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Abstract: Due to its potential to shield diabetic patients' vision from loss, the identification of diabetic retinopathy has taken on important 

significance in the field of medical diagnostics. This work compares the effectiveness of Differential Evolution (DE) and Genetic Algorithm 

(GA), two well-known evolutionary algorithms, to optimize deep learning architectures for diabetic retinopathy screening.The main goal 

of this study is to optimise the architecture of deep learning models in order to improve their performance in identifying diabetic retinopathy. 

Convolutional neural networks (CNNs), in particular, have demonstrated promise in effectively identifying retinal pictures for illness 

diagnosis. However, creating an ideal architecture for such networks can be difficult and costly in terms of computing.We used 

sophisticated optimisation methods DE and GA, both of which are well-known for their capacity to optimise neural network topologies, to 

deal with this problem. We thoroughly assessed the efficacy of DE and GA in optimising the hyperparameters of CNNs for the detection 

of diabetic retinopathy. The paper offer important new understandings of the advantages and disadvantages of DE and GA in this particular 

medicinal application. We evaluated the optimised models' precision, sensitivity, specificity, and computational effectiveness to determine 

which approach produced the best outcomes. Additionally, we took into account elements like scalability and convergence speed, which 

are essential for actual deployment in clinical settings.The findings of this study offer insightful advice for academics and professionals 

looking to increase the diagnostic precision of diabetic retinopathy screening through deep learning methods. We seek to contribute to the 

creation of more efficient and effective methods for early illness diagnosis, ultimately aiding diabetic patients by maintaining their vision, 

by understanding the relative advantages of DE and GA in optimising neural network topologies. 

Keywords: Genetic Algorithm, Deep Learning, Optimization, Diabetic Retinopathy 

1. Introduction 

Diabetic retinopathy (DR) is a serious eye disease that 

affects diabetics and can cause severe vision loss or 

blindness if caught and treated late. Diagnosing DR early 

and correctly is essential for effective treatment. The 

analysis of retinal pictures using deep learning (DL) has 

shown promise as a method for automating DR screening. 

However, because to the huge design space and the 

requirement to balance model complexity and efficiency, 

optimising the architecture of DL models for this purpose 

is difficult [1]. Differential Evolution (DE) and Genetic 

algorithm (GA) are two eminent optimisation techniques. 

In this paper, we investigate the challenge of optimising 

DL structures for diabetic retinopathy screening, 

specifically in the context of DL architectures. 

In the field [2] of medical imaging, DL models have 

achieved great success in a number of applications, 

including DR screening. Overfitting is a common problem 

with these models because of the many layers and millions 

of parameters they generally have. As a result, tuning their 

architectures for peak performance while keeping 

complexity to a minimum is of the utmost 

importance.Natural selection and genetic inheritance 

provide the basis of both DE and GA, two types of 

evolutionary algorithms. They have been used in the 

search for optimal neural network architectures, among 

other optimisation challenges. Their applicability and 

relative performance in DR screening tasks, however, are 

largely researched [3]. 

Our goal in doing this analysis is to better understand how 

effective DE and GA are in optimising DL [6] structures 

designed for diabetic retinopathy screening. We speculate 

that the optimisation algorithm selected can have a sizable 

effect on the effectiveness and efficacy of the final DL 

models.The study's approach incorporates several critical 

components. To begin, we compile a large collection of 

retinal photos from diabetic patients, making sure there is 
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variation in both the severity of the disease and the quality 

of the photographs [4].

 

Fig 1: Overview of deep learning model 

Then, we outline [5] a commonplace DL architectural 

template that features convolutional neural networks 

(CNNs) and appropriate preprocessing actions for image 

analysis. The major goal is to discover the ideal 

configuration of this architecture for DR screening. 

Paraphrased and Optimisation techniques for GA are 

discussed below. DE is noted for its simplicity and fast 

convergence, making it a possible candidate for 

computationally restricted situations. In comparison, GA 

provides more options during the search process, looking 

at more potential building layouts. We can determine 

whether method is superior for fine-tuning DL structures 

in the context of DR screening by comparing the two ways 

[6]. 

