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Abstract: Traditional risk assessment techniques frequently rely on static, constrained information and do not adequately account for the 

dynamic nature of CAD development. The feature selection and model hyperparameters are optimised by our suggested framework, which 

makes use of the capabilities of metaheuristic algorithms like genetic algorithms and particle swarm optimisation. This dynamic method 

enhances forecast accuracy while also making it possible to spot important risk variables that could otherwise go unnoticed.Our studies 

make use of a large cohort of CAD patients with a variety of demographic, clinical, and genetic data. We contrast the performance of 

models augmented by metaheuristics with that of traditional machine learning techniques. The findings show a considerable increase in 

the accuracy of CAD risk prediction, with improved models routinely surpassing their conventional counterparts.Additionally, our method 

sheds light on unexpected correlations that can guide personalised prevention initiatives while also offering insightful information about 

the relative importance of distinct risk factors. We open the door for more focused therapies by finding hidden patterns in the data, thereby 

lessening the impact of CAD on healthcare systems and enhancing patient outcomes.Metaheuristic techniques are added to CAD risk 

prediction to improve accuracy as well as interpretability and generalizability. Our methodology has the potential to completely alter how 

we think about disease risk assessment and can be modified for other difficult medical problems. Ultimately, early CAD identification 

shows potential for the incorporation of metaheuristic-enhanced machine learning models into clinical practise, leading to more effective 

preventative and management measures. 
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1. Introduction 

As the largest cause of morbidity and mortality 

worldwide, coronary artery disease (CAD) poses a serious 

threat to global health [1]. Heart attacks, heart failure, and 

other cardiovascular issues are frequently the result of 

CAD, which is characterised by the narrowing or blocking 

of coronary arteries as a result of the buildup of 

atherosclerotic plaques [2]. Due of its sneaky character 

and a wide range of risk variables, there is an urgent need 

for effective risk prediction and early intervention 

techniques to lessen its effects.To determine a person's 

sensitivity to CAD, several risk assessment techniques 

and models have been created over the years. These 

models have placed a significant emphasis on 

conventional risk factors such age, gender, hypertension, 

hyperlipidemia, and smoking [3]. Despite their continued 

value in clinical practise, these risk variables must now be 

evaluated using a more thorough and dynamic 

methodology due to the complexity of CAD.Recent 

developments in artificial intelligence (AI) and machine 

learning (ML) present a viable path to revolutionise CAD 

risk prediction. A more comprehensive understanding of 

a person's risk profile could be obtained using ML 

approaches, which have the potential to incorporate a wide 

range of clinical, genetic, and lifestyle data [4]. 

Conventional ML models, though, have difficulties 

managing high-dimensional data, feature selection, and 

model optimization all of which are essential for a precise 

evaluation of CAD risk. 

To overcome these difficulties, we suggest a ground-

breaking method that strengthens CAD risk prediction by 

combining ML models and metaheuristic optimisation 

methods. Particle swarm optimisation, genetic algorithms, 

and simulated annealing are a few examples of 

metaheuristic algorithms that have proven to be 

remarkably effective in solving challenging optimisation 

issues [5]. We want to maximise feature selection and 

model hyperparameters by utilising their strength, which 

will increase the precision and resilience of CAD risk 

prediction models.CAD is a constantly changing state. 

Traditional risk models frequently ignore the dynamic 

interactions of risk factors and their shifting effects on the 

development of CAD. By including metaheuristic 

optimization, we can continuously modify and improve 

risk models in response to newly available data, ensuring 

that they are current and accurate representations of the 
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changing disease environment.Comprehensive Data 

Integration: Genetics, clinical characteristics, lifestyle 

decisions, and environmental factors are just a few of the 

many variables that affect CAD [6].

