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Abstract: A rapidly developing area of robotics called "soft robotics" provides special benefits including compliance, flexibility, and 

secure human connection. The detection and control of their complicated and nonlinear dynamics are difficult, nevertheless. Because 

inherent safety is built into soft robots at the material level, there is interest in using them in practical applications. These manipulative 

robots use flexible materials that may alter shape and behavior and allow for conformable physical touch. However, the addition of soft 

and flexible materials to robotic systems brings several obstacles to sensor integration, such as multimodal sensing capable of stretching, 

the embedding of high-resolution yet large-area sensor arrays, and sensor fusion with a growing amount of data. To address these issues, 

this research suggests a machine-learning strategy for the detection and management of soft robots. Sampling for force modeling and 

kinematics The kinematic model and the force model were both learned using data that were collected, and the data were then 

preprocessed using z-score normalization. Then, we proposed Boosted Central Forced Convolutional Neural Network (BCF-CNN) for 

data clustering and detection of soft robots. And the results of the experiment demonstrate that our recommended methodology works 

better than the other available approaches.  

Keywords: Soft robots, management, Boosted Central Forced Convolutional Neural Network (BCF-CNN) 

1. Introduction 

Soft robotics is a fast-developing area of robotics that 

provides distinct benefits over conventional rigid robots. 

These robots can bend and change their shape to fit their 

surroundings since they are built of compliant and flexible 

materials [1]. Soft robots' built-in compliance makes it 

possible to interact with people safely, use fragile objects, 

and move through small places [2]. The complicated and 

nonlinear dynamics of soft robots, however, make it 

difficult to identify and control them. The inherent 

unpredictability and uncertainties associated with soft 

robot behavior make traditional control systems that 

depend on exact mathematical models and predetermined 

rules difficult to manage [3]. To accurately identify and 

manage the states of soft robotics, it is increasingly 

important to investigate data-driven methodologies, 

particularly machine learning techniques. The ability of 

computers to learn from data and make wise judgments has 

made machine-learning approaches very promising in a 

variety of fields [4]. Thus Soft robots can perform better, 

be more versatile, and be safer by using the power of 

machine learning to adapt and react to changing 

surroundings.  

To overcome the difficulties brought on by the 

complicated dynamics of soft robotics, this research 

suggests a Boosted Central Forced Convolutional Neural 

Network for their detection and administration. Their use 

in diverse sectors is significantly impacted by the 

identification and control of soft robot states. Soft robots in 

healthcare can be used for rehabilitation and safe, pleasant 

patient aid [5]. Soft robots are capable of navigating 

difficult terrain and offering help in disaster-stricken 

regions during search and rescue missions [6]. In human-

robot cooperation settings, where their compliance enables 

intimate and natural engagement with people, soft robots 

may also be very important. 

The rest of the paper is structured as follows: An overview 

of related research in the area of soft robot management is 

given in Section 2. The data collecting, preprocessing, and 

model training procedures are described in full in Section 3 

of the proposed machine learning technique. The 

experimental setup, findings, and performance assessment 

of the suggested technique are all covered in Section 4. 

The paper is concluded in Section 5 with a review of the 

findings and recommendations for further research. 
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2. Related works 

The study [8] offered cutting-edge Machine Learning (ML) 

methodologies in soft robotic areas and classifies their use 

in various soft robotic apps, like soft sensors, soft wearable 

robots, and soft actuators. Along with the current research 

area restrictions, a synopsis of the current ML techniques 

for soft robotics is offered after a study of the tendencies of 

various ML approaches to various kinds of soft robot apps. 

The review [9] offered an overview of many such 

algorithms as well as examples in which they have been 

used to provide cutting-edge outcomes in practical settings. 

The numerous basic fields of DRL research in soft robotics 

are highlighted in summaries. The study [10] described a 

model-based policy learning approach for closed-loop 

predictive control of a soft robotic manipulator. A 

Recurrent Neural Network (RNN) is used to represent the 

forward dynamic model. Utilizing supervised learning and 

trajectory optimization, the closed-loop policy is created. 