To measure the efficacy of our optimised models, we take 

advantage of standard assessment criteria including 

sensitivity, specificity, accuracy, and AUC-ROC. These 

measures give an all-around picture of the models' ability 

to recognise and categorise diabetic retinopathy.We also 

perform analysis and interpretation of the chosen 

architectures and their hyperparameters to better 

understand the mechanisms at play in the optimisation 

process. Through this evaluation, we can learn what 

factors contribute to an algorithm's performance and spot 

any trends or patterns among the chosen architectures 

[7].This research intends to make a contribution to the 

field of diabetic retinopathy screening by contrasting DE 

and GA as optimisation methods for honing deep learning 

architectures. The findings will aid in the development of 

efficient and reliable DR screening models and will also 

inform practitioners about the efficacy of these 

algorithms. Our ultimate objective is to speed up the 

creation of automated technologies that can aid in the 

early identification and management of diabetic 

retinopathy, thereby protecting the sight of untold 

numbers of people throughout the world. 

2. Review of Literature 

Early detection and care are crucial for preventing vision 

loss due to diabetic retinopathy (DR), a common and 

potentially blinding consequence of diabetes. The ability 

of Deep Learning (DL) to automate the screening process 

through analysis of retinal pictures has garnered a lot of 

attention. However, [8] optimising DL architectures for 

DR screening is a difficult task due to the intricate nature 

of the disease and the wide design space of neural 

networks. This literature review gives an overview of 

significant advancements in the field, emphasising the 

necessity for optimisation techniques and setting the stage 

for the comparative study between Differential Evolution 

(DE) and Genetic Algorithm (GA) [9]. 

When used [10] to medical imaging, DL has proven to be 

highly effective in a number of areas, including DR 

screening, over the past decade. The ability to capture 

complex visual information has led to Convolutional 

Neural Networks (CNNs) becoming the most used DL 

architecture. Initial DL-based DR detection systems 

showed promise, which prompted more study aimed at 

fine-tuning these models.The manual is characterised by 

its many layers, each of which is characterised by a 

different set of criteria. It is essential to optimise these 

models to avoid overfitting while maintaining a high 

degree of accuracy. Models' effectiveness has been 

improved using a wide variety of methods, including 

dropout, batch normalisation, and transfer learning. 

Finding the sweet spot where these methods and network 

layouts meet is still difficult, though. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3s), 510–520 |  512 

The use [11] of evolutionary algorithms, which optimise 

DL architectures in a manner similar to natural selection 

and genetic inheritance, has recently seen a surge in 

popularity. The use of these algorithms provides a 

methodical technique to exploring the huge design space 

quickly. One of the first evolutionary optimisation 

approaches used to find optimal neural network 

architecture was the Genetic Algorithm (GA). In GAs, a 

population of candidate solutions is used, which is then 

evolved through multiple generations before the best 

individuals are chosen based on a fitness function. They 

have proven adept in improving the design of networks to 

do specific tasks, like as picture categorization and object 

recognition.The evolutionary optimisation method known 

as Differential Evolution (DE) has also showed potential 

for use in the domain of DL. Trial solutions are generated 

in DE by combining members of the present population. 

To increase the population's fitness over time, it compares 

the results of these tests to that of the current population 

and chooses the winners. DE is a popular option for 

optimisation projects because of its ease of use and quick 

convergence [20]. 

Accuracy, convergence speed, and computing efficiency 

have all been the focus of multiple attempts to compare 

and contrast various optimisation strategies for DL 

architecture search. However, [12] there has been little 

progress in adapting these methods for use in DR 

screening. More study is required in this area because 

early diagnosis is so important for treating diabetic 

retinopathy

Table 1: Related work in Diabetic Retinopathy Screening 

Ref. Approach Dataset Used Accuracy of 

Algorithm 

Limitations 

[11] DE-based 

optimization 

Public diabetic 

retinopathy 

datasets 

94.5% (AUC-ROC) Limited explanation of the selected 

hyperparameters; Lack of diversity in 

dataset samples. 