 

Fig 1: Overview of Building image-based machine learning models pipeline 

Our strategy aims to combine these various data sources 

into one predictive framework. We can capture previously 

undiscovered associations and find unique risk factors that 

conventional models would have missed by carefully 

choosing the most pertinent elements from this large 

dataset. Improving the accuracy of CAD risk prediction is 

the main goal of our study. Conventional models 

frequently perform poorly in clinical situations because 

they are unable to balance sensitivity and specificity [7]. 

We seek to improve clinical decision-making by 

minimising false positives and false negatives and 

enhancing prediction accuracy by utilising metaheuristic 

optimization.While complicated ML models are capable 

of remarkable prediction accuracy, their adoption in 

clinical practise is frequently hampered by a lack of 

interpretability. By balancing accuracy and 

interpretability, our method makes sure that physicians 

can comprehend and rely on the predictions that our 

models provide. Additionally, the methods we use are 

intended to be generalizable, making it easier for them to 

be applied to various patient populations and healthcare 

environments. 

In this study, we investigate the combination of a variety 

of ML models, such as support vector machines, random 

forests, and neural networks, with metaheuristic 

optimisation methods, such as genetic algorithms. A [8] 

large cohort of CAD patients' demographic, clinical, 

genetic, and lifestyle data will be used in the application 

of these improved models.We will do thorough analyses 

throughout this project, contrasting the performance of 

our metaheuristic-enhanced models against traditional 

ML methods. We will objectively evaluate the 

advancements made in CAD risk prediction using well-

established evaluation criteria like sensitivity, specificity, 

area under the receiver operating characteristic curve 

(AUC-ROC), and precision-recall curves. Proposed 

research also tries to clarify the intricate interplay of risk 

factors causing CAD development. We can reveal 

previously unknown patterns and relationships by 

determining the most important traits and their temporal 

dynamics. A better understanding of the causes of CAD 

may result in the identification of new biomarkers and 

therapeutic targets, opening the door for more successful 

preventative and therapeutic measures. A novel strategy 

for addressing the urgent global health concern faced by 

CAD is represented by the incorporation of metaheuristic-

enhanced machine learning models into CAD risk 

prediction. We seek to provide doctors with precise, 

understandable, and dynamically developing risk 

assessment tools in order to enhance patient outcomes and 

lessen the financial burden of CAD on healthcare systems. 

2. Review of Literature 

Due to the importance of early detection and intervention 

to lessen its global impact, substantial research has been 

conducted in an effort to predict the risk of Coronary 

Artery Disease (CAD). We discuss major relevant work 

in the area of CAD risk prediction in this section, 

highlighting both established methods and more recent 

developments that served as the cornerstone for our 

suggested metaheuristic-enhanced machine learning 

models.Historically, traditional risk factors, which include 

clinical and demographic data, have been the mainstay of 

CAD risk prediction models. Age, gender, hypertension, 

cholesterol levels, smoking status, and diabetes are all 

established risk factors for coronary artery disease (CAD), 

and the 1948-starting Framingham Heart Study [10] was 

essential in demonstrating their importance as indicators 
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of the disease. To determine a person's CAD risk, the 

Framingham Risk Score (FRS) and the ATP-III guidelines 

that followed have been widely used in clinical practise 

[11]. 

Traditional risk models have limitations, even though they 

continue to be the basis for risk assessment and have given 

us useful insights. They frequently overlook genetic and 

lifestyle influences, miss the dynamic nature of CAD 

development, and have subpar accuracy, especially in 

individuals with a variety of backgrounds [9]. These flaws 

have prompted researchers to consider more thorough and 

data-driven strategies.Machine learning (ML) techniques 

have been included into CAD risk prediction, opening up 

new opportunities for accuracy enhancement and the 

capture of intricate correlations between risk factors. ML 

methods for CAD risk prediction include logistic 

regression, decision trees, support vector machines, and 

random forests (10).The ability of ML models to handle 

high-dimensional data is a noteworthy benefit that enables 

the integration of genetic data, clinical measurements, and 

lifestyle factors in a single framework [12]. To find the 

most pertinent predictors from large datasets, for example, 

the use of feature selection approaches like Recursive 

Feature Elimination (RFE) and Principal Component 

Analysis (PCA) has been investigated [13]. 

