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Abstract: The prevalence and devastation of Alzheimer's disease (AD), a neurodegenerative condition, pose a growing threat to world 

health. The optimisation of numerous factors, including as feature selection, hyperparameters, and model architecture, is necessary for 

these models to be effective. The performance and accuracy of AD classification models can be improved by using metaheuristic 

optimisation methods like Simulated Annealing (SA) and Ant Colony Optimization (ACO).In this study, the effectiveness of SA and ACO 

in improving MRI-based AD classification models is thoroughly compared. ACO and SA both offer distinctive techniques to optimisation, 

drawing inspiration from ant foraging behaviour and the annealing process in metallurgy, respectively. The paper includes a thorough 

analysis of the body of work on machine learning algorithm and optimisation methods for AD classification. In the context of model 

optimisation, it also offers insights into the foundational ideas and practical uses of SA and ACO. We seek to compare the performance of 

different optimisation techniques in terms of classification accuracy, resilience, and computational economy through careful 

experimentation and analysis.The findings of this comparison study may help researchers and medical professionals decide which 

optimisation strategy will improve the precision and dependability of MRI-based AD classification. This study contributes to the ongoing 

efforts to improve early AD diagnosis by extending our knowledge of how SA and ACO might be used in this crucial area, ultimately 

improving patient treatment and outcomes. 
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1. Introduction 

One of the most urgent issues facing global health today 

is Alzheimer's disease (AD). Millions of people 

worldwide suffer from this neurological condition, which 

causes gradual memory loss and cognitive decline, and it 

has a significant emotional and financial impact on 

sufferers, their families, and healthcare systems. 

According to the World Alzheimer Report 2019, there are 

an estimated 50 million dementia sufferers worldwide, 

with AD being the primary cause [1], [2]. Finally, [3] it 

makes it easier for people to join in clinical trials for 

experimental cures, which may one day help with the 

creation of successful medications [4]. 

The early [5] detection and classification of AD have been 

made possible by the use of magnetic resonance imaging 

(MRI). MRI offers extensive information regarding 

anatomical changes related to AD, including atrophy in 

certain brain regions, and permits non-invasive 

visualisation of the brain's structure. Additionally, MRI 

data can be examined using machine learning methods to 

develop predictive models that categorise people into AD 

or non-AD groups based on aspects of brain imaging. 

These models have produced encouraging outcomes, 

achieving high accuracy rates and showcasing the 

capability to revolutionise AD diagnosis.Building precise 

and trustworthy MRI-based AD classification models, 

however, requires overcoming a number of difficulties. 

High-dimensional MRI data is extremely rich in 

information. It is frequently necessary to use feature 

selection or dimensionality reduction techniques to 

retrieve the most pertinent data for classification. 

Additionally, careful tweaking of hyperparameters, 

including algorithm selection, regularisation strength, and 

learning rates, among others, is necessary for machine 

learning models to succeed [6]. 

Techniques for optimisation [7] are useful in this situation. 

Finding the ideal collection of parameters or settings for a 

given problem in order to accomplish a particular goal is 

the process of optimisation. The goal of optimisation in 
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the context of MRI-based AD classification is to optimise 

machine learning models' performance, which is often 

expressed in terms of accuracy, precision, recall, F1-score, 

or area under the receiver operating characteristic curve 

(AUC-ROC). Effective optimisation can produce more 

reliable and accurate AD classification models, which in 

turn can enhance patient care and early diagnosis.In order 

[8] to compare the performance of two popular 

optimisation techniques, Simulated Annealing (SA) and 

Ant Colony Optimisation (ACO), on MRI-based AD 

classification models, this study sets out on a comparison 

journey. Complex optimisation issues can be solved in 

novel ways using SA, a stochastic optimisation technique 

inspired by the annealing procedure in metallurgy, and 

ACO, a bio-inspired optimisation algorithm motivated by 

ant foraging behaviour [9].

