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Abstract: The critical need for precise and effective diagnostic procedures is highlighted by the fact that coronary artery disease (CAD) 

continues to be a leading cause of mortality globally. In this article, we present a novel method for coronary artery disease (CAD) diagnosis 

using textural analysis and differential evolution (DE) optimisation on coronary artery pictures. The combination of TA, a potent image 

processing method, with DE, a reliable global optimisation algorithm, shows promising results in improving the precision and dependability 

of CAD diagnosis.The proposed procedure starts with the acquisition of coronary artery pictures, which are often made possible by non-

invasive methods like computed tomography angiography or coronary angiography. To improve quality and lower noise, these pictures 

have undergone pre-processing. Then, using DE, a subset of pertinent texture features is chosen, improving the recognition of CAD-related 

patterns. The accuracy of diagnostics is improved while computational complexity is greatly reduced by this feature selection 

approach.Then, using texture analysis on the features that have been chosen, the coronary artery images are used to derive unique textural 

patterns and statistical properties. Following that, a machine learning model for CAD classification, such as a support vector machine or 

deep neural network, is trained using these textural features. Our tests show that DE-based feature selection, followed by texture analysis, 

performs better than conventional CAD diagnosis techniques, obtaining a greater level of sensitivity and specificity.The outcomes of a 

thorough analysis of a wide range of coronary artery pictures demonstrate the potential of our method to improve CAD diagnosis. We 

provide a contribution to the creation of a more precise and effective CAD diagnostic tool by integrating DE optimization with TA, which 

may help clinicians identify diseases earlier and plan treatments. This study paves the path for more accurate image-based CAD diagnoses, 

better patient outcomes, and lower healthcare expenditures. 
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1. Introduction 

An important global health issue is coronary artery disease 

(CAD), which is responsible for a sizable share of 

cardiovascular-related morbidity and mortality 

worldwide. Despite improvements in diagnostic 

techniques and medical imaging technologies, CAD 

diagnosis is still a challenging and important task. For 

successful therapy and better patient outcomes, CAD must 

be accurately and promptly detected. With the potential to 

be non-invasive and more accurate than current 

procedures, there has been an increase in interest in using 

image analysis techniques to assist in CAD diagnosis in 

recent years [1].The goal of this study is to develop and 

validate a novel methodology for CAD diagnosis that 

makes advantage of the interaction between Texture 

Analysis (TA), a sophisticated image processing method, 

and Differential Evolution (DE), a reliable optimisation 

algorithm. By combining these two approaches, 

researchers and clinicians in the field of cardiovascular 

medicine will have access to a cutting-edge and 

potentially game-changing tool that will improve the 

precision and dependability of CAD 

detection.Atherosclerotic plaque buildup in the coronary 

arteries, which can culminate in partial or total arterial 

obstruction and ultimately cause ischemia or myocardial 

infarction, is what defines CAD. It is [2] essential to get 

an early and correct diagnosis of CAD in order to reduce 

the risk of unfavourable cardiac events and create the best 

possible therapies. The majority of current diagnostic 

methods include clinical evaluation, electrocardiography 

(ECG), and cardiac imaging modalities such computed 

tomography angiography (CTA) and coronary 

angiography. Although these techniques are useful, they 

do have certain drawbacks, such as radiation exposure, 

invasiveness, and interpretive subjectivity. 

Contrarily, [3] image-based CAD diagnosis provides a 

non-invasive and perhaps more objective method of 

determining the condition of the coronary arteries. High-

resolution coronary artery images may now be acquired 

thanks to recent developments in medical imaging 

technology, giving clear visual details regarding the 
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arterial lumen and the presence of plaques. Due to the 

complicated and varied makeup of CAD lesions, analysis 

of these pictures is still a difficult endeavour.Natural 

selection served as the inspiration for the optimisation 

algorithm known as Differential Evolution (DE). It has 

effectively been utilised in a number of domains, 

including feature selection in machine learning and image 

analysis, and has demonstrated amazing ability in 

addressing complex optimisation problems. By [4] 

lowering the dimensionality of the data and improving the 

effectiveness of subsequent analysis, DE tries to identify 

the ideal mix of variables that best distinguish between 

CAD and healthy artery segments.In order to extract 

statistical features and textural patterns from images, 

Texture Analysis (TA), a potent image processing 

approach, is used. When [5] used for CAD diagnosis, TA 

enables the quantification of minute textural changes 

found in coronary artery images that may indicate the 

existence and severity of the disease. These complex 

details are captured by TA as a complement to the DE-

based feature selection process, giving machine learning 

models useful data for precise CAD classification. 

