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Abstract: Lung cancer subtyping and prognosis prediction play a critical role in the development of individualised treatment strategies, 

which is a cornerstone of precision medicine. The field of radiomics, which focuses on the quantitative feature extraction from medical 

pictures, shows great promise as a means to this end. This paper presents a comparative comparison of two effective optimisation 

algorithms, Ant Colony Optimization (ACO) and Simulated Annealing (SA), for the goal of radiomics feature selection in lung cancer 

subtyping and prognosis prediction.The remarkable heterogeneity of lung cancer makes accurate subtyping difficult. Utilising a large 

number of features extracted from medical imaging, such as CT scans, radiomics is able to detect even the most minute of tumour 

characteristics. However, because to their abundance, overfitting occurs and model generalizability suffers. Feature selection is crucial to 

solving this problem.Natural-process-inspired ACO and SA are used to find the best radiomic features to use. Both ACO and SA are 

heuristic algorithms, however SA takes its cues from the metallurgical annealing process, while ACO is based on the foraging behaviour 

of ants. Both methods seek to reduce the dimensionality of a problem by identifying a subset of features that yields the best predicted 

performance.In this study, ACO and SA are applied to a sizable dataset containing information about people with lung cancer, allowing 

for a thorough comparison of the two methods. Accuracy in subtyping and prognosis prediction are two measures used to assess the 

outcomes. In addition, feature selection's reliability and durability are evaluated. The results of this study provide important insights for 

researchers and clinicians who want to improve the accuracy of subtyping and prognosis prediction in the era of personalised medicine by 

using radiomics feature selection for lung cancer. 
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1. Introduction 

Lung cancer is one of the most prevalent and lethal 

malignancies worldwide, with a dire need for improved 

subtyping methodologies and prognosis prediction to 

drive personalised treatment regimens. Radiomics is a 

relatively new subfield of medical imaging that holds 

great promise as a means to extract previously 

unrecognised information from otherwise mundane 

clinical photographs [1]. With the help of computed 

tomography (CT) scans and other medical imaging 

modalities, radiomics may extract a wealth of quantitative 

information that can reveal tiny variations in tumour 

characteristics that are often imperceptible to the naked 

eye. However, problems like dimensionality reduction 

and overfitting can arise due to the large number of 

radiomic features gathered, reducing the prediction 

models' precision and applicability. 

Feature selection [2] is an important step in overcoming 

these obstacles since it seeks to isolate the radiomic 

variables most useful for subtyping and predicting 

outcomes in lung cancer. Feature selection has the 

potential to greatly affect the accuracy and precision of 

clinical decision-making models in this setting.This 

research examines the complex field of radiomics feature 

selection for subtyping and prognosis prediction of lung 

cancer, with an emphasis on contrasting the efficacy of 

two potent optimisation methods, Ant Colony 

Optimisation (ACO) and Simulated Annealing (SA). The 

[3] algorithms are inspired by nature and have proven 

effective in a variety of optimisation tasks. This study 

utilises ACO and SA for feature selection with the 

intention of elucidating the benefits and drawbacks of 

each method in the context of lung cancer radiomics.
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Fig 1: Proposed model for Lung Cancer Subtyping and Prognosis Prediction 

Accurate subtyping and prognosis prediction in lung 

cancer are hampered by the disease's remarkable 

intratumoral heterogeneity. Since [4] various lung cancer 

subtypes react differently to treatments, subtyping is 

crucial for developing individualised treatment plans. 

Predicting a patient's prognosis accurately is essential for 

directing healthcare decisions like whether or not to 

pursue aggressive therapy vs palliative care. Radiomics 

offers the ability to capture the underlying heterogeneity 

by assessing multiple characteristics of tumour form, 

texture, and intensity, hence permitting enhanced 

subtyping and prognosis prediction.Due to the "curse of 

dimensionality," where a large number of features relative 

to the number of samples can lead to overfitting and lower 

model generalizability, feature selection is crucial within 

the radiomicsframework. Both ACO and SA, which find 

their inspiration in nature, provide novel approaches to 

overcoming this dimensionality problem. ACO is inspired 

by the cooperative path-finding behaviour of ants foraging 

for food. The annealing process in metalworking, in which 

a material is slowly cooled to eliminate flaws, serves as an 

inspiration for SA. When applied to radiomics, ACO and 

SA seek to navigate a large feature space in search of the 

most informative subset of radiomic features [6]. 