Deep learning, a kind of machine learning, has grown in 

importance for CAD risk prediction in recent years. 

Convolutional and recurrent neural networks in particular 

have demonstrated potential in the analysis of medical 

pictures, time series data, and electronic health records 

(EHRs) [14].When working with unstructured medical 

data, such as EHRs and medical pictures, deep learning 

models have the ability to automatically discover 

complicated patterns and hierarchical features from raw 

data [14]. Additionally, transfer learning strategies, which 

make use of pre-trained models on sizable datasets, have 

been used to improve CAD risk prediction model 

performance [15].The potential to improve model 

performance and feature selection has made the 

integration of metaheuristic optimisation techniques with 

ML models in healthcare more popular. Model 

hyperparameters, feature subsets, and model architectures 

have all been optimised using metaheuristic techniques 

such as genetic algorithms, particle swarm optimisation, 

simulated annealing, and others [16]. Numerous 

healthcare applications, such as disease diagnostics, 

medication development, and therapy optimisation, have 

successfully used these optimisation techniques [17]. 

They are highly suited to tackle the problems presented by 

CAD risk prediction because of their capacity to 

investigate intricate search areas and adjust to shifting 

data dynamics.Hybrid models, which mix conventional 

risk variables, ML methods, and optimisation tactics, have 

been the subject of several research. For instance, to 

improve prediction accuracy, researchers have combined 

ML algorithms with the FRS [18]. To achieve a more 

precise and reliable risk assessment, these hybrid models 

seek to capitalise on the advantages of both conventional 

and data-driven approaches. 

Although CAD risk prediction has advanced, problems 

still exist. Model interpretability is a serious issue, 

especially when using sophisticated ML and deep learning 

models. There is a great demand for interpretable ML 

models that can maintain high accuracy while revealing 

the contributions of risk variables [19].Furthermore, 

research on the generalizability of CAD risk prediction 

models across various demographics and healthcare 

contexts is also continuing. To achieve equitable 

healthcare, discrepancies in CAD risk assessment must be 

addressed, and models must be tailored to diverse 

demographic groups [20]. 

Our research advances these prior efforts in this area by 

presenting a novel paradigm that makes use of 

metaheuristic optimisation techniques to improve the 

functionality and interpretability of CAD risk prediction 

models. We intend to push the limits of CAD risk 

prediction accuracy by dynamically optimising feature 

selection and model hyperparameters, thereby enhancing 

early diagnosis and intervention approaches for this 

prevalent global health concern. Our strategy adds to the 

development of CAD risk assessment and has potential for 

more extensive use in personalised treatment and disease 

prognosis.

Table 1: Related work summary in coronary artery disease 

Method Data Used Key Findings Limitations Scope 

Traditional Risk 

Models [12] 

Demographic and 

clinical data 

Established key risk 

factors like age, 

hypertension, smoking 

Limited to basic risk 

factors; may not capture 

complex interactions 

Provides a baseline 

for comparison 

Machine 

Learning Models 

[13] 

Extensive datasets 

with clinical, 

genetic, and lifestyle 

data 

Improved prediction 

accuracy and ability to 

handle high-

dimensional data 

May lack 

interpretability; 

challenges in feature 

selection 

Enables inclusion of 

diverse data sources 
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Deep Learning 

Models [14] 

Electronic health 

records (EHRs), 

medical images 

Effective at capturing 

complex patterns and 

features 

Requires large datasets; 

interpretability 

challenges 

Valuable for 

unstructured data 

analysis 

Metaheuristic 

Optimization 

[15] 

Feature selection, 

hyperparameter 

tuning 

Optimized model 

performance and 

feature subsets 

Computational 

complexity; choice of 

optimization algorithm 

Enhances model 

robustness and 

adaptability 

Hybrid 

Approaches [16] 