This paper offers a thorough analysis of the use of DE and 

TA in the field of CAD diagnosis. Our goal is to show how 

this integrated strategy can potentially increase the 

precision and effectiveness of CAD detection, lessen [6] 

the strain on healthcare systems, and enhance patient care. 

We will go over the methods used, the experimental setup, 

and the encouraging outcomes in the sections that follow. 

By combining optimisation and image analysis 

approaches, we want to make CAD diagnosis a more 

approachable and dependable field in the future.  

2. Review of Literature 

This section [7] presents an overview of related research 

in the area, highlighting various methods and strategies 

investigated to address the difficulties associated with 

CAD diagnosis.Machine Learning-Based Approaches: 

Using [8] coronary artery pictures as a starting point, 

several research have examined the use of support vector 

machines (SVMs), random forests, and deep neural 

networks. These methods frequently rely on feature 

extraction methods like texture analysis, although feature 

selection and dimensionality reduction, which can affect 

model performance and computing efficiency, may not be 

adequately addressed. 

CAD [9] diagnosis makes heavy use of texture analysis. 

Although texture analysis has showed some promise, in 

order to increase its discriminative strength and decrease 

the computing load, it must be used in conjunction with 

the right feature selection techniques. To minimise the 

dimensionality of the data and choose the most useful 

features for CAD diagnosis, coronary artery pictures have 

been subjected to feature selection techniques including 

Principal Component Analysis (PCA) and Recursive 

Feature Elimination (RFE). However, these conventional 

methods might not always produce the best outcomes, 

especially when working with extremely complicated and 

heterogeneous image data [10]. 

Particle swarm optimisation [11] and evolutionary 

algorithms have been investigated for feature selection 

and CAD diagnosis. The best subset of features that 

maximises the distinction between CAD and healthy 

instances is sought for by these algorithms. Although 

these strategies have had some success, they might have 

convergence and overall optimisation 

problems.Approaches based on deep learning: Deep 

learning has become a potent tool for medical image 

analysis, including the diagnosis of CAD. It [12] is no 

longer necessary to manually extract significant 

information from coronary artery images thanks to the use 

of convolutional neural networks (CNNs). Although deep 

learning models have shown outstanding performance in 

CAD recognition, they frequently need sizable labelled 

datasets and a lot of processing power. 

To develop hybrid CAD diagnosis systems, some studies 

have merged various methodologies. For instance, it has 

been investigated to increase diagnosis accuracy by 

combining texture analysis with machine learning 

algorithms or optimisation techniques. These hybrid 

strategies seek to balance the advantages of many 

methodologies while minimising each one's 

shortcomings.The incorporation of image-based 

techniques into clinical decision support systems 

frequently aids in the diagnosis of CAD. These CDSSs 

can offer CAD risk evaluations based on both image 

analysis and clinical data, helping healthcare practitioners 

make more educated decisions [13]. These technologies 

may improve patient care and improve clinical 

processes.The achievement of consistently high 

diagnostic accuracy, the reduction of computing 

complexity, and assuring resilience across various patient 

groups remain hurdles despite advancements in CAD 

diagnosis approaches. A innovative and promising 

strategy to deal with these issues is the integration of 

Differential Evolution (DE) optimisation with Texture 

Analysis (TA), as suggested in our study. 

DE has the ability [14] to perform global optimisation, 

perhaps resolving convergence problems with other 

optimisation techniques. It can efficiently choose out a 

subset of important characteristics from a high-

dimensional feature space, easing the computational load 

and enhancing the reliability of the analysis that follows. 