The method is initially tested on a cable-driven under-

actuated soft manipulator simulation model with piecewise 

constant tension. The paper [11] analyzed the advantages 

and difficulties of soft robotics technology and what it can 

signify for agroforestry and ethical farming. The study 

described a technique for printing soft pneumatic actuator 

robots (SPAs) in four dimensions (4D) utilizing nonlinear 

ML and Finite Element Modelling (FEM). The study 

demonstrated that a model of the system's discrete state 

space that has been linearized may be created using the 

gradients utilized inside a neural network to connect inputs 

to outputs and system states to system states. To 

accomplish position control within 2° of the desired joint 

angle, model predictive control may be constructed using a 

soft robot with one degree of freedom using the state space 

representation. 

 The work [12] discussed the results of our first research 

into the use of machine learning to soft robot control. To 

determine the best open-loop control inputs, they first 

develop a differentiable model of the quasi-static physics 

of a soft robot. The study [13] presented the model 

predictive controller design process and the Koopman-

based system identification approach. Using this approach, 

a pneumatic soft robot arm model and MPC controller 

were created, and the robot's performance was assessed 

using a variety of real-world. The article described a 

textile-based tactile sensor for multipurpose sensing uses in 

soft robotics and health monitoring. Researchers logically 

created a tactile sensor with two detecting layers, drawing 

inspiration from the skin of the fingertip. The research [14] 

introduced a unique adaptable inductance with multiple 

uses and a stretchy sensor using LMs that can measure 

axial stress as well as curvature. By printing a coaxial LM 

3D printer, silicone rubber, and LMs were built to produce 

this sensor. The study [15] described a soft robotic glove 

that may help people with functional grip disorders carry 

out everyday tasks. The glove makes use of low-profile, 

soft fabric-regulated pneumatic actuators that need less 

pressure than earlier actuator technology. 

3. Methods 

In this paper, First the kinematic model and the force 

model were both learned using data that were collected, 

and the data were then preprocessed using z-score 

normalization. Then, we proposed Boosted Central Forced 

Convolutional Neural Network (BCF-CNN) for data 

clustering and detection of soft robots. And the results of 

the experiment demonstrate that our recommended 

methodology works better than the other available 

approaches. Fig 1 shows the flow of proposed method. 

 

 

Fig.1. Flow of proposed method 

3.1. Data set 

Sampling for force modeling and kinematics The 

kinematic model and the force model were both learned 

using data that were collected. The kinematic model 

required the marker data from the motion capture system 

and the associated sensor data for several kinematic setups. 

The finger is sometimes required to make contact with two 

different fixed line connections to do this. The finger could 

still move in the other way with total freedom even if the 

external contact was locked in place. Both the finger's tip 

and a spot near its middle were supposed to be in touch 

with the contacts. The external touch's duration, location, 

and timing were all determined at random to avoid biases. 

Data shuffles were not employed in learning, and sampling 

was continuous. This is necessary for the temporal 

information to be preserved. For force modeling, a load 

cell was connected to the tip's external contact. 

3.2. Preprocessing using z-score normalization 

We preprocess the data using z-score normalization after 

data collection. The Z-score normalization uses the data's 

mean and standard deviation as its starting points. In cases 

when the lowest and maximum values of the data are 

unknown, this technique is of great use. This is the formula 

that is used: 
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𝑌𝑛𝑒𝑤= 
𝑦−𝜇

𝜎
 =

𝑦−𝑀𝑒𝑎𝑛(𝑌)

𝑠𝑡𝑑𝐷𝑒𝑣(𝑌)
     (1) 

𝑌𝑛𝑒𝑤=The adjusted value obtained after scaling the data 

Y = outdated value 

μ = Statistics mean 

σ = Estimated Standard Deviation 

3.3. Boosted Central Forced Convolutional Neural 

Network (BCF-CNN) 

A mini-batch method is often utilized to handle huge 

training of the data sets in a BCF-CNN. Let 𝑌 =

[𝑌1, … 𝑌𝑁 ]represents the activating attributes of a batch of 

N training pictures, where 𝑌𝑗  dimension is R, and let𝑥 =

[𝑥1, … 𝑥𝑁  ], 𝑥𝑗 ∈  {−1, 1}  represent a vector containing the 

authentic labels. A strong classifier(·), which is the 

weighted sum of weak classifiers 𝑍(·), calculates the 

prediction using the boosting technique as follows: 

𝑍(𝑌𝑗) = ∑𝑅
𝑖=1 𝛼𝑖𝑧(𝑦𝑗𝑖 , 𝜆𝑖); 𝑧(𝑦𝑗𝑖 , 𝜆𝑖) =

𝑙(𝑦𝑗𝑖,𝜆𝑖)

√𝑙(𝑦𝑗𝑖,𝜆𝑖)
2

+𝜂2

 (2) 

Where 𝑦𝑗𝑖  ∈  𝑥𝑗 is the 𝑖𝑡ℎactivation feature of the 

𝑗𝑡ℎpicture. Each feature is associated with a 

potentially poor classifier 𝑧(𝑦𝑗𝑖 , 𝜆𝑖) with a range of results 

of(−1,1). 
𝑙(.)