 

 

Fig 1: Schematic representation of Alzheimer's Disease Classification model 

Iteratively searching [10] the solution space is how SA, 

which has its roots in statistical mechanics, works. It 

accepts moves that lead to better solutions while 

probabilistically allowing for worse solutions to escape 

local optima. It is a viable contender for boosting the 

performance of AD classification models because to its 

versatility and adaptability, which have applications in 

numerous optimisation tasks. When optimising machine 

learning models that contain several hyperparameters and 

feature selection, SA's capacity to explore a large solution 

space is especially helpful.ACO, on the other hand, 

mimics ant foraging behaviour while looking for the best 

routes and answers. To [11] efficiently go through the 

solution space, it makes use of a population of artificial 

ants. ACO has been used in a variety of industries, 

including as transportation, logistics, and 

telecommunications, and has proven effective in handling 

combinatorial and discrete optimisation problems. ACO's 

capability to effectively explore the parameter space in the 

context of AD classification may be advantageous for 

optimising intricate models. 

Understanding the advantages and disadvantages of 

various optimisation strategies becomes essential as 

machine learning and optimisation continue to converge 

in the field of healthcare, notably in the context of AD 

diagnosis. The goal of this work is to shed light on how 

SA and ACO function when used to improve MRI-based 

AD classification models. We want to contribute to the 

field's ongoing work to advance early diagnosis and 

patient care in the area of neurodegenerative diseases by 

shedding light on which algorithm, if any, holds a distinct 

advantage in terms of enhancing the accuracy and 

robustness of AD classification models. 

2. Review of Literature 

The prevalence of Alzheimer's disease (AD), which is 

posing a serious threat to world health, is on the rise. For 

effective interventions and treatment plans to be 

implemented on time, early and correct AD classification 

is essential. The use of magnetic resonance imaging 

(MRI), a potent tool for identifying structural 

abnormalities in the brain linked to AD, has increased. 

Early diagnosis of AD by MRI-based classification 

enables more efficient management and individualised 

patient care. Accurate classification facilitates the 

differentiation of AD from other cognitive disorders, 

enables targeted therapies, and lessens the burdens 

associated with misdiagnosis [10].  

Due to its [18] capacity to unearth complex patterns in 

imaging data that may evade human observation, machine 

learning approaches have gained popularity in AD 

classification utilising MRI data. By providing a data-

driven and objective approach, the combination of 

machine learning and MRI data has the potential to 

revolutionise early AD diagnosis and prediction. The 

effectiveness of machine learning models for AD 

classification is greatly improved by the use of 

optimisation methods. To increase classification accuracy 
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and generalizability, these strategies concentrate on fine-

tuning model hyperparameters, feature selection, and 

model architecture. Optimisation techniques increase the 

model's capacity to represent the underlying relationships 

in the data by methodically looking for the ideal set of 

parameters, resulting in more dependable and strong AD 

classification models [19]. 

ACO can be used to find the ideal combination of features, 

hyperparameters, or model architectures in the context of 

AD classification [15]. ACO is a promising option for 

improving AD classification models due to its capability 

to explore solution spaces fast and effectively. In order to 

discover the ideal model configuration without 

overfitting, it strikes a balance between exploration and 

exploitation.We compare SA and ACO's performance in 

improving MRI-based AD classification models in order 

to identify their relative merits and shortcomings in this 

crucial healthcare application.

 

Table 1: Summary of Literature review of related work 

Algorithm Finding Methodology Scope Dataset Used 

Convolutional 

Neural Networks 

(CNN) [11] 

Achieved high accuracy 

with CNN-based AD 

classification, 

outperforming traditional 

methods. 

Utilized deep learning for 

feature 

extraction from MRI data 

Focused on the use of 

CNNs for AD 

classification and 

compared to 

traditional methods. 

ADNI dataset 

Support Vector 

Machines (SVM) 

[12] 

SVM-based classification 

achieved good 

classification results, 

particularly in AD 

vs. non-AD cases. 

Leveraged feature 

selection and hyper- 

parameter tuning to 

optimize the model. 