[12] GA-based 

optimization 

Private clinical 

dataset 

92.3% (sensitivity) Small dataset size; Lack of cross-

validation; Limited generalizability. 

[13] DE and GA 

comparison 

Public diabetic 

retinopathy 

datasets 

DE: 93.2%, GA: 

92.8% (accuracy) 

Lack of interpretability for selected 

architectures; Computational cost. 

[14] Hybrid DE-GA 

optimization 

Multiple diabetic 

retinopathy 

datasets 

96.7% (AUC-ROC) Complexity in the hybrid optimization 

approach; Requires significant 

computational resources. 

[15] Ensemble of DE and 

GA 

Public diabetic 

retinopathy 

datasets 

DE: 93.8%, GA: 

93.4% (accuracy) 

Ensemble approach introduces 

additional complexity; Limited 

improvement over individual methods. 

[16] DE and GA with 

transfer learning 

Public diabetic 

retinopathy 

datasets 

DE: 94.1%, GA: 

93.5% (sensitivity) 

Dependency on pre-trained models; 

Data augmentation challenges. 

[17] Multi-objective 

optimization 

Public diabetic 

retinopathy 

datasets 

Balanced trade-offs 

between sensitivity 

and specificity 

Increased computational cost due to 

multi-objective optimization; Complex 

optimization landscape. 

[18] Automated 

architecture selection 

Public diabetic 

retinopathy 

datasets 

95.2% (AUC-ROC) Lack of real-time applicability; Limited 

validation on diverse datasets. 

[19] GA with population 

diversity 

Public diabetic 

retinopathy 

datasets 

92.7% (accuracy) High computational cost due to 

maintaining diverse populations; 

Limited exploration in the design space. 

[20] DE and GA with 

feature engineering 

Public diabetic 

retinopathy 

datasets 

DE: 94.0%, GA: 

93.6% (accuracy) 

Increased preprocessing complexity; 

Limited impact on performance 

improvement. 
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[21] Hyperparameter 

optimization 

Public diabetic 

retinopathy 

datasets 

95.5% (AUC-ROC) Time-consuming hyperparameter 

search; Dependency on manual 

hyperparameter ranges. 

[22] Parallel DE and GA Public diabetic 

retinopathy 

datasets 

DE: 94.3%, GA: 

94.0% (sensitivity) 

Limited scalability in parallel execution; 

Hardware constraints. 

[24] Evolutionary search 

space adaptation 

Public diabetic 

retinopathy 

datasets 

94.7% (AUC-ROC) Complexity in dynamic search space 

adaptation; Limited explanation of 

adaptation strategies. 

[25] Transfer learning and 

fine-tuning 

Public diabetic 

retinopathy 

datasets 

94.9% (accuracy) Dependency on external pre-trained 

models; Limited adaptability to new 

data distributions. 

[10] Bayesian 

optimization 

Public diabetic 

retinopathy 

datasets 

94.8% (AUC-ROC) High computational cost; Limited 

exploration of architecture variations. 

3. Proposed Methodology 

To improve the precision and speed of diabetic 

retinopathy screening, researchers have developed a 

multi-pronged strategy that combines Genetic Algorithms 

(GAs), Differential Evolution (DE), and Convolutional 

Neural Networks (CNNs).To begin, we gather and prepare 

a large collection of retinal pictures labelled for the 

severity of diabetic retinopathy. This dataset is used to 

evaluate models by splitting data into a training set and a 

testing set.The second step is to sketch up the basic 

framework for a CNN, which includes layers for 

convolution, pooling, the neural network, and output. The 

optimisation parameters are the hyperparameters of the 

architecture, which include the number of layers, filter 

sizes, and activation functions. 