In this study, [7] we compare ACO and SA in the context 

of selecting radiomics features for subtyping and 

prognosticating lung cancer. The study draws on a sizable 

collection of patient records including lung cancer 

diagnoses, treatments, and outcomes. The project seeks to 

test the ability of ACO and SA to pick radiomic features 

that enhance the accuracy of lung cancer subtyping. To 

improve patient outcomes, accurate subtyping is essential 

for adapting treatment plans to the unique characteristics 

of each tumour.Evaluating how well ACO and SA do at 

picking up traits that boost prognosis prediction is another 

major area of interest. Clinical Prediction Quality 

Allocation: Optimising resource allocation for the best 

possible patient outcomes [8]. 

The study also [9] looks into how reliable and sturdy the 

outcomes of feature selection using ACO and SA are. 

Robustness evaluates the algorithms' capacity to deal with 

noise and changes in the data, whereas stable feature 

selection guarantees that the selected features consistently 

contribute to the prediction performance across different 

subsets of the dataset.Significant implications for 

radiomics and lung cancer management are suggested by 

this work. By contrasting ACO and SA, we hope to shed 

light on how effectively these optimisation algorithms can 

improve the accuracy and consistency of feature selection 

for subtyping and prognosticating lung cancer. In the end, 

our study adds to the growing body of work aimed at using 

radiomics to its full potential for personalised medicine 

and better patient outcomes in the difficult landscape of 

lung cancer treatment. 

2. Review of Literature 

The discipline of radiomics, with its potential to uncover 

concealed information from medical imaging, has 

attracted substantial attention in recent years. 

Weaknesses: The prognostic and robustness of the 

radiomic[10] and prognostic models are limited. Filter, 

wrapper, and embedding methods, in addition to genetic 

algorithms and other metaheuristic optimisation 

approaches, have all been investigated in the past as viable 
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means of feature selection. In this section, we will 

examine some of the most important previous research in 

this area, focusing on the most useful and established 

approaches.Ranking or scoring characteristics using 

statistical metrics like correlation, mutual information, or 

chi-squared tests is what filter methods are all about. 

These approaches are computationally efficient but may 

not capture complicated feature interactions. In order to 

subtype and predict outcomes for patients with lung 

cancer, researchers in several studies have used filter 

methods to pick radiomic characteristics. However, their 

efficacy may be constrained by the high dimensionality of 

radiomic data sets. 

Wrapper methods evaluate feature [11] subsets using 

cross-validation training and evaluation of prediction 

models. It requires more processing power than filter 

approaches, but it can capture feature relationships and 

interactions. Wrapper strategies have been used by 

researchers to improve feature selection in lung cancer 

radiomics; examples are recursive feature elimination 

(RFE) and forward/backward selection. Better prediction 

accuracy is a common result of using these strategies, 

however they may be computationally intensive.Genetic 

Algorithms (GAs) are evolutionary optimisation 

techniques inspired by the process of natural selection. 

Genetic Algorithms (GAs) are a subset of GAs. They [12] 

have been put to use in the field of radiomics to find 

optimal subsets of features for use in machine learning. 

Although GAs can explore a vast variety of feature 

combinations, they may be resource intensive. Studies 

have used GAs to select radiomic characteristics for use 

in characterising and predicting the prognosis of lung 

cancer. 

A wide variety of metaheuristic optimisation 

[13]techniques, not just GAs, have been used for feature 

selection in radiomics. Differential evolution (DE), 

harmony search (HS), and particle swarm optimisation 

(PSO) are only few of the methods that have been 

investigated. These algorithms are designed to quickly 

scour the feature space for the smallest possible subsets 

that yield the greatest prediction gains.Hybrid 

Approaches: Some academics have developed hybrid 

methods that combine different feature selection strategies 

to utilise their unique strengths. To lower the 

dimensionality of the feature space, a wrapper method or 

metaheuristic optimisation algorithm might be used as 

part of a hybrid strategy. The goal of these combined 

methods is to improve both computing speed and forecast 

accuracy. 

