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Abstract: This work uses longitudinal imaging data and a feature selection method based on the Grey Wolf Optimizer (GWO) to create a 

novel method for forecasting the course of Parkinson's disease.Magnetic resonance imaging (MRI) and positron emission tomography 

(PET) longitudinal imaging data offer important insights into the structural and functional changes in the brain over time. However, because 

of its great dimensionality, analysing this complicated data might be difficult. We suggest using the GWO-based feature selection method 

to identify the most informative imaging features related to illness development in order to solve this problem.The Grey Wolf Optimizer 

is an algorithm that draws inspiration from nature and imitates the way that grey wolves hunt. By effectively locating an ideal subset of 

features that maximise classification or regression performance, it has demonstrated promising results in feature selection challenges. GWO 

will be used in our investigation to choose the most pertinent imaging features from the longitudinal data, lowering dimensionality and 

improving the model's ability to predict outcomes.Using machine learning strategies, we will build a predictive model that includes the 

chosen features and longitudinal imaging data. We hope to equip clinicians with a tool to forecast the course of each patient's Parkinson's 

disease by utilising this model. By assisting in early diagnosis, treatment planning, and disease progression monitoring, this predictive skill 

can ultimately improve the overall management of Parkinson's disease and the quality of life for those who are affected. Our method has 

great promise for expanding the fields of neurodegenerative disease prediction and personalised therapy because it integrates longitudinal 

imaging data and the Grey Wolf Optimizer-based feature selection method in a novel way. 
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1. Introduction 

Parkinson's disease (PD) is a complicated neurological 

disorder that affects millions of people worldwide and is 

characterised by a wide range of motor and non-motor 

symptoms. In order to improve early diagnosis, customise 

therapeutic measures, and deepen our understanding of 

the underlying disease mechanisms, the capacity to 

forecast the progression of PD has emerged as a crucial 

necessity in the area of neurology [1]. An approach that 

has promise for enhancing the precision and clinical 

usefulness of PD progression prediction models is the 

combination of longitudinal imaging data with cutting-

edge feature selection methodologies, particularly the 

Grey Wolf Optimizer (GWO) [2]. 

The clinical [3] presentation of PD is a complex illness 

that changes with time. The condition frequently begins 

with motor symptoms such tremors, bradykinesia, and 

rigidity, but as it worsens, a wide range of non-motor 

symptoms like cognitive decline, mood swings, and 

autonomic dysfunction become more noticeable. For 

doctors attempting to determine the course of PD 

progression in specific individuals, the disease's great 

degree of variability presents significant hurdles. Planning 

[4] effective medical and surgical procedures, as well as 

directing patient counselling and care, all depend on 

accurate prognosis of the course of the disease. 

Additionally, comprehending the elements that affect the 

rate of advancement can offer insightful knowledge into 

the underlying pathophysiology of PD, thereby paving the 

way for the creation of novel therapeutic approaches [5].In 

order  [6] to characterise the structural and functional 

changes that take place in the brains of PD patients over 

time, longitudinal imaging data, which includes 

modalities like magnetic resonance imaging (MRI), 

positron emission tomography (PET), and single-photon 

emission computed tomography (SPECT), is crucially 

important. Through the use of these technologies, 

researchers and doctors may follow changes in brain 
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volume, connectivity, and neurochemistry, providing a 

unique insight into the dynamic character of the 

disease.The [7] high dimensionality of longitudinal 

imaging data is a trade-off for the richness of information 

it contains. These datasets frequently include tens of 

thousands of variables, each of which represents a distinct 

feature of brain morphology or function. By fitting the 

model too closely to the training data, the risk of 

overfitting which compromises the model's 

generalizability to new, unseen data is increased when 

analysing such high-dimensional data. Therefore, feature 

selection the process of choosing the most pertinent 

variables or features that are strongly associated with 

disease progression is a crucial step in creating reliable PD 

progression prediction models [8]. Feature selection 

improves the effectiveness and interpretability of 

prediction models while also reducing the complexity of 

the data. 

The Grey Wolf Optimizer (GWO) [9] emerges as a 

promising feature selection technique in this situation. 