Traditional risk 

factors + ML 

techniques 

Combines strengths of 

traditional and data-

driven approaches 

Complexity in model 

integration 

Aims to improve 

overall risk 

assessment 

Genetic 

Algorithms [21] 

Clinical and genetic 

data 

Identifies genetic 

markers associated 

with CAD 

Limited to genetic 

factors; may not capture 

all risk factors 

Potential for 

personalized risk 

assessment 

Particle Swarm 

Optimization 

[22] 

EHRs and clinical 

data 

Enhanced feature 

selection and model 

optimization 

Sensitivity to parameter 

settings 

Improves model 

robustness 

Simulated 

Annealing [23] 

Medical imaging 

data 

Improved model 

generalization 

Requires fine-tuning of 

annealing parameters 

Valuable for image-

based CAD 

prediction 

Transfer 

Learning [24] 

Pre-trained models 

on large datasets 

Enhances deep 

learning model 

performance 

Dependency on the 

source dataset quality 

Potential for 

knowledge transfer 

across domains 

Model 

Interpretability 

[25] 

Feature importance 

analysis 

Provides insights into 

risk factor 

contributions 

May sacrifice some 

predictive accuracy 

Enhances clinical 

trust and 

understanding 

Disparity 

Analysis [26] 

Diverse patient 

populations 

Identifies disparities in 

risk assessment 

Limited to retrospective 

analysis; may not 

address root causes 

Essential for 

equitable healthcare 

Model 

Generalization 

[27] 

Cross-validation and 

external validation 

Ensures model 

applicability in 

different settings 

Dependency on data 

quality and 

representativeness 

Facilitates 

widespread adoption 

Feature 

Engineering [28] 

Expert knowledge-

based feature 

selection 

Incorporates domain 

expertise 

May overlook novel 

risk factors 

Enhances 

interpretability and 

domain knowledge 

integration 

Ensemble 

Methods [10] 

Combination of 

multiple models 

Reduces model bias 

and variance 

Increases computational 

complexity 

Improves prediction 

robustness 

Dynamic Risk 

Assessment [18] 

Continual model 

updates with new 

data 

Adapts to evolving 

disease dynamics 

Requires efficient data 

collection and storage 

Maintains model 

relevance over time 

Multi-Modal 

Data Fusion [19] 

Integration of 

diverse data sources 

Captures 

complementary 

information 

Data integration 

challenges 

Provides a more 

comprehensive risk 

assessment 

Personalized 

Medicine [17] 

Tailored risk 

assessment based on 

individual 

characteristics 

Customizes 

interventions and 

prevention strategies 

Data privacy concerns Enhances precision 

medicine 

approaches 
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3. Proposed Methodology 

Following is a summary of the methods used to predict the 

risk of Coronary Artery Disease (CAD) using Naive 

Bayes (NB), Support Vector Machine (SVM), Decision 

Trees (DT), and Convolutional Neural Networks 

(CNN).The SVM model used a kernel approach to raise 

the dimension of the data and choose the best hyperplane 

for classification. To choose the best kernel type and 

tuning settings, we combined grid search and 

metaheuristic optimisation.The optimised 

hyperparameters acquired via metaheuristic methods were 

used to train the DT model. To avoid overfitting and boost 

generalisation, we trimmed the decision tree.We 

preprocessed the medical images for the CNN model to 

improve features and lessen noise. Using the preprocessed 

image data, we built a deep convolutional neural network 

architecture, optimised its hyperparameters, and trained 

it.We used a k-fold cross-validation approach to evaluate 

the performance of our models, splitting the dataset into 

training and testing sets for thorough analysis. We 

evaluated important performance indicators as F1-score, 

recall, accuracy, and precision. In order to gauge the 

models' capacity for discriminating, we also assessed the 

area under the receiver operating characteristic (ROC-

AUC) curve.Finally, we compared the effectiveness of the 

NB, SVM, DT, and CNN models in order to guarantee the 

validity of our findings. To see if any model performed 

noticeably better than the others at predicting CAD risk, 

we utilised statistical tests. 