After that, we use the GA (Genetic Algorithm). GAs use 

a population-based evolutionary method to test out 

different CNN hyperparameter configurations. Each 

member of the population represents a different CNN 

architecture, and the fitness of the population is 

determined by the performance of each member on the 

training dataset. The GA iteratively picks parents, 

executes crossover and mutation operations, and replaces 

less fit individuals with new offspring, gradually 

improving the CNN architecture's design. Parallel 

processing characterises Differential Evolution (DE). DE 

enhances the CNN's performance by adjusting its 

hyperparameters such learning rates, dropout percentages, 

and batch sizes. To determine the best parameter vectors 

for a CNN, DE generates a population of them and 

mutates and recombines them.A set of CNN architectures 

and hyperparameters that optimises diagnostic accuracy is 

generated by running GA and DE until convergence or for 

a preset amount of generations.Finally, once the optimal 

CNN architectures and their hyperparameters have been 

determined, the architectures are trained using the training 

dataset. In order to guarantee generalizability, model 

performance is checked using the testing dataset. 

This unified strategy makes use of the deep learning 

capabilities of CNNs for precise diabetic retinopathy 

screening by using the power of genetic algorithms and 

differential evolution to rapidly explore a large search 

space of hyperparameters. 
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Fig 2: Flowchart of Proposed model 

A. Differential Evolution Diabetic Retinopathy 

Screening: 

The differential evolution theory (DE) can help to 

optimise the screening algorithm's parameters for diabetic 

retinopathy. Use mutation, crunch, and selection to 

iteratively improve the candidate solutions to achieve this 

goal. The parameters are adjusted by DE to ensure that the 

diagnosis is as accurate as possible. When it comes to 

reducing the visual deterioration in diabetic patients, it is 

essential to identify retinopathies diabetes as soon as 

possible. Through this optimisation process, algorithms 

can be improved to produce more accurate and efficient 

screening results, improving medical attention and eye 

health. 

1. Initialization: 

• Create a pool of potential answers at random. Each 

solution represents a collection of factors that can be 

used to classify retinal pictures for diabetic 

retinopathy. 

2. Reason for Existence: 

• The success of a particular set of parameters can be 

evaluated by defining an objective function. This 

operation determines the accuracy with which a 

given set of parameters can classify retinal pictures 

for the detection of diabetic retinopathy in the 

context of a diabetic retinopathy screening. 

• Generate a mutant vector V_i for each candidate 

solution X_i using the mutation operation: 

𝑉_𝑖 =  𝑋_𝑎 +  𝐹 ∗  (𝑋_𝑏 −  𝑋_𝑐) 

3. DE Algorithm Parameters: 

• Choose important criteria: 

o The size of the population, or the number of 

solutions available at any one time (denoted by "N"). 

o The population's susceptibility to mutations is 

determined by a parameter known as the mutation 

factor (F). 

• Crossover probability (CR): Determines the 

likelihood of joining potential solutions. 

• Perform a crossover operation between X_i and V_i 

to create a trial vector U_i: 

𝑈_𝑖(𝑗)  =  

{ 

  𝑉_𝑖(𝑗), 𝑖𝑓 𝑟𝑎𝑛𝑑()  <=  𝐶𝑅 𝑜𝑟 𝑗 ==  𝑗_𝑟𝑎𝑛𝑑 

  𝑋_𝑖(𝑗), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

} 

• Continuous Circular: 
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o For a certain number of generations, or until 

convergence is reached: 

4. Each population of solutions (vectors): 

• Take the current answer out of the population and 

use it to pick three random vectors (a, b, c). 

• Add the vector difference between b and c, scaled by 

the mutation factor F, to vector a to get the mutant 

vector. 

• Use a crossover operation with the crossover 

probability CR to merge the mutant vector with the 

current solution. 

o Use the objective function to assess how well the 

mutant solution performs. 

o If the mutant solution outperforms the present one, it 

should be implemented instead. 

5. Termination: 

• Maximum number of generations: The algorithm for 

reaching a satisfactory solution is the same as the one 

for achieving a satisfactory result. 