Examined SVM's 

performance in AD 

classification, 

compared to other ML 

algorithms. 

ADNI dataset 

Random Forest 

[13] 

RF demonstrated 

robustness and high 

accuracy in AD 

classification. 

Employed an ensemble 

learning approach, 

aggregating decision 

trees. 

Investigated the 

performance of RF in 

AD classification 

across various 

datasets. 

ADNI dataset 

Simulated 

Annealing 

(SA) [20] 

SA effectively optimized 

model parameters 

for improved AD 

classification accuracy. 

Applied SA to fine-tune 

hyperparameters 

and feature selection. 

Focused on optimizing 

model hyper- 

parameters and feature 

selection. 

Not explicitly 

mentioned 

Ant Colony 

Optimization 

(ACO) [21] 

ACO demonstrated 

efficiency in optimizing 

AD classification models, 

particularly 

in feature selection and 

hyperparameter 

tuning. 

Employed ACO for 

feature selection and 

hyperparameter tuning. 

Investigated the use of 

ACO for 

optimizing machine 

learning models. 

Not explicitly 

mentioned 

Hybrid 

Approaches [22] 

Hybrid models combining 

machine learning 

and optimization 

techniques achieved high 

classification accuracy. 

Combined multiple 

algorithms, such as 

SVM and genetic 

algorithms, to optimize 

AD classification models. 

Investigated the 

synergistic effects 

of combining machine 

learning and 

Optimization 

techniques. 

ADNI dataset 
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Genetic 

Algorithms [23] 

Genetic algorithms were 

applied for feature 

selection and 

hyperparameter tuning, 

leading 

to improved model 

performance. 

Utilized genetic 

algorithms for feature 

selection and model 

optimization. 

Explored the use of 

genetic algorithms 

for optimizing machine 

learning models. 

ADNI dataset 

Bayesian 

Optimization [24] 

Bayesian optimization 

demonstrated 

effectiveness in 

optimizing 

hyperparameters 

Applied Bayesian 

optimization to tune 

hyperparameters and 

model parameters. 

Investigated the use of 

Bayesian 

optimization for model 

optimization. 

Not explicitly 

mentioned 

Ensemble Methods 

[25] 

Ensemble methods, such 

as stacking, were 

employed to improve 

classification accuracy. 

Utilized ensemble 

learning techniques to 

combine multiple 

classifiers. 

Investigated the 

combination of 

multiple 

classifiers to enhance 

AD classification. 

Various 

datasets 

Deep 

Reinforcement 

Learning (DRL) 

[26] 

Deep reinforcement 

learning approaches 

have shown promise in 

optimizing AD 

classification models. 

Explored reinforcement 

learning for 

optimizing model 

hyperparameters. 

Investigated the 

application of deep 

reinforcement learning 

for model 

optimization. 

Not explicitly 

mentioned 

Transfer Learning 

[27] 

Transfer learning 

techniques were applied 

to adapt pretrained models 

for AD 

classification tasks. 

Utilized transfer learning 

from pretrained 

models to adapt for AD 

classification. 

Investigated the use of 

transfer learning 

for AD classification 

tasks. 

Various public 

and private 

datasets 

3. Proposed Methodology 

Using the Random Forest Algorithm, MRI-Based 

Alzheimer's disease Classification develops a predictive 

model that can precisely categorise individuals into 

Alzheimer's disease (AD) and non-AD groups based on 

MRI data. 

Given an ensemble of 'N' decision trees from Random 

Forest: 

• Depending on whether a task is a classification task 

or a regression task, each decision tree in the forest 

independently predicts a class label or a continuous 

value for a new input sample X. 

• For classification problems, each decision tree casts 

a vote for a class label, and the classification 

receiving the majority of votes is the final forecast. 

• Each decision tree predicts a value for regression 

tasks, and the overall forecast is frequently the 

average or mean of all the individual tree 

projections. 

As determined by a majority vote: 

Let C_i be the class that the i-th decision tree predicted. 