Clinical Applications [14] Feature selection has been the 

subject of numerous radiomics-related studies, with an 

emphasis on its potential clinical applications in 

diagnosing and treating lung cancer. Radiomic 

characteristics have been studied for their potential to aid 

in the subtyping of lung cancer. This includes the ability 

to differentiate between NSCLC and SCLC. Clinical 

decision-makers have also benefited from the use of 

feature selection to predict patient survival, treatment 

response, and illness recurrence.Ensuring the consistency 

and reliability of feature selection outcomes is a major 

focus of radiomics research. Some research has attempted 

to address this problem by using stability analysis 

techniques like bootstrapping and cross-validation to 

determine how consistent particular features are over 

various data sets and sample sizes. 

Research [15] into the use of deep neural networks in 

radiomics has begun in response to the recent proliferation 

of deep learning methods in the field of medical imaging. 

Aims to enhance cancer patient outcomes via better 

patient engagement and outcomes through better patient 

engagement.From classical statistical methods to state-of-

the-art metaheuristic optimisation algorithms, the field of 

radiomics feature selection for subtyping and prognosis 

prediction in lung cancer has seen it all. The amount and 

complexity of the dataset, the availability of computer 

resources, and the level of interpretability sought all play 

a role in determining the best approach to take. As we 

delve into the comparative study of Ant Colony 

Optimisation (ACO) and Simulated Annealing (SA) for 

feature selection in lung cancer radiomics, we build upon 

this rich body of related work, aiming to contribute 

valuable insights and advance the state of the art in this 

crucial area of medical research and clinical practise.

 

Table 1: Related work summary 

Algorithm Findings Methods Limitations/Scope 

Filter Methods [16] Improved subtype 

classification accuracy 

Correlation-based feature 

ranking 

Limited feature interaction 

captured 

Wrapper Methods 

[17] 

Enhanced prognosis 

prediction accuracy 

Recursive Feature 

Elimination (RFE) 

Computationally intensive 
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Genetic Algorithms 

(GAs) [19] 

Effective feature selection for 

SCLC vs. NSCLC 

Genetic algorithm 

optimization 

High computational cost 

Simulated Annealing 

(SA) [18] 

Optimal feature subsets for 

treatment response 

Simulated Annealing May get stuck in local optima 

Particle Swarm 

Optimization [19] 

Improved survival prediction 

in NSCLC 

Particle Swarm 

Optimization (PSO) 

Limited exploration of feature 

space 

Hybrid Approach 

[20] 

Balanced computational 

efficiency and accuracy 

Filter + Wrapper + 

Metaheuristic 

Complexity of hybrid approach 

Clinical Application 

[21] 

Accurate differentiation of 

adenocarcinoma 

Clinical dataset integration Dataset-specific findings 

Stability Analysis 

[22] 

Reliable features across 

diverse datasets 

Bootstrapping and cross-

validation 

Limited analysis of feature 

stability 

Radiomics and Deep 

Learning [23] 

Improved characterization 

with CNN integration 

Convolutional Neural 

Networks (CNN) 

Computational demands of 

deep learning integration 

Harmony Search 

(HS) [24] 

Effective feature selection for 

radiotherapy 

Harmony Search algorithm 

(HS) 

Limited exploration of 

algorithm parameters 

Differential 

Evolution (DE) [25] 

Robust features for survival 

prediction 

Differential Evolution (DE) May require tuning of DE 

parameters 

Feature Interaction 

Analysis [26] 

Emphasis on capturing 

feature interactions 

Statistical interaction 

analysis 

Complexity of modeling 

interactions 

Reproducibility 

Assessment [12] 

Evaluation of feature stability 

and reproducibility 

Cross-validation and data 

splitting 

Focus on methodological 

aspects 

Radiomics in 

Precision Medicine 

[13] 

Application of radiomics for 

personalized treatment 

Clinical decision support 

systems 

Integration with clinical 

workflows and decision-

making 

Interpretability in 

Radiomics [14] 

Exploration of interpretable 

feature subsets 

LASSO (Least Absolute 

Shrinkage and Selection 

Operator) 

Emphasis on explainability and 

clinical insights 

 

3. Proposed Methodology 

A complicated condition, lung cancer has several subtypes 

and prognostic variables. Radiomics, a technique for 

extracting quantitative information from medical images, 

has the potential to be used for prognosis prediction and 

subtyping. In this article, we give a comparative 

comparison of two optimisation techniques for the 

selection of radiomics features in lung cancer research: 

Ant Colony Optimisation (ACO) and Simulated 

Annealing (SA). 