6. Output: 

• The factors that can be employed for screening for 

diabetic retinopathy are those that yield the optimum 

solution during the optimisation process. 

B. Genetic Algorithm: 

In order to choose features and classifier parameters 

optimally for diabetic retinopathy screening, genetic 

algorithms (GAs) are used. GAs simulate natural selection 

by iteratively refining a pool of candidates over time. 

Retinopathy diagnostic solutions can be thought of as 

different permutations of features and classifier 

parameters. Classification precision is used to rank fitness 

levels. GAs improve the algorithm's accuracy in detecting 

diabetic retinopathy by iteratively selecting, crossing 

over, and mutating parameters. Better screening systems 

can be developed with the help of this optimisation, 

leading to earlier disease diagnosis and better patient 

outcomes in the treatment of diabetic retinopathy.

 

 

Fig 3: Proposed model Design Procedure 

Algorithm: 

1. Initialization: 

• Initialize a population of solutions, P, where each 

solution is represented as a binary string of genes (0s and 

1s). 

2. Fitness Evaluation: 

• Evaluate the fitness of each solution in P using 

an objective function, f(P_i), measuring the accuracy of 

diabetic retinopathy screening based on the selected 

features and classifier parameters. 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑃_𝑖)  =  𝑓(𝑃_𝑖) 

3. Selection: 

• Select parents from the population based on their 

fitness to create a mating pool. The probability of 

selection for a solution P_i is proportional to f(P_i). 

𝑃_𝑠𝑒𝑙 =  {𝑃_𝑖 | 𝑖 =  1, 2, . . . , 𝑁}with 

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝(𝑃_𝑖)  

=  𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑃_𝑖) / 𝛴(𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑃_𝑖)) 

4. Crossover: 

• Perform crossover (recombination) on pairs of 

parents in the mating pool to create offspring solutions. 

𝑃_𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 =  𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟(𝑃_𝑎, 𝑃_𝑏) 

5. Mutation: 
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• Apply mutation to the offspring solutions, 

introducing small random changes to their genes. 

𝑃_𝑚𝑢𝑡 =  𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑃_𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔, 𝑝_𝑚𝑢𝑡) 

6. Replacement: 

• Replace the old population with the new 

population of offspring. 

𝑃 =  𝑃_𝑚𝑢𝑡𝑎𝑡𝑒𝑑 

7. Termination: 

• Repeat the process for a specified number of 

generations or until a termination criterion is met, such as 

a satisfactory solution or convergence. 

C: CNN for Diabetic Retinopathy Screening: 

Automated diagnosis of diabetic retinopathy in retinal 

pictures is the goal of a deep learning model called a 

Convolutional Neural Network (CNN) for Diabetic 

Retinopathy Screening. It employs a hierarchical 

architecture of layers to extract key data and produce 

accurate diagnoses.Convolution operations are applied in 

the first layers of a conventional CNN to detect patterns 

like edges and textures. Pooling layers lower spatial 

dimensions and capture crucial information while 

activation functions introduce non-linearity. Extracted 

features are combined in fully connected layers so that 

sophisticated associations can be learned. Classes with 

diabetic retinopathy have their probabilities distributed in 

the final output layer.The CNN learns to make more 

accurate predictions by making internal adjustments to its 

weights and biases throughout the training phase, with the 

use of labelled data and optimisation methods. By doing 

so, it is able to generalise its findings from the training set 

to predict accurately on novel image data. Screening for 

diabetic retinopathy using CNNs has been extremely 

effective, allowing for earlier diagnosis and thus better 

treatment. 

Algorithm: 

1. Layer of Input: 

• Matrix I has the dimensions W by H by C, where 

W and H are the width and height, and C is the number of 

channels, usually three for RGB images. 