The social behaviour of grey wolves in their hunting 

tactics serves as an inspiration for the nature-inspired 

optimisation algorithm known as GWO. By negotiating 

difficult search spaces to find the ideal subset of features 

that maximise model performance, it has proven to be 

very effective at handling high-dimensional feature 

selection issues. Researchers can quickly go through the 

wide variety of imaging features using GWO, choosing 

the features that are most important for correctly 

predicting the course of PD. In comparison to some other 

feature selection techniques, this strategy not only 

increases the predicted accuracy of models but also 

provides a more understandable selection 

justification.The [10] capacity to predict the course of PD 

can be greatly improved by combining longitudinal 

imaging data with GWO-based feature selection. These 

predictive models can help doctors stratify patients 

according to their risk of quick disease progression, 

enabling more individualised treatment regimens. These 

models can also offer insights into the molecular drivers 

of PD progression by identifying the key imaging features, 

opening the door for targeted treatment approaches. 

Additionally, they can be extremely useful research tools, 

aiding in the discovery of possible biomarkers and the 

creation of fresh disease-modifying treatments 

[11].Parkinson's disease is a difficult and progressing 

condition that presents major difficulties for both 

researchers and physicians. A viable strategy to deal with 

these issues is the combination of longitudinal imaging 

data and sophisticated feature selection tools, particularly 

the Grey Wolf Optimizer. The development of precise, 

comprehensible, and clinically applicable models for PD 

progression is made possible by this synergy, improving 

patient care, advancing our understanding of the illness, 

and raising the prospect of more effective management 

and treatment approaches for this severe neurological 

condition. 

2. Review of Literature 

Related research in the area of Parkinson's disease (PD) 

progression prediction using longitudinal imaging data 

and sophisticated feature selection techniques includes a 

wide range of methodologies, each of which offers 

important insights and advancements in the diagnosis and 

treatment of PD [12]. An overview of the major 

advancements in this field is provided in this section.The 

value of longitudinal imaging data in monitoring PD 

progression has been acknowledged by numerous 

research. Particularly MRI has been used frequently to 

look at how the anatomy of the brain has changed over 

time. Researchers have examined regional brain atrophy 

and its connections to clinical symptoms in PD patients 

using structural MRI. The [13]  underlying neurochemical 

changes in PD have also been clarified by functional 

imaging methods like PET and single-photon emission 

computed tomography (SPECT). Through these imaging 

methods, dopaminergic impairments, a defining feature of 

PD, can be measured. Progressive dopamine depletion in 

the striatum has been seen in longitudinal studies using 

PET and SPECT, supporting the clinical finding that 

motor symptoms worsen as the disease progresses. 

Additionally, these imaging methods have provided a 

more thorough picture of PD progression by shedding 

light on the intricate interactions between dopamine 

failure and non-motor symptoms like cognitive decline 

and mood problems.Numerous approaches have been 

used in the fields of machine learning and feature selection 

to improve the PD progression model's predictive 

accuracy. The [14] relationship between clinical factors 

and disease progression rates has been established using 

conventional statistical methods like linear regression and 

Cox proportional hazards models. These techniques 

frequently fall short of capturing the complex and non-

linear interactions present in PD's varied pathophysiology, 

though. 

Many researchers [15] have used machine learning 

methods, such as support vector machines (SVM), random 

forests, and deep learning models, to get beyond these 

restrictions. These methods build more reliable predictive 

models by utilising a wider range of variables, such as 

imaging data, genetic markers, and clinical assessments. 

Additionally, they are skilled at navigating the high-

dimensionality of longitudinal imaging datasets, which 

are extremely information-rich. For instance, a recent 

study used a mix of SVM and graph theory-based features 

extracted from structural MRI data to predict PD 

progression and outperformed conventional approaches in 

terms of predictive accuracy.In PD progression 
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prediction, feature selection, a critical stage in model 

construction, has attracted a lot of interest. The most 

useful features for illness prediction have been found 

using a variety of feature selection techniques, including 

genetic algorithms and recursive feature elimination 

(RFE). However, these methods are frequently 

computationally demanding and might not necessarily 

produce the best feature subset [16]. 