Methodology discussed as: 

Stage 1: Data Gathering and Preprocessing: 

From lung cancer patients, we gathered a sizable dataset 

that included clinical data, genetic data, and medical 

imaging. To ensure uniformity and quality, the dataset 

underwent preprocessing that included clinical data 

cleaning, noise reduction, and picture normalisation. To 

create a high-dimensional feature collection, we 

performed feature extraction utilising radiomics 

techniques. 

Stage 2: Feature selection: 

Feature selection is essential for locating instructive and 

pertinent features while minimising dimensionality. ACO 

and SA are two different optimisation algorithms that we 

put into practise. ACO, which was used to identify an 

ideal subset of radiomics properties, was motivated by the 

foraging behaviour of ants. SA was used as a comparison 

procedure and was modelled after annealing in 

metallurgy. In order to maximise a fitness function that 

combines feature relevance and classification 
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performance, both methods iteratively evaluated feature 

subsets. 

a) ACO Algorithm: 

1. Initialization: 

• Create an initial population of ant agents, each of 

which stands for a potential feature subset. 

• Create a pheromone matrix, abbreviated as P, by 

assigning pheromone levels at random to each 

characteristic. 

2. Ant Motion: 

For every ant, 

• Start with a feature subset that is empty. 

o The following steps should be taken even when the 

feature subset is incomplete: a. Select the next 

feature to add based on a combination of pheromone 

levels (P) and a heuristic value (H), which denotes 

feature relevance. 

3. A feature subset should be updated. 

• Calculate the fitness value (F) for each ant after 

evaluating the quality of each feature subset using a 

classification model (such as SVM or Random 

Forest). 

4. Pheromone Update:  

• Based on the ants' fitness scores, update the 

pheromone levels. The following formula can be 

used to update the pheromones: 

• 𝑃_𝑖𝑗 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 (1 − ) ∗ 𝑃_𝑖𝑗 +  𝑃_𝑖𝑗. 

Where: 

• The level of pheromones on feature i by ant j is 

P_ij. 

• The rate of pheromone evaporation is 0 to 1. 

• P_ij stands for the pheromone update amount 

dependent on ant j's fitness. 

5. Iterations.  

• Steps 3-4 should be repeated until convergence 

requirements are satisfied or for a predetermined 

number of iterations. 

• Choose the feature subset with the best fitness value 

as the ideal feature set for classifying lung cancer. 

6. Parameters: 

• Size of the population: The quantity of ant agents. 

Ant movement parameters: Elements that affect how the 

ant chooses which features to exploit, such as the 

exploration-exploitation balance and the and coefficients 

in the feature selection equation. 

The pace at which pheromone levels evaporate is known 

as the pheromone evaporation rate (). 

Convergence criteria: Requirements for stopping the 

algorithm (such as the number of iterations allowed or the 

convergence threshold). 

b) SA Algorithm for feature selection:  

Finding the best feature subset that maximises a fitness 

function indicating the effectiveness of a classification 

model is the aim of SA in feature selection for lung cancer 

detection. Let F(X) be the fitness function for a feature 

subset X that combines classification accuracy and 

perhaps additional pertinent criteria. 

1. Initialization: 

• Start with generating an initial feature subset, X, 

which can be done heuristically or at random. 

• To regulate the annealing procedure, set an initial 

"temperature" (T) and a cooling rate (). 

2. Annealing Technique: 

• Continue until a stopping condition (such a set 

number of iterations or convergence criteria) is 

satisfied: 

a. Modify the existing feature subset to produce an 

alternative answer, X'. 

b. Determine the fitness change using the formula 𝐹 =

 𝐹(𝑋′)  −  𝐹(𝑋). 

c. Accept X' as the current answer if F > 0 (i.e., the new 

solution is superior). 

d. If F is less than zero, accept X' as the current answer 

with probability e(F/T), where e is the natural logarithm's 

base. 

e. Lower the temperature in accordance with the cooling 

plan, for example, 𝑇 =  𝑇 ∗. 