√𝑙(.)2+𝜂2
  is used to simulate a 𝑠𝑖𝑔𝑛(·

)optimization via gradient descent function calculating 

derivative. In this work, 𝑙(𝑦𝑗𝑖 , 𝜆𝑖)  ∈ 𝐾 often employed in 

AdaBoost, this threshold 𝜆𝑖 is defined as a one-level 

decision tree (a decision stump). 

The parameter 𝜂 in Eq. 2 is used to regulate the gradient of 

a function 
𝑙(.)

√𝑙(.)2+𝜂2
and can be set according to the 

allocation of 𝑙(·) as 𝜂 =  
𝜎

𝑣
 , where 𝜎 is the mean of 𝑙(·

) and 𝑣 is a constant. In this work, 𝜂 is empirically set to  
𝜎

2
 

. 𝛼𝑖  ≥  0 is the weight of the 𝑖𝑡ℎ weak classifier 

and∑𝑅
𝑖=1 𝛼𝑖 = 1. When𝛼𝑖 = 0, when a neuron is not 

receiving input, it does not participate in feed-forward or 

backpropagation. 

Overfitting can occur when certain weak classifiers have 

big weights and traditional boosting approaches only 

account for the loss of the strong classifier which is used to 

classify the soft robots. Classification errors made by the 

strong classifier and the individual classifiers are factored 

into the loss function, which is defined as the sum of the 

losses from the strong classifier and the weak classifier: 

𝜀𝑃 = 𝛽𝜀𝑠𝑡𝑟𝑜𝑛𝑔
𝑃 + (1 − 𝛽)𝜀𝑤𝑒𝑎𝑘   (3) 

 

Where𝛽 ∈  [0, 1] balance both the weak- and strong 

classifier losses. The strong classifier loss is the metric 

used to measure how far off a model is from the actual 

label: 

𝛽𝜀𝑠𝑡𝑟𝑜𝑛𝑔
𝑃 =

1

𝑁
= ∑𝑁

𝑗=1 (𝑍(𝑌𝑗) − 𝑥𝑗)2  

 (4) 

The weak-classifier loss is calculated by adding up each 

weak classifier's loss values. 

𝜀𝑤𝑒𝑎𝑘 =
1

𝑁𝑀
∑𝑁

𝑗=1 ∑1≤𝑖≤𝑅 𝛼𝑖>0 [𝑧(𝑦𝑗𝑖 , 𝜆𝑖) − 𝑥𝑗]
2
 

 (5) 

Where the loss is calculated while excluding inactive 

neurons due to the condition 𝛼𝑖 > 0. Backpropagation can 

be used to iteratively fine-tune the BCF-CNN driven by the 

loss Defined in Eq. 3. The previously recorded data, such 

as the weights and thresholds of the activated neurons, is 

discarded in favor of a fresh set. The trained BCF-CNN 

may be overfitted because there isn't enough data in each 

minibatch. 

A metaheuristic optimization technique called Central pull 

Optimization is motivated by the gravitational pull in 

physics. It was created to address optimization issues by 

modeling the interactions of celestial bodies subject to 

gravity. 

𝑒𝑖=1
𝑏 = 𝑆 ∑

𝑀𝑏
𝑟=1 𝑟≠𝑏 𝑊(𝑁𝑖−1

𝑟 − 𝑁𝑖−1
𝑏 )(𝑁𝑖−1

𝑟 −

𝑁𝑖−1
𝑏 )