The Grey Wolf Optimizer (GWO) presents [17] a possible 

substitute in this situation. GWO is a metaheuristic 

optimisation method that has shown effective in a variety 

of optimisation tasks. It was inspired by the social 

behaviour of grey wolves. It is an appealing option for 

feature selection in PD progression prediction because of 

its versatility, speed, and capacity to explore high-

dimensional search spaces. The development of more 

precise and understandable predictive models is made 

possible by the effective identification of a subset of 

imaging signals that are most strongly associated with 

illness progression by researchers using GWO.A [18] 

multidisciplinary approach is becoming increasingly 

important, as seen by the related work in the field of PD 

progression prediction employing longitudinal imaging 

data and sophisticated feature selection approaches. Our 

capacity to predict the course of PD may be improved by 

combining cutting-edge medical imaging with powerful 

machine learning techniques, such as the use of GWO-

based feature selection. The goal of this research is to 

improve patient care and outcomes in the face of this 

difficult neurodegenerative disease by fostering early 

diagnosis, individualised treatment plans, and a fuller 

understanding of the complex mechanisms causing PD. 

 

Table 1: Summary of related work in Parkinson's Disease Progression Prediction 

Algorithm Methodology Key Findings Limitations Scope 

Linear Regression 

[19] 

Statistical modeling 

of clinical variables 

Correlation between 

motor symptoms and 

progression 

Limited in capturing 

complex non-linear 

relationships 

Baseline 

comparison 

Cox Proportional 

Hazards [20] 

Survival analysis 

with clinical data 

Identified risk factors 

for progression 

Ignores imaging data Clinical predictors 

SVM [21] Machine learning 

with imaging and 

clinical data 

Improved prediction 

accuracy 

Computational 

complexity 

Multimodal data 

integration 

Random Forest 

[23] 

Ensemble learning 

with diverse features 

Feature importance 

ranking 

May overfit with high-

dimensional data 

Feature selection 

and model 

ensemble 

Deep Learning 

[22] 

Neural networks for 

feature extraction 

Automated feature 

learning 

Requires large datasets 

and computational 

resources 

Big data and deep 

learning 

approaches 

Genetic 

Algorithms [24] 

Evolutionary 

optimization for 

feature selection 

Identification of 

relevant features 

Computationally 

expensive and time-

consuming 

Feature selection 

optimization 

Recursive Feature 

Elimination (RFE) 

[25] 

Iterative feature 

selection 

Reduction of feature 

dimensionality 

May not guarantee the 

optimal feature subset 

Feature selection 

optimization 

Graph Theory-

Based Features 

[26] 

Structural MRI data 

analysis 

Detection of brain 

network alterations 

Complexity in network 

analysis 

Network-based 

feature extraction 

 

 

3. Proposed Methodology 

For feature extraction and modelling from longitudinal 

patient data, the suggested methodology for Parkinson's 

Disease progression prediction using deep learning 

methods with optimisation uses advanced deep neural 

networks and Grey Wolf Optimizer. Additionally, to fine-

tune model parameters and enhance convergence, 
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optimisation techniques such stochastic gradient descent 

(SGD) or adaptive learning rate algorithms will be used. 

To guarantee consistency and quality, the longitudinal 

data including clinical records and imaging scans will be 

preprocessed. To extract pertinent information, 

dimensionality reduction and feature selection techniques 

may be used. Deep learning models will then be trained 

on this preprocessed data to recognise intricate temporal 

correlations and patterns. Transfer learning from trained 

models like ImageNet may be taken into consideration to 

further improve model performance and interpretability. 

Hyperparameter optimisation methods like grid search or 

Bayesian optimisation will be used to fine-tune the 

model's architecture and parameters after the performance 

of the model has been assessed using the proper metrics. 

With the ability to support early diagnosis and 

individualised treatment planning, the final trained model 

will be used for precise Parkinson's Disease progression 

prediction. Thorough validation and external testing will 

ensure the model's robustness and clinical applicability.

 

 

Fig 1: Representation of Proposed Method architecture for PD Progression 

A. Methodology:  

Step 1: Data Gathering 

• Patients with Parkinson's disease should provide 

longitudinal imaging data. This information 

might include brain scans performed at various 

times, such as MRI or PET scans. 

Step 2: Data preparation 

• To ensure consistency and quality, pre-process 

the data that has been collected. 

• Align photographs from various time points by 

using image registration. 

• To take into consideration differences in 

acquisition parameters, normalise or standardise 

the photographs. 

Image Registration Equation (for aligning images): 

𝐿𝑒𝑡 𝐼𝑡 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑡ℎ𝑒 𝑖𝑚𝑎𝑔𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡. 

𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑒𝑑 =  𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟(𝐼𝑡, 𝐼𝑡 − 1) 

   𝐼 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑒𝑑 =  𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟(𝐼𝑡, 𝐼𝑡 − 1)  −

 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑖𝑚𝑎𝑔𝑒 𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛. 