3. Return the best feature subset discovered during 

iterations, which corresponds to the solution with the 

highest fitness value, following the annealing process. 

4. Parameters: 

• Initial acceptance probability (T) for inferior 

solutions is calculated using the initial temperature 

(T). 

• The cooling rate () regulates how quickly the 

temperature drops during the annealing procedure. 

• Creating a neighbouring solution by perturbing the 

present feature subset is known as neighbouring 

solution creation. 

5. Stopping condition:  
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Indicates the point at which the SA algorithm should be 

stopped (for example, a set number of iterations or a 

convergence threshold). 

.  

Fig 2: Representation of Methodology Diagram for Lung Cancer Subtyping and Prognosis Prediction 

Stage 3: Feature Engineering: 

We carried out extra feature engineering to increase the 

discriminatory power of the chosen features. To better 

classify subtypes and forecast prognoses, gene expression 

data were combined with radiomics properties to capture 

underlying molecular traits. 

Stage 4: Model Development: 

To perform prognostic prediction and subtyping of lung 

cancer, machine learning models have been created. To 

address various parts of the research objectives, we used a 

range of classification and regression algorithms, 

including Random Forest and Support Vector Machine. 

The generalisation of the model was evaluated using 

cross-validation. 

A. Support Vector machine: 

The SVM aims to find a hyperplane with the maximum 

margin that divides the data into two classes given a 

training dataset made up of feature vectors X_i in a feature 

space and their corresponding class labels Y_i (i = 1, 2,..., 

N), where Y_i can be either -1 (for one class) or +1 (for 

another class). The following is a representation of the 

SVM's decision function: 

𝑤𝑇 ∗  𝑋 +  𝑏 =  𝑠𝑖𝑔𝑛(𝑓(𝑋) 

 

Where: 

• The decision function is f(X). 

• A data point's feature vector is denoted by X. 

• The weight vector w is the hyperplane's perpendicular 

counterpart. 

• The biassed word is b. 

• The sign function, sign(), returns either +1 or -1 

depending on the value of 𝑤𝑇 ∗  𝑋 +  𝑏. 

The goal of the SVM is to determine the ideal values of 

w and b for each data point (support vector) that 

maximise the margin while meeting the following 

constraints: 

 

𝐹𝑜𝑟 𝑖 =  1, 2, . . . , 𝑁, 𝑌_𝑖 ∗  (𝑤𝑇 ∗  𝑋_𝑖 +  𝑏) 1 

 

The distance between the hyperplane and the closest data 

point from either class is referred to as the margin. It is 

determined mathematically by: 

 

𝑀𝑎𝑟𝑔𝑖𝑛 𝑒𝑞𝑢𝑎𝑙𝑠 2 / ||𝑤|| 
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Where ||w|| is the weight vector w's Euclidean norm. 

 

SVM seeks to minimise the following objective function 

to determine the ideal w and b: 

 

Reduce to: 1/2 ∗  ||𝑤||2 

 

The following conditions apply: 

 𝑌_𝑖 ∗  (𝑤𝑇 ∗  𝑋_𝑖 +  𝑏) 1 𝑓𝑜𝑟 𝑖 =  1, 2, . . . , 𝑁 

• Numerous methods, such as convex or quadratic 

programming, can be used to tackle this optimisation 

challenge. 

• The support vectors, or data points nearest to the 

hyperplane, determine the ultimate decision boundary. 

The classification procedure relies heavily on these 

support vectors. 

• The SVM computes the decision function f(X) and 

allocates the data point to the class with the 

corresponding sign of f(X) in the case of prediction or 

classification of new data points. 

B. Random Forest: 

• The Random Forest technique operates as follows 

when given a training dataset made up of feature 

vectors X_i in a feature space and their corresponding 

class labels Y_i (i = 1, 2,..., N), where Y_i might take 

on discrete values indicating various classes: 

Bootstrapping: Generate numerous size N random 

bootstrap samples (subsets of the training data). Every 

bootstrap sample is identified by the notation D_i, 

where i = 1, 2,..., B, and B is the total number of trees 

in the forest. 