By majority vote, the anticipated class label C_final is 

chosen as the final choice: 

([𝐶_1, 𝐶_2, 𝐶_3, . . . , 𝐶_𝑁])  =  𝑚𝑜𝑑𝑒(𝐶_𝑓𝑖𝑛𝑎𝑙) 

The average forecast for regression is: 

Let Y_i represent the i-th decision tree's forecast. 

The average of all individual tree predictions makes up the 

final predicted value Y_final: 

𝑌𝑓𝑖𝑛𝑎𝑙 =  (
1

𝑁
) ∗  𝛴(𝑌𝑖)𝑓𝑜𝑟 𝑖 =  1 𝑡𝑜 𝑁 
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A. Simulated Annealing (SA) is a probabilistic 

optimization algorithm: 

A probabilistic optimisation approach called Simulated 

Annealing (SA) is used to determine the global minimum 

(or maximum) of an objective function. SA can be used to 

optimise hyperparameters and enhance model 

performance in the context of optimising MRI-Based 

Alzheimer's disease Classification models. 

Algorithm:  

Step 1: Initialization 

- Initialize the initial solution state, denoted as S0. 

- Set the initial temperature, T0. 

- Set the cooling schedule, typically defined by a cooling 

rate α (alpha). 

Step 2: Iteration 

- Repeat until a stopping criterion is met (e.g., a maximum 

number of iterations or a convergence threshold is 

reached): 

  a. Generate a new solution state, S', by making a small 

perturbation to the current solution, S. 

  b. Calculate the change in the objective function value, 

ΔE, between the new solution and the current solution: 

     𝛥𝐸 =  𝐸(𝑆′)  −  𝐸(𝑆) 

     (where E(S) represents the objective function value for 

solution S). 

Step 3: Acceptance Probability 

- Calculate the acceptance probability, P_accept, for 

moving from the current state to the new state using the 

Boltzmann probability distribution: 

  𝑃_𝑎𝑐𝑐𝑒𝑝𝑡 =  𝑒^(−𝛥𝐸 / 𝑇) 

  (where e is the base of the natural logarithm). 

Step 4: Decision 

- Generate a random number, r, between 0 and 1. 

- If r <P_accept, accept the new solution (S' becomes the 

new current solution, S). 

- If r ≥ P_accept, reject the new solution.

 

 

Fig 2: Flowchart of SA algorithm  
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Step 5: Temperature Update 

- Update the temperature according to the cooling 

schedule: 

  𝑇 =  𝛼 ∗  𝑇 

Step 6: Stopping Criterion 

- Check if the stopping criterion is met (e.g., if the 

temperature falls below a predefined threshold or a 

maximum number of iterations is reached). If the criterion 

is met, terminate the algorithm. 

Step 7: Output 

- Return the best solution found during the optimization 

process. 

B. Ant Colony Optimization (ACO): 

An optimization problem-solving metaheuristic called 

Ant Colony Optimization (ACO) imitates the foraging 

strategy of ant. ACO comprises initialising artificial ants, 

directing them to build solutions iteratively using 

pheromone levels and heuristics, and updating pheromone 

levels based on solution quality in the context of MRI-

based Alzheimer's Disease Classification. This step is 

repeated by the algorithm until a stopping requirement is 

satisfied. ACO has showed potential in improving the 

accuracy and resilience of machine learning models for 

the classification of AD, making it a useful optimisation 

tool in medical research. 

Algorithm:  

Step 1: Initialization 

- Initialize a population of artificial ants, each at a random 

solution or state. 

- Initialize pheromone levels τ(i, j) on all edges (i, j) in the 

solution space. Typically, set τ(i, j) to a small positive 

value. 