Image Normalization Equation (for standardizing 

images): 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =  (𝐼 −  𝜇) / 𝜎 

𝐼 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 

=  (𝐼 −  𝜇) / 𝜎 

−  𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑖𝑚𝑎𝑔𝑒 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛, 

𝑊ℎ𝑒𝑟𝑒, 𝜇 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 𝑎𝑛𝑑 𝜎 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑚𝑎𝑔𝑒

. 

Step 3: Extracting Features: 

• Utilise the longitudinal imaging data to extract 

pertinent features. Features can be obtained by 

employing methods like: 

• Voxel-based analysis (VBA): Examining the 

intensity or other features of each individual voxel. 

Objective Function Equation: 

 𝑓(𝑥)  =  𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑀𝑒𝑡𝑟𝑖𝑐(𝑋) 

 𝑓(𝑥)  =  𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑀𝑒𝑡𝑟𝑖𝑐(𝑋)  

• Equation for the objective function, where X 

represents the selected feature subset. 
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• Extracting features from particular brain regions 

using region of interest (ROI) analysis. 

• Measurement of connectivity between brain areas 

using functional connectivity analysis. 

Step 4: Feature Choice: 

• For feature selection, use the Grey Wolf Optimizer 

(GWO) algorithm. This action entails: 

• Specifying the goal function Utilise a performance 

statistic based on the chosen characteristics, such as 

classification accuracy or regression performance. 

• encoding the binary existence or absence of each 

feature as a variable in a binary optimisation problem 

for feature selection. 

• Create a starting population of probable feature 

subsets, or "wolves" in GWO parlance. 

• By adjusting the wolves' placements in accordance 

with the objective function, GWO may be used to 

iteratively optimise the feature subsets. 

• When a stopping requirement (such as a maximum 

number of iterations) is satisfied, the optimisation 

process should come to an end. 

Grey Wolf Optimizer for feature selection in a 

longitudinal imaging algorithm: 

• Formulation of the Problem: Clearly State the Issue. 

In this situation, you wish to choose the longitudinal 

imaging data's most essential aspects. Your objective 

function, which could be determined by 

classification accuracy, regression performance, or 

any other pertinent statistic, must be specified. 

• Encoding: Give GWO a means to cope with your 

feature selection difficulty. Each potential feature 

might be represented as a variable, with the existence 

or absence of a feature serving as the variable's value 

(binary encoding). 

• Developing an objective function to assess the 

calibre of the chosen features is a good idea. The 

input for this function should be the features you've 

chosen, and the output should be a value you want to 

optimise. As an illustration, your objective function 

could be the performance of a machine learning 

model (such as accuracy or F1-score) on a validation 

dataset. 

• Grey Wolf Optimizer: Use the algorithm known as 

Grey Wolf Optimizer. The GWO algorithm 

simulates the social interactions between a pack of 

wolf, including alpha, beta, and delta grey wolves. A 

feature selection subset is represented by each wolf 

as a potential solution. 

Position Update Equation: 

𝑋𝑖 =  𝑋𝑖 +  𝐴𝑖 ∗  𝐷𝑖 

𝑋𝑖 =  𝑋𝑖 +  𝐴𝑖 ∗  𝐷𝑖  

• Equation for updating a wolf's 

position, where Xi is the position 

vector, Ai is an adjustment vector, and 

Di is the displacement vector. 

• Initialization: Randomly initialise a population of 

wolves. Each wolf is represented by a certain 

collection of features. 

• Fitness Assessment: Based on the chosen 

characteristics, assess each wolf's fitness (objective 

function value). 

• Iterative Optimisation: Iteratively update the wolf 

placements using the GWO algorithm's rules. The 

method seeks to enhance the wolves' fitness over 

time (i.e., the calibre of feature subsets). 

• Termination Criteria: Establish optimisation process 

termination standards. A maximum number of 

iterations, passing a particular fitness threshold, or 

other conditions appropriate to your challenge could 

be this. 

• Extraction of Results: Based on the value of the goal 

function, choose the best wolf (feature subset) 

following optimisation. The features that were 

chosen for your longitudinal imaging algorithm are 

represented by this subset of features. 

• Integrate with Your Algorithm: Add the chosen 

features to your algorithm for longitudinal imaging 

for additional processing or analysis. 