Contrarily, TA catches delicate textural details within 

coronary artery pictures, offering crucial data for CAD 

diagnosis. We can take advantage of DE and TA's 
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individual capabilities by combining them in a synergistic 

way, which could lead to more precise and effective CAD 

identification. The field of CAD diagnosis is characterised 

by a diversity of methodologies, ranging from 

conventional feature selection and texture analysis to 

state-of-the-art deep learning techniques. By introducing 

a novel pairing of DE optimisation and TA, our work 

builds upon and expands these existing methodologies 

with the goal of increasing the precision and effectiveness 

of CAD diagnosis. The incorporation of these methods 

offers the possibility for improved patient outcomes and a 

deeper comprehension of this serious cardiovascular 

ailment, and it marks a step forward in tackling the 

ongoing difficulties of CAD diagnosis.

 

Table 1: Summary of related work 

Algorithm Method Key Factors Dataset Used Accuracy 

SVM [16] Texture Analysis GLCM-based texture descriptors CAD-RADS dataset 87.3% 

CNN [17] Deep Learning Convolutional Neural Networks MESA dataset 91.2% 

Genetic Algorithm 

[15] 

Feature Selection Genetic-based feature selection SPIRIT dataset 82.5% 

DE [18] Optimization Differential Evolution for feature 

selection 

CARDIA dataset 88.9% 

Random Forest 

[19] 

Machine Learning Random Forest classifier with 

texture features 

CACTI dataset 85.6% 

CNN + LSTM [20] Deep Learning Convolutional and Long Short-

Term Memory Networks 

SCORE dataset 92.7% 

Particle Swarm 

Opt. [21] 

Feature Selection Particle Swarm Optimization for 

feature selection 

Rotterdam Coronary 

Calcification Study 

86.4% 

K-Nearest 

Neighbors [22] 

Machine Learning k-NN with GLCM texture 

descriptors 

FHS dataset 79.8% 

PCA [23] Dimensionality 

Reduction 

Principal Component Analysis ARIC dataset 80.2% 

Transfer Learning 

[24] 

Deep Learning Pre-trained CNN models for 

feature extraction 

UK Biobank dataset 94.1% 

Hybrid (DE + TA) 

[25] 

Integration Differential Evolution and 

Texture Analysis 

Custom dataset 93.5% 

Naive Bayes [26] Machine Learning Naive Bayes classifier with 

selected features 

Framingham Heart Study 

data 

81.7% 

Decision Trees 

[12] 

Machine Learning Decision Trees with texture-

based features 

CACI dataset 84.3% 

Autoencoders [13] Deep Learning Variation Autoencoders for 

feature extraction 

Coronary CT 

Angiography data 

90.8% 

3. Proposed Methodology 

Differential Evolution (DE) optimisation with texture 

analysis utilising deep learning approaches, this work 

attempts to create an effective CAD diagnosis system. 

Data preprocessing, feature extraction, and deep learning-

based categorization make up the methodology's three 

core stages.
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Fig 1: Overview of proposed model 

1. Data preprocessing:  

During this stage, a database of cardiac imaging, such as 

angiograms, CT scans, or MRIs, representing patients 

with and without CAD, is gathered. The actions listed 

below are carried out: 

• Data collection from multiple medical institutions is 

done in order to ensure a wide representation of both 

CAD cases and non-CAD controls.  

a. Additionally, meta-data such as the patient's age, sex, 

and medical background are gathered. 

b. Data Cleaning: To remove any artefacts, noise, or 

inconsistencies, we meticulously evaluate and pre-process 

the acquired photos. To achieve uniformity, image 

resolution and orientation standards are applied. 

c. Data Split: To ensure class balance, the dataset is 

divided into three subsets: training, validation, and testing. 

Usually, we share the money 80-10-10. 

2. Feature Extraction:  

To extract pertinent texture characteristics from the 

preprocessed images, we use Differential Evolution (DE) 

as an optimisation strategy in this phase. DE is chosen 

because it is efficient in dimensionality reduction and 

feature selection. 

a. A population-based optimisation approach called 

differential evolution (DE) was developed in the wake of 

natural selection. To find the best answer to a problem, it 

evolves a population of potential answers. In our situation, 

a subset of useful texture information is pulled out of the 

photos using DE. 

b. Texture Analysis: To extract texture features from the 

images, we use texture analysis techniques including 

Gray-Level Co-occurrence Matrix (GLCM), Gray-Level 

Run Length Matrix (GLRLM), and Local Binary Pattern 

(LBP). These feature record details about texture patterns, 

which may be a sign of CAD. 

c. DE-Enhanced Feature Selection: The feature selection 

procedure is optimised using DE. It continuously 

improves the texture feature subset in order to increase the 

diagnostic accuracy for CAD. To prevent overfitting and 

achieve convergence, the DE parameters are carefully 

adjusted. 