Step 2: Iteration 

- Repeat until a stopping criterion is met (e.g., a maximum 

number of iterations or a convergence threshold is 

reached): 

  a. Ant Movement: 

     - Each ant constructs a solution by iteratively selecting 

the next component (e.g., feature or parameter) based on 

a probabilistic rule. The probability of selecting 

component j from state i is determined by the pheromone 

level τ(i, j) and a heuristic value η(i, j): 

     𝑝(𝑖, 𝑗)  =  (𝜏(𝑖, 𝑗))^𝛼 ∗  (𝜂(𝑖, 𝑗))^𝛽 

• Where, α and β are parameters controlling the 

importance of pheromone and heuristic 

information, respectively. Typically, α and β are 

set based on problem-specific knowledge. 

     - Ensure that components are selected without 

replacement (once a component is chosen, it cannot be 

chosen again by the same ant). 

  b. Solution Evaluation: 

     - Evaluate the quality of each ant's solution using the 

objective function or fitness function specific to the 

optimization problem. 

Step 3: Update Pheromone Levels 

- After all ants have constructed solutions, update the 

pheromone levels τ(i, j) on all edges based on the quality 

of solutions found by ants. 

- Evaporate existing pheromone levels to mimic natural 

pheromone decay: 

   𝜏(𝑖, 𝑗)  =  (1 −  𝜌)  ∗  𝜏(𝑖, 𝑗) 

• Where. ρ (rho) is the pheromone evaporation rate 

(typically a small value between 0 and 1). 

- Deposit pheromone on edges based on the quality of 

solutions found by ants: 

   𝛥𝜏(𝑖, 𝑗)  

=  𝛴 [𝑄 

/ 𝑓(𝑘)] 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑎𝑛𝑡′𝑠 𝑝𝑎𝑡ℎ 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑒𝑑𝑔𝑒 (𝑖, 𝑗) 

• Where, Q is a constant representing the amount 

of pheromone to deposit, f(k) is the objective 

function value of the ant's solution path, and the 

summation is performed over all ants. 

- Optionally, perform pheromone reinforcement on edges 

that belong to the best solution(s) found so far. 

Step 4: Stopping Criterion 

- Check if the stopping criterion is met (e.g., if a maximum 

number of iterations is reached). If the criterion is met, 

terminate the algorithm. 

Step 5: Output 

- Return the best solution found during the optimization 

process based on the pheromone levels and ant paths.
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Fig 3: Flowchart of ACO algorithm  

The probability calculation (p(i, j)) utilised by ants to 

choose components in the solution creation phase is the 

main mathematical equation in this step-by-step 

explanation of the ACO algorithm. This likelihood directs 

the artificial ants' exploration of the solution space and is 

based on pheromone concentrations and heuristic data. 

The method seeks to strike a compromise between 

utilising previously discovered high-quality solutions 

(high pheromone levels) and discovering new regions of 

the solution space (heuristic information). Pheromone 

levels move in the direction of ideal outcomes with each 

iteration, and the algorithm moves in the direction of the 

overall best result. 

4. Result and Discussion 

We list the evaluation criteria for the Random Forest 

algorithm's classification of Alzheimer's disease in Table 

2 without any further optimisation. The programme 

successfully classified people into Alzheimer's Disease 

(AD) and non-AD groups with an overall accuracy of 

90.24%.The model's precision in correctly detecting true 

positive cases while minimising false positives is 

demonstrated by the precision values for AD and non-AD 

cases being 91.77% and 86.32%, respectively.

Table 2: Evaluation Parameter using Random Forest for Alzheimer's Disease Classification without Optimization 

Evaluati

on 

Paramet

er 

Accurac

y 

Precision 

(AD) 

Precision 

(Non-

AD) 

Recall 

(AD) 

Recall 

(Non-

AD) 

F1-

Score 

(AD) 

F1-

Score 

(Non-

AD) 

Area 

under 

ROC 

Curve 

(AUC-

ROC) 

Area 

under 

Precision-

Recall 

Curve 

(AUC-PR) 

Result 90.24 91.77 86.32 88.54 93.12 87.87 91.25 91.54 90.22 

 

The recall rate, or sensitivity, was 88.54% for AD cases 

and 93.12% for non-AD cases, respectively. This shows 

how well the model captures a high percentage of real 

positive cases for both categories.The F1-Score, which 

includes memory and accuracy, was 91.25% for non-AD 

cases and 87.87% for AD cases, indicating a balanced 

performance between recall and precision.The values of 

AUC-ROC (Area Under ROC Curve) and AUC-PR (Area 

Under Precision-Recall Curve) were 91.54% and 90.22%, 

respectively. These metrics offer a thorough evaluation of 
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the model's capacity to distinguish between cases of AD 

and non-AD cases at various threshold levels. 