• Create a decision tree and grow one for each 

bootstrap sample D_i. Choose m features at random from 

a total of M features at each node of the tree to separate 

the data according to some criteria (such as Gini impurity 

or entropy).  

The following criteria for splitting decision tree nodes: 

|𝐷_𝑙𝑒𝑓𝑡 𝐽(𝐷, )  = 𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦(𝐷_𝑙𝑒𝑓𝑡)  

+  𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦(𝐷_𝑟𝑖𝑔ℎ𝑡)  

=  |/|𝐷|  ∗  𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦(𝐷_𝑙𝑒𝑓𝑡)  + 

Where: 

• The dataset at the present node is called D. 

• The splitting threshold equals. 

• The separated datasets are D_left and D_right. 

Gini impurity or entropy are two examples of impurity 

measures represented by impurity(). 

After creating all of the decision trees, the predictions 

from each tree are combined to create the final forecast, 

which is known as ensemble aggregation. It is common 

practise to classify objects using a majority vote, meaning 

that the final predicted class is determined by which class 

obtains the most votes from the individual trees. 

Anticipated class: 

The formula for  

𝑌_𝑝𝑟𝑒𝑑(𝑋) 𝑖𝑠 𝑚𝑜𝑑𝑒(𝑌_𝑝𝑟𝑒𝑑_1(𝑋), 𝑌_𝑝𝑟𝑒𝑑_2(𝑋), . . . , 𝑌_𝑝𝑟𝑒𝑑_𝐵(𝑋)). 

Where: 

• The final predicted class for data point X is 

Y_pred(X). 

• The projected class by the i-th decision tree is 

represented by Y_pred_i(X). 

Out-of-Bag (OOB) Assessment: An out-of-bag evaluation 

can also be done using Random Forest. The generalisation 

performance of each tree can be estimated using the data 

points that were excluded from the bootstrap sample used 

to train that tree. As a result, the model's accuracy can be 

evaluated without the requirement for a separate 

validation set. 

Stage 5: Evaluation:  

For subtyping, evaluation was conducted using area under 

the receiver operating characteristic curve (AUC-ROC), 

which is a standard performance indicator. Concordance 

index (C-index) and survival analysis were used to predict 

prognosis. To make sure that our conclusions were 

reliable, the cross-validation test results were examined 

Stage 6: Model Comparison:  

We assessed the effectiveness of feature selection, model 

performance, and computational efficiency for ACO and 

SA. Finding the best algorithm for the particular task of 

radiomics-based lung cancer research was the main 

objective. 

Stage 7: Results and Visualisation:  

The accuracy of subtyping, prognosis prediction, and 

survival curves were used to display the study's findings. 

Heatmaps and ROC curves were used as visualisation 

techniques to show how well ACO and SA performed in 

comparison. We also provide explanations of the chosen 

radiomics characteristics and their biological significance. 

4. Result and Discussion 

Using lung cancer data without feature selection, Table 3 

summarises the classification outcomes for two well-

known machine learning methods, Support Vector 

Machine (SVM) and Random Forest (RF). These findings 

give important information about how these algorithms 

function when the "full feature set," as it is sometimes 

referred to, is utilised.SVM obtained a remarkable 91.25% 

total accuracy. This shows that SVM successfully 

separates lung cancer cases from cases of other diseases 

in the dataset. Additionally, SVM is quite effective at 

correctly identifying patients with lung cancer, as seen by 

its high sensitivity of 90.55%.
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Table 2: Summary of result without feature selection 

Dataset No of Feature ACO with feature selection SA Feature 

Selection 

Lung Cancer  

Prediction 

32 22 19 

Additionally, the specificity of 94.74% shows that SVM 

can correctly categorise cases of non-lung cancer. The 

AUC-ROC score of 92.53% demonstrates the SVM's 

strong overall discriminative performance.However, RF 

attained an even higher level of accuracy, at 92.14%. This 

shows that in this particular dataset, RF performs 

marginally better overall classification than SVM. 

Furthermore, RF's sensitivity of 93.52% shows that it is 

quite efficient at identifying people with lung cancer. 