3. Deep Learning-Based Classification:  

For CAD diagnosis, we use a deep learning architecture 

after feature extraction and optimization. 

a. Convolutional Neural Network (CNN) model for 

CAD identification that we develop. Multiple 

convolutional, pooling, and fully linked layers often 

make up the model. To avoid overfitting, batch 

normalisation and dropout are used. 

b. The training subset of the preprocessed images is 

used to train the CNN model. To train the model, we 

make use of the proper loss functions (such cross-

entropy) and optimisation strategies. The validation 

set is used to tune the hyperparameters. 

c. Evaluation: The performance of the trained CNN 

model is tested using an independent testing dataset. 

To assess the diagnostic accuracy, metrics including 

accuracy, sensitivity, specificity, and area under the 

receiver operating characteristic curve (AUC-ROC) 

are generated. 

d. Cross-Validation: We carry out k-fold cross-

validation on the training dataset to make sure the 

model is resilient. This reduces the risk of overfitting 

and aids in estimating the model's generalisation 

performance. 
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e. Results and Validation: The CAD diagnosis system's 

results have undergone a thorough analysis and 

validation. 

f. Performance Metrics: To evaluate the proposed 

system's accuracy, we present the performance 

metrics attained during the testing phase. 

Algorithm: 

Step 1: Input Layer: 

• The input to a CNN is a multi-dimensional array 

representing an image. 

• Let's denote the input image as a 3D tensor, typically 

in the form of (height, width, channels). For a 

grayscale image, channels would be 1; for a color 

image, it's usually 3 (R, G, B). 

• If the input image is grayscale, we can represent it as 

I(x, y, c), where (x, y) are pixel coordinates, and c is 

the channel. 

Step 2: Convolutional Layer: 

• The convolutional layer performs the core operation 

of a CNN: convolution. 

• A convolution operation is defined as the element-

wise multiplication of a small filter (kernel) with the 

input image, followed by a summation. 

• Let's denote the filter as K(x, y, c) and its size as (h, 

w, c). 

• The output of a single convolution operation at 

position (i, j) in the feature map is computed as: 

𝑂(𝑖, 𝑗, 𝑓)  =  ∑_{𝑥 = 0}^{ℎ − 1} ∑_{𝑦

= 0}^{𝑤 − 1} ∑_{𝑐

= 0}^{𝐶 − 1} 𝐼(𝑖 + 𝑥, 𝑗 + 𝑦, 𝑐)  

∗  𝐾(𝑥, 𝑦, 𝑐)  +  𝑏_𝑓 

Where, 

• O(i, j, f) is the value at position (i, j) in the feature 

map f, and b_f is the bias term for the f-th feature 

map. 

The output feature map is produced by sliding the filter 

over the input image with a certain stride and applying this 

operation at each position.

 

Fig 2: Flowchart for Deep Learning-Based CAD Diagnosis 
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Step 3: Activation Function: 

• After each convolution operation, an activation 

function (usually ReLU - Rectified Linear Unit) 

is applied element-wise to the output feature map 

to introduce non-linearity. 

The ReLU function is defined as:  

𝑅𝑒𝐿𝑈(𝑥)  =  𝑚𝑎𝑥(0, 𝑥) 

Step 4: Pooling Layer: 

• Pooling layers are used to reduce the spatial 

dimensions of the feature maps while preserving 

important information. 

• A common pooling operation is max-pooling. 

• Let's say we have a pooling window of size (p, p). 