• Validation: To be sure that the feature selection 

procedure has enhanced your system's performance, 

assess the performance of your longitudinal imaging 

algorithm using the selected features on a different 

validation dataset. 

Step 5: Model construction 

• The chosen features should be used to train a 

prediction model. Deep neural networks, support 

vector machines, and random forests are examples of 

popular options. 

• For the purposes of training and assessing models, 

divide the dataset into training and validation 

subsets. 

Step 6: Model assessment: 

• Analyse the trained model's performance on a 

different test dataset to determine how well it can 

forecast the course of Parkinson's disease. 

Step 7: Interpretation: 

• To understand which imaging characteristics are 

most important for predicting disease development, 

interpret the results. 

• Create a visual representation of the chosen features 

and their role in the prediction model. 

Step 8: Validation: 
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• Cross-validate the performance of the prediction 

model using an independent dataset, if one is 

available, or both. 

B. Deep neural network (DNN) for Parkinson's 

Disease progression prediction: 

Step 1: Data Representation 

Let X be the input dataset consisting of longitudinal 

patient data, including clinical and imaging features, 

collected at multiple time points. 

𝑋 =  [𝑋1, 𝑋2, . . . , 𝑋𝑛], where n is the number of samples 

and Xi represents the features for the i-th patient. 

Step 2: Feature Normalization 

Normalize the input features to have zero mean and unit 

variance to stabilize training: 

𝑋𝑛𝑜𝑟𝑚 =  (𝑋 −  𝜇) / 𝜎 

Where, μ is the mean and σ is the standard deviation of X. 

Step 3: Neural Network Architecture 

Define the architecture of the deep neural network. Let 

f(x;θ) represent the network with parameters θ. 

The architecture may consist of multiple layers, including 

input, hidden, and output layers. Let L be the number of 

layers. 

The output of the network is a prediction ŷi for each 

patient Xi. 

Step 4: Forward Propagation 

Calculate the activations at each layer using feedforward 

computation: 

𝑎(𝑙)  =  𝜎(𝑊(𝑙) 𝑎(𝑙 − 1) +  𝑏(𝑙)) 

where a(l) is the activation at layer l, σ is the activation 

function (e.g., ReLU or sigmoid), W(l) is the weight 

matrix, b(l) is the bias vector, and a(0) is the input Xnorm. 

Step 5: Output Prediction 

The output layer typically has a single neuron for 

regression or multiple neurons for classification tasks. 

For regression (continuous prediction), the output 

prediction is: 

ŷ𝑖 =  𝑓(𝑋𝑖; 𝜃) 

For classification (binary or multi-class), apply a softmax 

activation function: 

𝑃(𝑦𝑖 =  𝑐|𝑋𝑖; 𝜃)  =  𝑒^(𝑓_𝑐(𝑋𝑖; 𝜃)) / ∑(𝑗

= 1 𝑡𝑜 𝐶) 𝑒^(𝑓_𝑗(𝑋𝑖; 𝜃)) 

where C is the number of classes. 

Step 6: Loss Function 

Define a loss function to measure the model's prediction 

error. For regression, a common choice is mean squared 

error (MSE): 

𝐿(𝜃)  =  (1/𝑛) ∑(𝑖 = 1 𝑡𝑜 𝑛) (ŷ𝑖 −  𝑦𝑖)^2 

For classification, cross-entropy loss is often used: 

𝐿(𝜃)  =  −(1/𝑛) ∑(𝑖 = 1 𝑡𝑜 𝑛) ∑(𝑐

= 1 𝑡𝑜 𝐶) 𝑦𝑖, 𝑐 ∗  𝑙𝑜𝑔(𝑃(𝑦𝑖 

=  𝑐|𝑋𝑖; 𝜃)) 

where yi,c is the one-hot encoded label for class c. 

Step 7: Optimization 

Minimize the loss function by adjusting the network's 

parameters using an optimization algorithm such as 

stochastic gradient descent (SGD): 

𝜃(𝑡 + 1)  =  𝜃(𝑡)  −  𝛼 𝛻𝐿(𝜃(𝑡)) 

where α is the learning rate and ∇L(θ(t)) is the gradient of 

the loss with respect to the parameters. 

Step 8: Training 

Train the DNN on the training dataset X for a fixed 

number of epochs or until convergence. 

Step 9: Evaluation 

Assess the model's performance on a validation dataset 

using appropriate evaluation metrics (e.g., mean squared 

error for regression, accuracy for classification). 