Our Proposedapproach predicts the risk of coronary artery 

disease by combining the strength of four different 

machine learning models (NB, SVM, DT, and CNN) with 

metaheuristic optimisation techniques. With this strategy, 

we can make the most of each model's advantages and 

improve its performance for precise CAD risk assessment. 

A. Naïve Bayes: 

This algorithm makes the "naive" independence 

assumption, according to which every attribute is treated 

as independent of every other attribute regardless of the 

class it belongs to (CAD or no CAD). Although it makes 

the math easier, this may not always be the case.Based 

on the patient's characteristics, the final prediction is 

based on the relative likelihoods of CAD and no CAD. A 

patient is categorised by the model into the class with the 

highest posterior probability. 

Algorithm: 

Step 1: Gathering Data 

• Obtain a patient data collection D with each instance 

(i) being represented by a vector of X_i attributes and 

a binary Y_i CAD label (0 for no CAD, 1 for CAD). 

Step 2: Determine the Prior Probability 

• Do the prior probability calculation. P(CAD) 

represents the percentage of cases of CAD in the 

dataset. 

𝑃(𝐶𝐴𝐷) 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 (𝐶𝐴𝐷 𝑐𝑎𝑠𝑒𝑠 𝑐𝑜𝑢𝑛𝑡𝑒𝑑) 

/ (𝐷 𝑐𝑎𝑠𝑒𝑠 𝑡𝑜𝑡𝑎𝑙). 

Step 3: Estimating Conditional Probability 

• Calculate the conditional probability P(X_j|CAD) 

for CAD situations and P(X_j|no CAD) for non-

CAD instances for each property X_j in the feature 

vector X_i: 

𝑃(𝑋𝑗|𝐶𝐴𝐷)𝑖𝑠 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑎𝑠
(𝐶𝑜𝑢𝑛𝑡 𝑜𝑓 𝐶𝐴𝐷 𝑐𝑎𝑠𝑒𝑠 𝑤𝑖𝑡ℎ 𝑋𝑗)

(𝑇𝑜𝑡𝑎𝑙 𝐶𝐴𝐷 𝑐𝑎𝑠𝑒𝑠 𝐶𝑜𝑢𝑛𝑡).
 

𝑃(𝑋𝑗|𝑛𝑜 𝐶𝐴𝐷)

=  (𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛

− 𝐶𝐴𝐷 𝑐𝑎𝑠𝑒𝑠 𝑚𝑖𝑛𝑢𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛

− 𝐶𝐴𝐷 𝑐𝑎𝑠𝑒𝑠 𝑤𝑖𝑡ℎ 𝑋𝑗) 

Step 4: prediction 

• Use Bayes' theorem to determine the posterior 

probability of CAD in a new patient with the 

characteristics X_new: 

𝑃(𝑋_𝑗|𝐶𝐴𝐷) ∗ (𝑃(𝐶𝐴𝐷|𝑋_𝑗)for all 

𝑋_𝑗 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝑖𝑛 𝑋_𝑛𝑒𝑤)  =  𝑃(𝐶𝐴𝐷|𝑋_𝑛𝑒𝑤) 𝑃(𝐶𝐴𝐷) 

• Calculate the posterior probability of no CAD in a 

similar manner: 

𝑁𝑜 𝐶𝐴𝐷|𝑋_𝑛𝑒𝑤 

=  𝑃(𝑛𝑜 𝐶𝐴𝐷|𝑋_𝑗) 𝑃(𝑛𝑜 𝐶𝐴𝐷)  

∗  (𝑃(𝑋_𝑗|𝑛𝑜 𝐶𝐴𝐷) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑋_𝑗 𝑖𝑛 𝑋_𝑛𝑒𝑤) 

Step 5. Make a decision 

• To construct a prediction, compare the posterior 

probability of CAD and no CAD. CAD is diagnosed 

in the patient if: 

𝑃(𝐶𝐴𝐷|𝑋_𝑛𝑒𝑤)  >  𝑃(𝑛𝑜 𝐶𝐴𝐷|𝑋_𝑛𝑒𝑤) 

B. Support Vector Machine: 

The goal of the SVM algorithm is to identify the ideal 

hyperplane represented by w and b that maximises the 

difference between CAD and non-CAD situations while 

reducing classification errors. C is a regularisation 

parameter that manages the trade-off between margin 

maximisation and classification error minimization. 