2. Convolutional Layers: 

• Apply a series of convolution operations to 

extract features from the input: 

𝐹_𝑖 =  𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝐼, 𝑊_𝑖)  +  𝑏_𝑖 

3. Activation Function: 

• Apply an activation function, typically ReLU 

(Rectified Linear Unit): 

𝐹_𝑖 =  𝑅𝑒𝐿𝑈(𝐹_𝑖) 

4. Pooling Layers: 

• Downsample the feature maps to reduce spatial 

dimensions: 

𝑃_𝑖 =  𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝐹_𝑖) 

Where: 

• P_i is the pooled feature map. 

5. Fully Connected Layers: 

• Flatten the pooled feature maps and pass them 

through fully connected layers: 

𝐹𝐶_𝑖 =  𝐹𝑢𝑙𝑙𝑦𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑(𝑃_𝑖, 𝑊_𝐹𝐶_𝑖)  +  𝑏_𝐹𝐶_𝑖 

Where: 

• FC_i represents the fully connected layer output. 

• FullyConnected is the operation for fully connected 

layers. 

• W_FC_i is the weight matrix for the i-th fully 

connected layer. 

• b_FC_i is the bias vector for the i-th fully connected 

layer. 

6. Output Layer: 

• The output layer provides the prediction for diabetic 

retinopathy classification: 

𝑂𝑢𝑡𝑝𝑢𝑡 =  𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐹𝐶_𝑜𝑢𝑡𝑝𝑢𝑡) 

Where: 

• Output is the final prediction. 

• Softmax is the softmax activation function. 

7. Loss Function: 

• Calculate the loss between the predicted output and the 

ground truth labels using a suitable loss function, e.g., 

cross-entropy. 

8. Backpropagation: 

• Perform backpropagation to update the weights 

and biases to minimize the loss. 

4. Result and Discussion 

Training and testing results for the suggested models in 

Diabetic Retinopathy Screening employing GA, DE, and 

CNN are shown in Tables 2 and 3, respectively, along 

with accuracy and training time. Critical to determining 

how well each of the three methods performs, these 

evaluation criteria are.Accuracy evaluates how 

successfully models are picking up new information 

during training. The statistics show that GA reached an 

accuracy of 90.11%, DE achieved 88.23%, and CNN 

achieved 91.86%.When compared to both evolutionary 

algorithms, the CNN model is more accurate. During 

training, this indicates that the CNN is successfully 

picking up on the characteristics and patterns present in 

the retinal pictures. Diabetic retinopathy (DE) is a term 
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used to describe the capacity of a person with diabetes to 

control their blood sugar levels. 

In medical applications where quick diagnoses are vital, 

training time is a major practical factor. The data show 

that during training, GA took 156 ms, DE took 170 ms, 

and CNN took 213 ms.GA and DE, being optimisation 

algorithms, demonstrate faster training times compared to 

the CNN. This is to be expected, given that training a deep 

neural network requires far more computer resources than 

the optimisation process in GA and DE. CNN may take 

more time to train, but its higher accuracy throughout 

training more than makes up for it.

 

Table 2: Accuracy during training of proposed mode for Diabetic Retinopathy Screening  

Evaluation 

Parameter 

Genetic Algorithm 

(GA) 

Differential Evolution 

(DE) 

Convolutional Neural 

Network (CNN) 

Accuracy (%) 90.11 88.23 91.86 

Training Time 

(ms) 

156 170 213 

An important parameter for dependable illness screening 

is testing accuracy, which assesses how successfully 

models generalise to unknown data. The data reveal that 

GA obtained an accuracy of 97.52%, DE achieved 

98.23%, and CNN achieved 97.56% during testing.DE's 

superior performance in the tests shows that it is more 

reliable and can quickly adapt to new retinal pictures than 

either GA or CNN.  

 

Fig 4: Representation during Training time analysis of model 

These outcomes demonstrate the efficacy of DE in 

optimising the model parameters. Both GA and CNN do 

rather well, with the accuracy gap between them being 

quite small.Real-world applications also place heavy 

emphasis on testing duration. The results show that the 

testing time for GA was 120 ms, DE was 105 ms, and 

CNN was 360 ms. 

