 𝑧𝑗𝛼𝑗 = 0       

  (9) 

𝛼𝑗 ≥ 0, 𝑗 = 1,2, … , 𝑚       (10) 

Where 𝛼𝑗 > 0 is the coefficient of Language. The problem 

is finding the Lagrange function's minimum of .. 𝑢 and 𝛼. 

𝑢 and 𝛼 seek partial differential and make them equal to 

zero, The original issue may be reduced to the dual issue 

below, which is straightforward: the restrictions that 

Equation represents (11-14): 

𝑅(𝛼) = ∑𝑚
𝑗=1 𝛼𝑗 −

1

2
∑𝑚

𝑗,𝑖=1 𝛼𝑗𝛼𝑖𝑧𝑗𝑧𝑖(𝑣𝑗 . 𝑣𝑖)     

   (11) 

𝑢∗ = ∑𝑚
𝑗=1 𝛼𝑗

∗𝑧𝑗𝑣𝑗      

  (12) 

𝛼𝑗(𝑧𝑗(𝑢. 𝑣𝑗 + 𝑎) − 1) = 0, 𝑗 = 1,2, … , 𝑚     (13) 

𝑒(𝑣) = 𝑠𝑔𝑛{(𝑢∗. 𝑣) + 𝑎∗} = 𝑠𝑔𝑚{∑𝑚
𝑗=1 𝛼𝑗

∗𝑧𝑗(𝑣𝑗 . 𝑣) +

𝑎∗}    (14) 

4. Results and Discussion 

This section discusses in detail the findings of the proposed 

methodology (AG-SVM) with the existing methods 

utilized in this research are Conventional Neural Networks 

(CNN), Deep Neural Networks (DNN), and long short-

term memory (LSTM). To analyse the efficiency of the 

proposed method, parameters such as accuracy, precision, 

recall, and f1-score are utilized in this research. Here TP 

denotes true positive, TN denotes true negative, FP denotes 

false positive, and FN denotes false negative. 

Table.1. Numerical outcomes of proposed and existing 

methods 

Methods Accuracy

%  

Precision

% 

F1-

score

% 

Recall

% 

CNN [17] 75 70 80 73 

DNN [18] 78 77 70 87 

LSTM 

[19] 

83 85 83 89 

AG-SVM 

[Propose

d] 

96 89 92 95 

A. Accuracy 

A difference between the result and the true number is 

caused by inadequate precision. The percentage of actual 

outcomes reveals how balanced the data is overall. 

Accuracy is assessed using an equation (15). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
   

 (15) 

 

Fig.2. Comparison of Accuracy 

Fig.2 shows the comparable values for the accuracy 

measures. When compared to existing methods like CNN, 

which has an accuracy rate of 75%, DNN, which has an 

accuracy rate of 78%, and LSTM, which has an accuracy 

rate of 86.64%, the recommended method's AG-SVM 

value is 96%. The proposed AG-SVM has greater accuracy 

than existing approaches and works well in categorizing 

autonomous mobile robot navigation.  

B. Precision 

The most crucial standard for accuracy is precision, it is 

clearly defined as the percentage of properly categorised 

cases to all instances of predictively positive data. 

Equation (16) is used to compute the precision. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (16) 
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Fig.3. Comparison of Precision 

Comparable values for the precision measures are shown 

in Fig.3. This proves the suggested strategy may provide 

performance results that are superior to those obtained by 

the current study methods. The precision of the proposed 

approach AG-SVM is 89%, which performs better than 

existing outcomes. Include DNN, CNN, and LSTM 

precision rates are 77%, 70%, and 85%. 

C.  Recall 

The potential of a model to identify each important sample 

within a data collection is known as recall. The recall is 

calculated using equation (17).  

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (17) 

 

Fig.4.Comparison of Recall 

Fig.4 shows the comparative data for the recall metrics. 

Recall rates for CNN were 73%, DNN 87%, LSTM 89%, 

and AG-SVM 95%.The proposed method performed better 

than the current results with a recall of 95%.   

D.  F1-score 

The harmonic mean of the proposed model is computed to 

merge "recall and precision" into a single component 

called the f1-score. Equation (18) is used to determine the 

f1-score. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
   (18) 

 

Fig.5. Comparison of F1-score 

Fig.5 shows the comparative data for the recall metrics. 

Recall rates for CNN 80%, DNN 70%, LSTM 83%, and 

AG-SVM 92%.The suggested method outperforms current 

results with an F1-score of 95%. 

5. Conclusion 

The AG-SVM algorithm, created especially for this 

research, makes use of augmented gradient optimization 

methods to enhance decision-making skills, resulting in 

more precise and effective movement scheduling and 

control. In general, the recommended AG-SVM algorithm 

and HOG feature extraction contribute to the system's the 

amazing performance in terms of accuracy 96%, precision 

89%, recall 95%, and F1-score 92% in the context of 

movement scheduling and management for autonomous 

mobile robot navigation [20]. These metrics pertain to the 

system's ability to navigate autonomously within its 

environment. Autonomous mobile robot navigation is 

much improved by the machine learning-based movement 

scheduling and management system that includes HOG 

feature extraction and the suggested AG-SVM method. 

The remarkable performance metrics show its promise in 

several fields, such as manufacturing, supply chain 

management, and security. In further research, it may be 

possible to develop intuitive and natural interfaces that 

enable people to offer high-level commands or preferences 

to the robot. This will make it possible for humans and 

robots to effectively cooperate in shared workplaces or on 

joint projects.  
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