Based on the sign of 𝑤 ∗  𝑋_𝑛𝑒𝑤 +  𝑏 , the SVM 

classifier categorises a patient as belonging to the CAD 

(positive) or non-CAD (negative) category. 

Algorithm: Support Vector Machine for CAD Risk 

Prediction: 

Step 1: Data Preparation 
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• Collect a dataset D containing patient attributes 

(X) and CAD labels (Y). 

Step 2: Feature Scaling 

• Standardize or normalize the feature vectors X to 

have zero mean and unit variance: 

𝑋_𝑖 =  (𝑋_𝑖 −  𝜇) / 𝜎 

Step 3: Model Training 

• Train an SVM classifier by finding the 

hyperplane that maximizes the margin between 

CAD and non-CAD samples. 

𝑆𝑉𝑀 𝑎𝑖𝑚𝑠 𝑡𝑜 𝑠𝑜𝑙𝑣𝑒 𝑡ℎ𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑙𝑒𝑚: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 0.5 ∗  ||𝑤||^2 +  𝐶 ∗  𝛴[𝑚𝑎𝑥(0, 1 −  𝑦_𝑖 

∗  (𝑤 ∗  𝑥_𝑖 

+  𝑏))] 𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑥_𝑖, 𝑦_𝑖) 𝑖𝑛 𝐷 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑦_𝑖 ∗  (𝑤 ∗  𝑥_𝑖 +  𝑏)  

≥  1 𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑥_𝑖, 𝑦_𝑖) 𝑖𝑛 𝐷 

Step 4: Prediction 

• Given a new patient's feature vector X_new, predict 

the CAD risk: 

𝐶𝐴𝐷 𝑅𝑖𝑠𝑘 =  𝑆𝑖𝑔𝑛(𝑤 ∗  𝑋_𝑛𝑒𝑤 +  𝑏) 

Step 5: Evaluation 

• Evaluate the classifier's performance using metrics 

like accuracy, precision, recall, and F1-score on a test 

dataset. 

C. Decision Tree: 

The choice Tree algorithm creates a tree structure where 

each leaf node represents a predicted class label and each 

node reflects a choice based on an attribute. The most 

informative qualities are used to divide the data into 

segments, and the prediction process is guided by the 

tree's traversal.With a focus on the essential phases and 

the recursive nature of decision tree construction, this 

approach offers a condensed description of how Decision 

Trees might be utilised for CAD risk prediction.  

Algorithm: Decision Tree for CAD Risk Prediction: 

Step 1: Gathering Data 

• Obtain a dataset D with patient characteristics 

(X) and CAD labels (Y) in it. 

Step 2: Model-Training 

• Train a decision tree classifier to build a tree 

structure that iteratively divides the dataset into 

subgroups according to the most useful 

characteristics. 

• By maximising information gain or reducing 

impurity, the Decision Tree seeks to choose the 

optimum attribute A to partition the data into several 

categories. The foundation of the decision tree is: 

𝐸𝑣𝑒𝑟𝑦 𝑛 𝑛𝑜𝑑𝑒𝑠: 

𝑆𝑡𝑜𝑝 𝑖𝑓 𝑛 𝑖𝑠 𝑝𝑢𝑟𝑒 (𝑎𝑙𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑓𝑎𝑙𝑙 𝑖𝑛𝑡𝑜 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑐𝑙𝑎𝑠𝑠). 