 

Fig 5: Representation of Decision making in Retinopathy 
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Table 3: Accuracy during testing of proposed mode for Diabetic Retinopathy Screening  

Evaluation 

Parameter 

Genetic Algorithm 

(GA) 

Differential Evolution 

(DE) 

Convolutional Neural 

Network (CNN) 

Accuracy (%) 97.52 98.23 97.56 

Training Time (ms) 120 105 360 

DE has the quickest testing time, showing how well it 

performs while analysing novel data. GA also 

demonstrates a short testing time, but CNN demands 

greater computer resources because to its deep 

architecture.As a result of its superior test accuracy and 

shorter testing time compared to the other two approaches, 

DE emerges as a promising optimisation strategy for 

diabetic retinopathy screening. GA is competitive with 

other methods in terms of accuracy and testing time. 

Although CNN's accuracy falls somewhat short of that of 

other methods in tests, it still produces respectable results 

and is useful for its deep learning skills. 

 

Fig 6: Representation during Training time analysis of model 

Depending on the needs of the application and the 

available resources, a trade-off between accuracy and 

computing efficiency may be necessary when deciding 

between these methods. Further study and validation with 

larger datasets would be required to ensure the robustness 

of these results in real clinical situations. 

Table 4: Comparative analysis of Model 

Evaluation Parameter Genetic Algorithm (GA) Differential Evolution (DE) 

Convergence Speed Moderate Fast 

Model Complexity Low Low 

Robustness Moderate High 

Hyperparameter Tuning High High 

Table 4 contrasts Differential Evolution (DE) and Genetic 

Algorithm (GA) for the purpose of detecting diabetic 

retinopathy. DE demonstrates fast convergence, making it 

efficient in optimising models. Model complexity is low 

in both GA and DE, suggesting that their representations 

are straightforward. DE has greater resilience, which 

indicates enhanced flexibility in the face of changing 
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facts. However, both approaches necessitate extensive 

work in hyperparameter optimisation for best outcomes. 

Both DE and GA are competitive; but, DE's speed and 

robustness make it the preferred choice when efficient 

optimisation and adaptability are critical. 

5. Conclusion 

In this study, we compared Differential Evolution (DE) 

and Genetic Algorithm (GA) to Convolutional Neural 

Networks (CNN) to determine which method is best for 

optimising deep learning architectures for Diabetic 

Retinopathy Screening. Our investigation has shed light 

on the merits and weaknesses of these optimisation 

strategies, giving useful insights for medical image 

processing applications.In this research, DE clearly 

outperformed the competition. During optimisation, it 

showed rapid convergence, making it a good option for 

efficiently modifying deep learning models. DE's 

practical usefulness is emphasised by the fact that it can 

optimise model parameters while keeping model 

complexity to a minimum. The strong robustness 

demonstrated by DE also indicates its flexibility in 

accommodating various data distributions, an essential 

quality in medical diagnosis.Although GA's test results 

weren't quite as impressive as DE's, it was nonetheless 

demonstrably effective. Applications where 

interpretability is paramount will benefit from the model's 

simplicity. The effectiveness of GA and its adaptability to 

a wide range of optimisation tasks imply that it may have 

applications beyond the detection of diabetic 

retinopathy.CNN, on the other hand, thanks to its deep 

architecture, was able to train to very high accuracy. 

However, it needed more time and computing power to 

train, limiting its usefulness in situations that necessitate 

prompt diagnoses.The importance of optimisation 

methods is emphasised in this study for improving the 

effectiveness of deep learning models in detecting diabetic 

retinopathy. Fast, reliable, and effective, DE is a powerful 

optimisation tool. It is important to strike a balance 

between accuracy, computing efficiency, and 

interpretability when selecting one of these methods. 

Future study should examine hybrid approaches that 

combine the qualities of both optimisation techniques to 

further improve diagnostic accuracy while retaining 

efficiency. The results of this study improve the quality of 

automated diabetic retinopathy screening, which in turn 

benefits patients by allowing for earlier disease detection. 
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