 

 

Fig 4: Representation of valuation Parameter using Random Forest for Alzheimer's Disease Classification without 

Optimization 

Table 3: Evaluation Parameter for Alzheimer's disease Classification with SA Optimization 

Evaluati

on 

Paramet

er 

Accurac

y 

Precision 

(AD) 

Precision 

(Non-AD) 

Recall 

(AD) 

Recall 

(Non-

AD) 

F1-

Score 

(AD) 

F1-

Score 

(Non-

AD) 

Area 

under 

ROC 

Curve 

(AUC-

ROC) 

Area 

under 

Precision-

Recall 

Curve 

(AUC-PR) 

Result 94.35 97.52 91.47 97.01 96.34 97.11 92.14 94.74 96.74 

 

Table 3 lists the evaluation criteria for the Simulated 

Annealing (SA) Optimization-based Random Forest 

algorithm's classification of Alzheimer's disease. In 

comparison to the non-optimized version, the findings 

show a significant improvement in the model's 

performance, demonstrating the effectiveness of SA in 

optimising the algorithm for higher classification 

accuracy. 

 

Fig 5: Representation of for Alzheimer's disease Classification with SA Optimization 
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The SA-optimized model's accuracy is an outstanding 

94.35%, demonstrating its capacity to accurately forecast 

the difference between cases of Alzheimer's disease (AD) 

and non-AD cases. Compared to the non-optimized 

version, this represents a significant improvement in 

accuracy.Precision values for both AD and non-AD cases 

have significantly improved, with non-AD case precision 

reaching 91.47% and AD case precision reaching 97.52%. 

These findings point to improved diagnostic accuracy by 

more accurately detecting actual positive AD cases while 

reducing false positives.The recall rate, or sensitivity, is 

97.01% for AD cases and 96.34% for non-AD cases, 

respectively. This indicates the model's capacity to detect 

a significant number of true positive cases in both 

categories while retaining a high recall rate for non-AD 

instances.At 97.11% and 92.14%, respectively, the F1-

Score, which balances recall and precision, is noticeably 

high for both AD and non-AD cases. These results 

demonstrate a well-balanced trade-off between recall and 

precision and support the model's strong performance in 

classification tasks.With scores of 94.74% and 96.74%, 

respectively, the Area under the ROC Curve (AUC-ROC) 

and Area under the Precision-Recall Curve (AUC-PR) 

values further indicate the enhanced discrimination skills 

of the SA-optimized model. These measurements 

demonstrate how well the model separates AD instances 

from non-AD cases at various threshold levels. Table 3's 

findings show that the Random Forest algorithm performs 

significantly better when Simulated Annealing (SA) 

Optimisation is used to classify Alzheimer's disease. The 

model has greatly enhanced memory, discrimination, 

accuracy, and precision, which makes it a useful tool for 

treating patients with early-onset AD.  

 

Table 4: Evaluation Criteria for Classification of Alzheimer's Disease Using ACO Optimisation 

Evaluation 

Parameter 
Accuracy 

Precision 

(AD) 

Precision 

(Non-AD) 

Recall 

(AD) 

Recall 

(Non-

AD) 

F1-

Score 

(AD) 

F1-

Score 

(Non-

AD) 

Area 

under 

ROC 

Curve 

(AUC-

ROC) 

Area 

under 

Precision-

Recall 

Curve 

(AUC-PR) 

Result 97.11 98.41 96.33 98.88 97.54 98.52 99.33 97.58 98.44 

 

Impressive precision numbers are found in both AD and 

non-AD situations, with AD cases having a precision of 

98.41% and non-AD cases having a precision of 96.33%. 