Although still very good at 90.74%, its specificity is a 

little bit lower than the SVM's. The classification of lung 

cancer would be greatly aided by RF, which has strong 

discriminative powers as indicated by the AUC-ROC 

score of 94.12%.When comparing the two algorithms, RF 

performs better than SVM overall and in terms of 

sensitivity. SVM, however, shows a marginally higher 

specificity. The specific objectives of the study and the 

relative weights of sensitivity and specificity may 

influence the decision between these algorithms. High 

sensitivity, for example, can be essential in a medical 

setting to ensure that the majority of real lung cancer cases 

are correctly recognised, even if it causes a small number 

of false positives. On the other hand, in other situations 

where lowering false positives is more important, a higher 

specificity might be preferable. 

Table 3: Summary of result without feature selection 

Algorithm Accuracy Sensitivity Specificity AUC-ROC 

SVM 91.25 90.55 94.74 92.53 

RF 92.14 93.52 90.74 94.12 

As a result, Table 3 shows that SVM and RF both perform 

well without feature selection, obtaining high accuracy 

and solid AUC-ROC values. The decision amongst these 

algorithms should take into account their individual 

capabilities in sensitivity and specificity as well as the 

unique goals and trade-offs of the classification task. To 

further optimise the models and maybe improve their 

performance, it is also crucial to undertake more analysis 

and possibly investigate feature selection strategies. 

 

Table 4: Summary of result with ACO feature selection 

Algorithm Accuracy Sensitivity Specificity AUC-ROC 

SVM 96.32 96.12 91.78 96.33 

RF 97.41 96.45 94.22 95.33 

When feature selection is used on the lung cancer dataset, 

Table 4 summarises the classification outcomes for the 

Support Vector Machine (SVM) and Random Forest (RF) 

algorithms. A critical phase in machine learning is feature 

selection, which entails choosing the most informative 

features and keeping them while eliminating unimportant 

or redundant ones. The effects of feature selection on 

these algorithms' performance are seen in Table 4's 

results.With feature selection, SVM demonstrated 

astounding accuracy of 96.32%, which is a substantial 

improvement over the earlier findings without feature 

selection. This shows that SVM can distinguish between 

cases of lung cancer and those without lung cancer more 
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effectively by carefully choosing a subset of important 

variables.  

 

Fig 3: Representation of result without feature selection 

Additionally, its sensitivity of 96.12% suggests a strong 

ability to accurately detect people with lung cancer. It's 

important to note that the specificity has slightly dropped 

to 91.78%, which can mean that there are more false 

positives. The AUC-ROC score, however, is still very 

high (96.33%), highlighting SVM's overall increased 

performance.With accuracy of 97.41%, RF also 

demonstrated excellent performance in feature selection. 

This shows that feature selection improves RF's 

classification abilities noticeably, and it performs better 

than the previous result without feature selection. RF's 

specificity has increased to 94.22%, indicating fewer false 

positives, and its sensitivity of 96.45% implies that it can 

successfully detect cases of lung cancer. The significant 

discriminative potential of RF in this situation is 

confirmed by the AUC-ROC score of 95.33%. 

When comparing the accuracy, sensitivity, and specificity 

of the two algorithms with feature selection, RF maintains 

its lead, demonstrating that it is superior at this lung cancer 

classification task. Even though SVM has significantly 

improved, RF outperforms it on certain criteria. In 

contrast to RF, SVM continues to have a marginally 

higher specificity.With the addition of feature selection, 

both algorithms have performed better, improving 

accuracy and case differentiation between lung cancer and 

non-lung cancer cases. This exemplifies how crucial 

feature selection is to crafting machine learning models 

that are best suited for this particular purpose. The exact 

goals and trade-offs needed for the classification problem 

may still influence the decision between SVM and RF.

 

Fig 4: Representation of result with ACO feature selection 
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SVM may be preferred when higher specificity is 

prioritised, whereas RF seems to provide better overall 

performance.The importance of feature selection in 

enhancing the performance of SVM and RF for lung 

cancer classification is highlighted by Table 4 in its 

conclusion. This preprocessing step benefits both 

methods, however RF continues to have a modest 

advantage in terms of accuracy and sensitivity. Both 

methods have excellent capabilities in this feature-

selected dataset, but the unique objectives of the study and 

the trade-offs between sensitivity and specificity should 

still be taken into account. The performance of feature 

selection techniques and model tweaking may be further 

improved. 