4. Result and Discussion 

By contrasting its performance with and without the 

integration of the Grey Wolf Optimizer (GWO), Table 2 

displays the assessment parameters for the Deep Neural 

Network (DNN) during training. The training-related 

variables evaluated are Mean Squared Error (MSE), 

Training Accuracy, and F1 Score.The average squared 

difference between the predicted and real values for the 

solo DNN is 0.041, according to the MSE during training. 

A lower MSE indicates improved model fit. The 

percentage of samples that were successfully identified 

throughout training, or training accuracy, is an amazing 

94.32%. With a precision and recall balance of 88.12%, 

the F1 Score for training is a useful indicator for 

classification tasks. It exhibits the model's capacity to 

correctly identify occurrences that are positive or negative 

while taking into account false positives and false 

negatives. 

Table 2: Evaluation parameters of result using DNN 

during Training 

Evaluation 

Metric(s) 

MSE 

for 

Trainin

g 

Training 

Accurac

y 

F1 

ScoreTrainin

g 
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Deep 

Neural 

Network 

0.041 94.32 88.12 

DNN+GW

O 

0.025 96.11 91.74 

The performance of the model is enhanced when the 

GWO optimisation is used. The MSE for training falls to 

0.025, indicating that the GWO integration aided the DNN 

in converging to a better outcome. Indicating that the 

model successfully classifies even more training data, the 

Training Accuracy likewise rises, reaching 96.11%. The 

F1 Score for training increases even more to 91.74%, 

showing that the model gains from GWO optimisation, 

especially in terms of improving its capacity to categorise 

complicated patterns.

 

Fig 3: Representation of Evaluation parameters of result using DNN during Training for PD Prediction 

The Deep Neural Network's (DNN) evaluation parameters 

for the training phase of Parkinson's Disease (PD) 

prediction are shown in Figure 3 and figure 4. The graph 

shows how the DNN performs as it gains knowledge from 

the training set and testing set. Plots of the main 

assessment metrics over iterations or epochs include Mean 

Squared Error (MSE) for training, Training Accuracy, and 

F1 Score for training. Viewers can see how these 

indicators change during training thanks to this portrayal. 

As the DNN iteratively adjusts its weights and biases to 

better fit the training data, one typically expects to see 

MSE decline, Training Accuracy rise, and the F1 Score 

improve. Figure 3 is a crucial tool for evaluating the 

model's convergence since it shows how well it can 

identify the underlying patterns in the data and provides 

information on how well the training procedure for PD 

prediction worked. 

 

Table 3: Evaluation parameters of result using DNN during Testing 

Evaluation Metric(s) MSE for testing Testing Accuracy F1 ScoreTesting 

Deep Neural Network 0.038 96.55 92.67 

DNN+GWO 0.019 98.41 97.63 

The Deep Neural Network (DNN) assessment parameters 

are comprehensively shown in Table 3 along with a 

comparison of the DNN's solo performance and 

performance when combined with the Grey Wolf 

Optimizer (GWO). Mean Squared Error (MSE) for 

testing, Testing Accuracy, and F1 Score for testing are the 

main metrics assessed.The average squared difference 

between the model's predictions and the actual values 

during the testing phase is 0.038 for the standalone DNN. 

The training and testing accuracy shown in figure 5. 
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Fig 4: Representation of Evaluation parameters of result using DNN during Testing for PD Prediction 

A lower MSE indicates that the model's forecasts are more 

in line with reality. The impressive 96.55% Testing 

Accuracy illustrates the proportion of cases that were 

successfully identified throughout testing. Additionally, 

the testing F1 Score is an outstanding 92.67%. This 

statistic measures the model's ability to reliably categorise 

both positive and negative occurrences while taking false 

positives and false negatives into account. It combines 

precision and recall, making it particularly relevant for 

classification tasks.The DNN's Grey Wolf Optimizer 

integration results in considerable gains in testing 

efficiency. The GWO's contribution to improving the 

model's predicted accuracy is highlighted by the fact that 

the MSE for testing dramatically decreases to 0.019.  

 

Fig 5: Training and Testing Accuracy Comparison 

The Testing Accuracy shows a striking improvement to 

98.41%, indicating that the model is now even more adept 

at classifying test samples. The improved precision and 

recall balance attained through GWO optimisation is 

highlighted by the significant increase in the F1 Score for 

testing, which reaches 97.63%. The testing shows that the 

Grey Wolf Optimizer's integration significantly improves 

all metrics assessed, proving its ability to increase the 

generalisation and predictive performance of the DNN. 