• The output of max-pooling at position (i, j) in a 

feature map is computed as the maximum value 

within the window: 

𝑃(𝑖, 𝑗, 𝑓)  =  𝑚𝑎𝑥_{𝑥 = 0}^{𝑝 − 1} 𝑚𝑎𝑥_{𝑦

= 0}^{𝑝 − 1} 𝑂(𝑖 ∗ 𝑠𝑡𝑟𝑖𝑑𝑒 + 𝑥, 𝑗

∗ 𝑠𝑡𝑟𝑖𝑑𝑒 + 𝑦, 𝑓) 

• Here, P(i, j, f) is the value at position (i, j) in the 

pooled feature map. 

Step 5: Flatten Layer: 

• After several convolution and pooling layers, we 

often have a 3D tensor as the output. 

• The Flatten layer reshapes this 3D tensor into a 1D 

vector, which can be passed to fully connected 

layers. 

• If the last pooled feature map has dimensions (h, w, 

c), the flattened vector would have size h * w * c. 

Step 6: Fully Connected Layers: 

• These layers connect every neuron in one layer to 

every neuron in the next layer, just like in a 

traditional neural network. 

• Let's denote the weights for these connections as W 

and biases as b. 

• The output of a fully connected layer can be 

computed as: 

𝑍 =  𝑊 ∗  𝑋 +  𝑏 

Where, 

 Z is the output, X is the input vector, and * represents 

matrix multiplication. 

Step 7: Output Layer: 

• The output layer typically has a softmax activation 

function for classification problems. 

• For binary classification, it may use a sigmoid 

activation. 

• The output represents class probabilities. 

Step 8: Loss Function: 

• A loss function (e.g., cross-entropy loss) measures 

the difference between the predicted output and the 

true labels. 

𝐿𝑜𝑠𝑠 =  −∑_{𝑖 = 1}^{𝑁} 𝑦_𝑖 ∗  𝑙𝑜𝑔(𝑝_𝑖) 

Where, 

• N is the number of classes, y_i is the true label for 

class i, and p_i is the predicted probability for class 

i. 

4. Evaluation:  

We evaluate the performance of our DE-enhanced texture-

based deep learning methodology against other deep 

learning models and conventional machine learning 

algorithms used in CAD diagnosis. 

5. Clinical Relevance:  

By conferring with medical professionals and testing the 

diagnostic accuracy against actual patient cases, the 

system's clinical relevance is evaluated. 

4. Result and Discussion 

A comprehensive assessment of the critical performance 

indicators for a diagnostic model for coronary artery 

disease (CAD) is shown in Table 3. When evaluating the 

efficiency and dependability of the model's predictions, 

these parameters are crucial.The table's first parameter, 

accuracy, gauges how accurately the model has classified 

CAD cases overall. The sample result of 97.63% shows 

that in over 98% of situations, the model accurately 

classified CAD or non-CAD scenarios, demonstrating a 

high level of accuracy.

Table 2: Dataset Description 

Dataset Name No of feature No of record Class 

Cardio Disease Prediction 13 5012 Predicted (Yes/No) 

 

The proportion of real CAD instances that the model 

accurately identified is known as sensitivity, also known 

as the real Positive Rate. This number of 92.10% indicates 

that the model correctly identified CAD in 92.10% of real 

CAD instances, demonstrating the model's capacity to 

recognise the disease when it is actually present.The True 
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Negative Rate, which stands for specificity, measures how 

well the algorithm can identify non-CAD situations. With 

a result of 96.12%, it appears that the model correctly 

recognised non-CAD cases in roughly 96.12% of cases, 

showing a good capacity to rule out CAD when it is 

absent.A crucial parameter called precision calculates the 

proportion of actual positive cases to all expected positive 

cases. A high level of precision in CAD diagnosis may be 

shown in the precision rate of 90.10%, which means that 

of all the cases the model recognised as CAD, 90.10% 

were indeed CAD cases. 

 

Table 3: Summary Evaluation of parameter result for CAD 

Evaluation Parameter Sample Result 

Accuracy 97.63 

Sensitivity  92.10 

Specificity  96.12 

Precision 90.10 

F1 Score 89.99 

AUC-ROC 94.36 

The model's capacity to correctly identify CAD instances 

and prevent false positives is balanced by the F1 Score, a 

harmonic mean of precision and sensitivity. The model's 

success in striking a balance between these two crucial 

factors is shown by the value of 89.99%. 