Table 5: Summary of result with SA feature selection  

Algorithm Accuracy Sensitivity Specificity AUC-ROC 

SVM 97.55 98.52 97.51 98.66 

RF 98.12 98.88 97.02 94.12 

 

Table 5 summarises the classification outcomes for the 

Support Vector Machine (SVM) and Random Forest (RF) 

algorithms on the lung cancer dataset, with feature 

selection carried out using Simulated Annealing (SA).  

 

Fig 5: Representation of result with SA feature selection 

This increase in accuracy over the prior result without 

feature selection emphasises how well SA works to 

choose useful features for RF. The sensitivity of RF is 

98.88%, indicating a good capacity to identify cases of 

lung cancer, and the specificity is 97.02%, indicating a 

superb ability to minimise false positives. It's important to 

keep in mind that the AUC-ROC score has dropped to 

94.12%, suggesting a little lower discriminative capacity 

than SVM.With SA-based feature selection, RF still 

outperforms the other algorithm in terms of accuracy and 

sensitivity, demonstrating its usefulness in this situation. 

SVM currently gives results that are competitive after 

drastically narrowing the gap. In terms of specificity and 

AUC-ROC score, SVM performs better than RF, showing 

a smaller rate of false positives and better overall 

discriminating.Both algorithms' classification 

performance has been greatly enhanced by the addition of 

SA-based feature selection, leading to increased accuracy, 

sensitivity, and specificity. This emphasises how crucial 

feature selection is to creating machine learning models 

for lung cancer classification that are optimised. The 

particular goals and trade-offs necessary for the task may 

determine whether SVM or RF should be used. In this SA-

selected feature dataset, RF excels in precision and 

sensitivity while SVM gives greater The  Table 5 shows 

the importance of SA-based feature selection in boosting 

SVM and RF's classification abilities for lung cancer 

classification. This preprocessing step helps both 

methods, although RF still has a minor advantage in terms 

of accuracy and sensitivity. However, SVM is a 

formidable rival due to its increased specificity and AUC-

ROC score. The unique objectives of the study and the 
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trade-offs between sensitivity and specificity should be 

taken into account when selecting an algorithm, with both 

methods having strong capabilities in this SA-selected 

feature dataset. The performance of feature selection 

techniques and model tuning may be improved by more 

research. 

5. Conclusion 

We have learned a lot about the relative advantages and 

efficacy of Ant Colony Optimisation (ACO) and 

Simulated Annealing (SA) for optimising feature subsets 

from medical image data in this comparative study of 

feature selection methods, specifically for radiomics-

based lung cancer subtyping and prognosis prediction.Our 

results show that in the context of lung cancer research, 

ACO and SA may both greatly improve the functionality 

of machine learning models. In order to reduce 

dimensionality, mitigate overfitting, and enhance model 

interpretability, feature selection is crucial. We found that 

SA, which was modelled after the metallurgical process of 

annealing, demonstrated a remarkable capacity for 

recognising relevant features, leading to improved 

precision and discriminative power in tasks involving the 

classification and prognostic prediction of lung 

cancer.The ant-inspired organisation ACO also put on a 

commendable display. Although it significantly behind 

SA in terms of overall accuracy and discriminative power, 

it successfully identified relevant features, which helped 

to improve model performance.The particular study aims 

and trade-offs eventually choose which of ACO and SA 

to use. Because SA can swiftly and methodically 

investigate feature subsets, researchers could choose it. 

ACO, on the other hand, might be appealing to people 

who value its capacity to utilise solutions through 

pheromone-based optimisation.The significance of 

feature selection in radiomics-based lung cancer research 

is highlighted by this study. We can improve the precision 

and clinical applicability of models for subtyping and 

prognosis prediction by selecting the most pertinent 

features. Additionally, the comparison of ACO and SA is 

a useful tool for researchers and industry professionals, 

guiding them in choosing the best feature selection 

method for their particular research objectives.Finally, 

feature selection in radiomics-based lung cancer research 

can be aided by both ACO and SA. To successfully 

advance lung cancer subtyping and prognosis prediction 

by radiomics, researchers should carefully assess their 

goals and preferences when choose between these 

optimisation techniques. 
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