With a low number of false positives, these precision 

levels indicate a high degree of confidence in accurately 

identifying real positive AD cases. Precision is superbly 

maintained by the ACO-optimized model for both AD and 

non-AD categories.Both cases of AD and non-AD cases 

had extremely high recall rates, with AD cases having a 

recall rate of 98.88% and non-AD cases having a recall 

rate of 97.54%.  

 

Fig 5: Representation of for Alzheimer's disease Classification with ACO Optimization 
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This shows how well the model captures a significant 

portion of true positive cases for both AD and non-AD 

categories. A good recall for non-AD cases is maintained 

while the ACO-optimized model demonstrates an 

impressive capacity to identify AD instances.With scores 

of 98.52% and 99.33%, respectively, the F1-Score, a 

balanced indicator of precision and recall, is 

extraordinarily strong for both AD and non-AD instances. 

These results highlight the robust classification task 

performance of the ACO-optimized model and 

demonstrate a well-balanced precision-recall trade-

off.These metrics demonstrate how well the model can 

distinguish between AD and non-AD situations at various 

threshold levels.Table 4's findings show that using Ant 

Colony Optimisation (ACO) in combination with the 

Random Forest algorithm significantly enhances the 

ability to classify Alzheimer's disease. The model 

outperforms both the non-optimized and SA-optimized 

variants in terms of accuracy, precision, recall, and 

discrimination. These findings highlight the enormous 

potential of optimisation methods, notably ACO, in 

medical research, where precise disease classification is 

essential for patient care and early diagnosis. 

 

Fig 6: Comparative representation of evaluation parameter for AD Classification 

5. Conclusion 

In this side-by-side investigation, we looked at the use of 

two optimisation methods, Simulated Annealing (SA) and 

Ant Colony Optimisation (ACO), in the context of MRI-

Based Alzheimer's Disease (AD) Classification utilising 

the Random Forest algorithm. Our goal was to assess how 

optimisation affected the model's effectiveness and 

performance in categorising data.With an accuracy of 

90.24 percent in its initial evaluation (Table 2), the 

Random Forest model showed high categorization 

abilities. Its proficiency in diagnosing AD is demonstrated 

by its reasonable precision, recall, and F1-scores for both 

AD and non-AD cases. However, the use of optimisation 

techniques was what resulted in notable 

improvements.The performance of the model 

significantly improved for all evaluation parameters when 

SA optimisation was added (Table 3). Precision, recall, 

and F1-scores all showed significant gains, bringing the 

accuracy up to 94.35%. A more robust model with higher 

diagnostic skills was produced as a result of SA's 

assistance in finding a better balance between recall and 

precision.The incorporation of ACO optimisation, 

however, was the actual game-changer (Table 4). The 

ACO-optimized model demonstrated unmatched 

precision, recall, and F1-scores for both AD and non-AD 

instances, achieving an extraordinary accuracy of 97.11%. 

The model's performance was increased to a previously 

unheard-of degree by this optimisation strategy, making it 

extremely trustworthy for the early AD detection. Our 

comparison study emphasises how important optimisation 

approaches are in improving the performance of the 

Random Forest model for MRI-Based Alzheimer's 

Disease Classification. Even though SA optimisation 

demonstrated significant benefits, ACO optimisation won 

out hands down thanks to its astounding accuracy and 

diagnostic precision. These results highlight the promise 

of optimisation methods in medical research, where 

accurate disease classification can have a big impact on 

patient outcomes.Specific research objectives and 

resource limitations should be taken into consideration 

while deciding between SA and ACO optimisation. While 

ACO, with its remarkable performance, may be preferable 

for larger, more complex datasets, SA, with its 

computational efficiency, can be a feasible option for 

modestly sized datasets.  
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