𝛼 (�⃗⃗⃗�𝑖=1
𝑟 −�⃗⃗⃗�𝑖=1

𝑏 )

|�⃗⃗⃗�𝑖=1
𝑟 −�⃗⃗⃗�𝑖=1

𝑏 |
𝛽  (6) 

where 𝑀𝑏 = quantity of probes, 𝑏 = 1, 2, 3, … , 𝑀𝑏 name of 

the probe number, 𝑖 = calculation time increment, which is 

the number of iterations used for optimization 𝛼, 𝛽 and 𝑆 =

 the BCF-CNN constants, 𝑁𝑖−1
𝑏 = 𝑉(�⃗⃗⃗�𝑖=1

𝑏 ), value of the 

probe relative to the objective function 𝑏 at time step 𝑖 − 1 

and 𝑊 is the step function of a single unit that yields 

𝑊(𝑦) = 1 𝑖𝑓 𝑦 ≥ 0 and = 0 otherwise. 𝑊 maintains the 

attractive force of gravity in the BCF-CNN, so larger 

probes' attractive forces are used merely to shift the probes' 

position vectors. The position distance |�⃗⃗⃗�𝑖=1
𝑟 −

�⃗⃗⃗�𝑖=1
𝑏 |between two probes 𝑟 and 𝑏, uses the following 

equation to derive, 

|�⃗⃗⃗�𝑖=1
𝑟 − �⃗⃗⃗�𝑖=1

𝑏 | = √∑𝑀𝑡
𝑛=1 (𝐾𝑖−1

𝑟,𝑛 − 𝐾𝑖−1
𝑏,𝑛)

2
  (7) 

The gravitational analogy for a three-dimensional space 

with four probes was used to clarify the situation. To apply 

the accelerations calculated at time step 𝑖 to the probe 

position vectors, we do the following: 

�⃗⃗⃗�𝑖
𝑏 = �⃗⃗⃗�𝑖−1

𝑏 +
1

2
𝑒𝑖−1

𝑏 ∆𝑑2    (8) 

In which 𝛥𝑑 = the time step size used here is assumed to 

be 1. The probes are moved to new positions using Eq. 8, 
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which may be outside the region of possible decisions. 

How the lost probes are collected and returned can have a 

significant impact on a CFO's effectiveness. The following 

equation, proposed by Formato (2007), can be used to fix 

impractical parts of faulty probes: 

if�⃗⃗⃗�𝑖,𝑗
𝑏 < 𝑦𝑗

𝑚𝑖𝑛𝑡ℎ𝑒𝑛�⃗⃗⃗�𝑖,𝑗
𝑏 = 𝑦𝑗

𝑚𝑖𝑛 + 𝐿𝑟𝑒𝑝(�⃗⃗⃗�𝑗−1,𝑗
𝑏 − 𝑦𝑗

𝑚𝑖𝑛)and, 

if�⃗⃗⃗�𝑖,𝑗
𝑏 > 𝑦𝑗

𝑚𝑎𝑥𝑡ℎ𝑒𝑛�⃗⃗⃗�𝑖,𝑗
𝑏 = 𝑦𝑗

𝑚𝑖𝑛 − 𝐿𝑟𝑒𝑝(�⃗⃗⃗�𝑗−1,𝑗
𝑏 − �⃗⃗⃗�𝑗−1,𝑗

𝑏 )

 (9) 

Where 𝐿𝑟𝑒𝑝 =  the positioning factor, a variable that may 

be set by the user and has a range of 0-0.9, and 𝑦𝑗
𝑚𝑖𝑛 

and𝑦𝑗
𝑚𝑎𝑥, the higher and lower bounds of the deciding 

factors, respectively. Finding the ideal set of constants for 

BCF-CNN is simpler than for a stochastic metaheuristic 

since CFO is predictable and devoid of randomness. By 

comparing the BCF-CNN’s parameters to a variety of 

intricate multi-dimensional test functions, Formato (2009) 

thoroughly analyzed the CFO's parameters. It was 

determined that in the majority of situations, setting, and 

W to be 2 and 𝐿𝑟𝑒𝑝 is 0.5 yields the best performance. But 

more consideration needs to be given to 𝑀𝑏 and 𝐿𝑟𝑒𝑝. The 

initial placement of the probes in space, which is based 

on 𝑀𝑏, specifies how much to start a run with BCF-CNN 

and is aware of the topology of the decision space, which 

is another crucial aspect of BCF-CNN. There are a variety 

of methods that can be used for this, including randomly 

generating probes or evenly dispersing probes along each 

axis of the coordinate system. Combining the 

aforementioned approaches to probe distribution is another 

tactic that is possible. Understanding both the behavior of 

the BCF-CNN and the problem at hand analytically is 

required for a successful and efficient parameter selection. 