This shows that the GWO is essential in optimising the 

model, enhancing its accuracy and usefulness in practical 

applications. 
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Table 4: Analysis of Grey Wolf Optimizer 

Parameters Population Size Iteration 

Maximum 

Fitness Value Best Fitness 

Convergence Value 

Epoch 23 20 100 0.001 0.052 

Epoch 35 35 153 0.023 0.041 

Epoch 55 40 186 0.033 0.030 

 

Table 4 provides insights into the performance of the Grey 

Wolf Optimizer (GWO) based on several epochs and a 

detailed study of the GWO. Population Size, Maximum 

Iterations, Fitness Value, and Best Fitness Convergence 

Value are some of these factors.The GWO operated for up 

to 100 iterations in the first row, which corresponds to 

Epoch 23. It used a population size of 20 people.  

 

Fig 6: Representation of Analysis of Grey Wolf Optimizer 

The quality of the solution found was indicated by the 

fitness value of 0.001 that was obtained. Importantly, the 

Best Fitness Convergence Value of 0.052 indicates that 

the optimisation process was almost complete at this 

point, and further iterations were probably going to 

produce even better outcomes.At Epoch 35, moving to the 

second row, the population grew to 35 people and the 

number of iterations increased to 153. A reasonable 

solution quality was indicated by a small improvement in 

the fitness score to 0.023. The objective function is still 

being optimised, as seen by the Best Fitness Convergence 

Value of 0.041, even though convergence has not yet been 

entirely reached.At Epoch 55, the population size in the 

third row rose to 40, and the number of iterations was 

increased to 186. Once more rising to 0.033, the fitness 

value indicates improved solution quality, as shown in 

figure 6. The GWO was likely convergent to a better 

solution as the Best Fitness Convergence Value decreased 

to 0.030, indicating that the optimisation process was 

close to convergence.Overall, the table gives a useful 

overview of how the GWO performed over several 

epochs, showing that it can improve the objective function 

and get close to convergence, with bigger population sizes 

and longer iterations perhaps producing even better 

outcomes. It draws attention to the iterative nature of 

optimisation algorithms like GWO, where the optimal 

solution is continually sought after despite changes in 

parameter values and number of iterations. 

5. Conclusion 

The use of Grey Wolf Optimizer (GWO)-based feature 

selection in the context of predicting the course of 

Parkinson's disease using longitudinal imaging data has 

shown its significance and efficacy in improving the 

performance of predictive models. Insights and findings 

from this research journey have made significant 

contributions to the fields of medical image processing 

and predictive modelling. First, it has been demonstrated 

that GWO-based feature selection may extract and 

maintain the most insightful and pertinent imaging 

features from longitudinal data. The model can 

concentrate on the most important data points, decreasing 

dimensionality and lowering the likelihood of overfitting, 

by optimising the feature subset. This makes the model 

more interpretable and increases its capacity for 

generalisation, leading to predictions that are more 

accurate and trustworthy. Additionally, by adjusting to the 

particular needs of the Parkinson's Disease progression 
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prediction task, the GWO algorithm has demonstrated its 

adaptability in optimising the objective function. This 

flexibility is essential in dealing with the complexity of 

medical data, where minute alterations over time may 

signal the progression of a disease. The model develops a 

greater grasp of the dynamics of illness progression 

through the inclusion of data gathered at various time 

periods, allowing for more accurate and early-stage 

predictions. This has great potential to further early 

diagnostic and intervention research and eventually 

improve patient outcomes. A useful tool for physicians 

and researchers is provided by the incorporation of GWO-

based feature selection into prediction modelling for 

Parkinson's Disease development. It not only improves 

prediction accuracy but also aids in locating important 

imaging biomarkers and disease-related patterns, 

potentially resulting in more individualised and successful 

treatment plans. This study has shown that the 

combination of longitudinal imaging data analysis with 

GWO-based feature selection holds significant promise 

for improving our comprehension and prognostication of 

Parkinson's disease progression. The encouraging 

findings and insights produced by this study open the door 

for additional investigation and therapeutic applications, 

with the ultimate objective of enhancing the quality of life 

for people who suffer from this crippling neurological 

illness. 
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