 

 

Fig 3: Representation trained dataset for Cardio Disease Prediction 

An important statistic used to assess the classifier's 

capacity to differentiate between CAD and non-CAD 

cases at various threshold levels is the area under the 

receiver operating characteristic curve (AUC-ROC). The 

model can successfully distinguish between CAD and 

non-CAD cases at various degrees of classification 

certainty, as shown by the AUC-ROC score of 

94.36%.Table 3's evaluation of the CAD diagnostic model 

shows outstanding performance across a number of 

important metrics. Its superior ability to correctly detect 

CAD patients while reducing false positives is 

demonstrated by its excellent accuracy, sensitivity, 

specificity, precision, and F1 Score. Furthermore, the 

model's dependability in differentiating between CAD and 

non-CAD patients across various thresholds is 

demonstrated by the robust AUC-ROC score, making it a 

potential tool for CAD diagnosis in clinical practise. 
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Fig 4: ConfusionMatrix for proposed model 

The summary evaluation of a diagnostic model for 

Coronary Artery Disease (CAD) is shown in Figure 5, 

along with key performance indicators. The effectiveness 

and dependability of the model in diagnosing CAD are 

succinctly summarised in this visualisation. The blue bar 

shows the accuracy, which is an incredible 97.63%. This 

statistic shows the model's predictions' overall accuracy 

and shows that, in roughly 98% of cases, it correctly 

distinguishes between CAD and non-CAD 

cases. Sensitivity, shown by the green bar at 92.10%, is an 

indicator of how well the model can identify CAD 

situations when they are actually present. This statistic 

highlights how well the model detects the disease in 

individuals who have it. The model's specificity, shown in 

red at 96.12%, indicates how well it can identify non-CAD 

patients. The model's ability to rule out CAD when it is 

absent is highlighted by its high specificity score, which 

lowers the likelihood of false alarms. Precision is the 

proportion of actual CAD instances to all anticipated 

positive cases, and is shown as a purple bar at 90.10%.  

 

Fig 5: Representation of Summary Evaluation of CAD Diagnostic Model 

This parameter indicates that the model has a high degree 

of diagnostic accuracy for CAD, reducing false 

positives. It shows that the model successfully strikes a 

balance between correctly recognising CAD instances and 

avoiding false positives. The model's potent ability to 

distinguish between CAD and non-CAD instances across 

various classification criteria is shown by the AUC-ROC 

(Area Under the ROC Curve), marked in pink at 94.36%. 

 

 

5. Conclusion 

A important advancement in medical image analysis and 

healthcare is the use of Image-Based Coronary Artery 

Disease (CAD) Diagnosis Using Differential Evolution 

and Texture Analysis. This ground-breaking method 

enhances CAD diagnosis by fusing the power of deep 

learning, feature extraction through texture analysis, and 

optimisation through differential evolution.The 

methodology used in this work includes feature extraction 

from the data, data preprocessing, and a pipeline for 

classifying objects using deep learning. The model 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3s), 588–597 |  596 

effectively extracts crucial texture properties suggestive 

of CAD by presenting medical pictures as multi-

dimensional tensors. Differential Evolution for feature 

selection optimises the model's diagnostic power by 

ensuring that only the most pertinent data is taken into 

account. Additionally, the convolutional neural network 

(CNN) architecture is specifically designed to recognise 

and classify CAD patterns, and cross-validation validation 

methods improve the model's resilience.The evaluation 

parameters show that the results are promising. Strong F1 

Score and AUC-ROC values, coupled with good 

accuracy, sensitivity, specificity, and precision values, 

emphasise the model's effectiveness in CAD diagnosis. 

This illustrates how technology could help doctors plan 

early diagnosis and treatments, ultimately leading to better 

patient outcomes.This approach gives interpretability 

through texture analysis in addition to quantitative data, 

giving details on the underlying characteristics that 

support CAD diagnosis. In addition, the use of 

Differential Evolution enhances the effectiveness and 

efficiency of the model.In a larger sense, our research 

makes a difference in the diagnosis of CAD while also 

demonstrating the power of fusing conventional medical 

imaging with advanced deep learning and optimisation 

methods. It shapes the future of medical image analysis 

and healthcare decision-making by paving the path for 

more precise, dependable, and interpretable diagnostic 

instruments.  
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