4. Result and discussion 

Soft robots, composed of flexible and deformable 

materials, offer unique advantages such as adaptability and 

compliance for tasks in unstructured environments. In this 

study, we suggested BCF-CNN for the detection and 

management of soft robots. We compared some of the 

existing methods such as SVM [16], LSTM [17], and 3D-

CNN [18] with our proposed method using several metrics 

like accuracy, precision, prediction performance, and 

Motion prediction rate.  

Accuracy for soft robot detection and management refers 

to the overall correctness of the model's predictions and 

decisions in detecting and managing soft robots. It 

calculates the percentage of examples that are correctly 

categorized relative to all of the instances. The Fig 2 and 

Table 1 show that comparison of accuracy and it depicts 

that our proposed is higher than other existing methods. 

 

 

Fig.2. Comparison the accuracy of the conventional and 

proposed approaches 

Table 1. Comparison of accuracy 

Methods Accuracy (%) 

RNN [16] 85.75 

3D-CNN [17] 85.45 

SVM [18] 79.78 

BCF-CNN [Proposed] 96.92 

 

Soft robot detection precision measures the model's ability 

to provide accurate, favorable predictions when detecting 

the presence of a soft robot. It quantifies the proportion of 

correctly identified soft robots out of all instances 

classified as soft robots by the model. A high soft robot 

detection precision implies a low false positive rate, 

indicating that the model accurately identifies soft robots 

and minimizes misclassifications of non-soft robot objects 

as soft robots. The Fig 3 and Table 2 show that comparison 

of precision and it depicts that our proposed is higher than 

other existing methods. 

 

Fig.3. Comparison the precision of the conventional and 

proposed approaches 
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Table 2. Comparison of precision 

Datas

et 
Precision (%) 

 
RNN 

[16] 

3D-

CNN 

[17] 

SVM 

[18] 

BCF-CNN 

[Proposed

] 

1 73 76 86 91 

2 70 73 88 95 

3 79 85 73 92 

4 73 85 86 90 

5 70 79 83 98.75 

 

Fig 4 and Table 3 depicts that comparison of detection 

performance and it shows the BCF-CNN achieved high 

accuracy in detecting the presence of soft robots. The 

BCF-CNN successfully distinguished between soft robots 

and other objects in the environment, even in complex 

scenarios with cluttered backgrounds.  

 

Fig.4. Analyzing the soft robots detection performance of 

the conventional and proposed approaches 

Table 3. Comparison of detection performance 

Methods Detection performance 

(%) 

RNN [16] 90.75 

3D-CNN [17] 85.45 

SVM [18] 89.72 

BCF-CNN 

[Proposed] 

97.75 

 

The Fig 5 and Table 4 depict that comparison of detection 

performance and it shows the BCF-CNN demonstrated the 

ability to predict the future motion of soft robots based on 

their current state. This prediction capability enabled more 

accurate and responsive control, facilitating tasks that 

require precise manipulation. 

 

Fig 5.  Analyzing the soft robots motion prediction rate of 

the conventional and proposed approaches 

Table 4. Comparison of motion prediction rate 

Datas

et 

Motion prediction rate (%) 

 RNN 

[16] 

3D-

CNN 

[17] 

SV

M 

[18] 

BCF-CNN 

[Proposed] 

1 80 73 86 94 

2 73 79 88 95 

3 80 76 86 92 

4 89 85 86 91 

5 76 89 78 95.65 

5. Conclusion 

The application of machine learning techniques to the 

detection and management of soft robots has shown 

promising results [19]. The trained BCF-CNN 

demonstrated high accuracy in detecting soft robots, 

detecting performance, and predicting their motion. These 

findings pave the way for improved soft robot performance 

and expanded applications in various domains, including 

healthcare, manufacturing, and exploration. Future 

research should focus on addressing challenges and further 

enhancing the abilities of machine learning-based soft 

robot management systems. Future research in the 

application of machine learning techniques to the detection 

and management of soft robots should focus on expanding 
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datasets, enabling online learning and adaptation, 

incorporating sensor fusion, exploring reinforcement 

learning for control, enhancing human-robot interaction, 

ensuring robustness and safety, and addressing practical 

deployment challenges. 
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