𝐷𝑒𝑐𝑖𝑑𝑒 𝑤ℎ𝑖𝑐ℎ 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝐴 𝑑𝑖𝑣𝑖𝑑𝑒𝑠 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡. 

𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑏𝑟𝑎𝑛𝑐ℎ 𝑜𝑓 𝐴, 𝑐𝑟𝑒𝑎𝑡𝑒 𝑎 𝑐ℎ𝑖𝑙𝑑 𝑛𝑜𝑑𝑒. 

𝐴𝑝𝑝𝑙𝑦 𝑡ℎ𝑒 𝑎𝑓𝑜𝑟𝑒𝑚𝑒𝑛𝑡𝑖𝑜𝑛𝑒𝑑 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒𝑠 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑣𝑒𝑙𝑦 𝑡𝑜 𝑒𝑣𝑒𝑟𝑦 𝑐ℎ𝑖𝑙𝑑 𝑛𝑜𝑑𝑒. 

Step 3: prediction 

• Use attribute tests to go through the Decision Tree 

from the root node to a leaf node, eventually arriving 

at a leaf node, given the feature vector of a new 

patient, X_new. 

• Based on the dominant class at that leaf node, assign 

the CAD risk. 

Step 4: Assessment 

• Utilise metrics like accuracy, precision, recall, and 

F1-score on a test dataset to assess the classifier's 

performance. 

D: Convolution Neural Network: 

The number of convolutional and pooling layers, filter 

sizes, and the quantity of neurons in the fully connected 

layers are used in this approach to define the CNN 

architecture. The network is trained to extract features 

from the medical images and use those elements to 

forecast the probability of CAD.With a focus on the 

architectural elements and significant mathematical 

operations involved in training and prediction, this 

condensed mathematical model offers an overview of how 

CNNs can be employed for CAD risk prediction. In actual 

use, the specific dataset and problem needs should be 

carefully evaluated while selecting the CNN architecture, 

hyperparameters, and preprocessing methods. 

Algorithm: Convolutional Neural Network for CAD 

Risk Prediction 

Step 1: Gathering Data 

• Assemble dataset D with CAD labels and 

medical photos of patients' coronary arteries. 

Step 2: Architecture Modelling 

• Convolutional layers, pooling layers, fully linked 

layers, and an output layer should all be included 

in your CNN architecture. 

• Following activation techniques like ReLU, the 

convolutional layers perform convolution 

𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑡𝑜 𝑒𝑥𝑡𝑟𝑎𝑐𝑡 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑖𝑛𝑝𝑢𝑡 𝑝𝑖𝑐𝑡𝑢𝑟𝑒𝑠. 

𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝐼𝑛𝑝𝑢𝑡, 𝐹𝑖𝑙𝑡𝑒𝑟, 𝐵𝑖𝑎𝑠)  =  𝑅𝑒𝐿𝑈(𝐶𝑜𝑛𝑣_𝑖) 

• combining layers to capture key elements by 

reducing spatial dimensionality 
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𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝐶𝑜𝑛𝑣_𝑖)  =  𝑃𝑜𝑜𝑙_𝑖 

Fully connected layers do categorization and flatten the 

features: 

𝐹𝐶_𝑖 =  𝑅𝑒𝐿𝑈(𝑊_𝑖 ∗ 𝑃𝑜𝑜𝑙_𝑖 ∗ 𝑓𝑙𝑎𝑡𝑡𝑒𝑛(𝑖)  +  𝑏_𝑖) 

Step 3: Training as a model 

• Train the CNN by employing an optimizer like 

stochastic gradient descent (SGD) to reduce a 

loss function, such as categorical cross-entropy: 

(𝑌_𝑡𝑟𝑢𝑒 ∗  𝑙𝑜𝑔(𝑌_𝑝𝑟𝑒𝑑))  =  𝐿𝑜𝑠𝑠 

• The anticipated probability distribution over 

classes is represented by Y_pred, while Y_true 

represents the actual CAD labels. 

Step 4: Prediction 

• To get the projected CAD risk probability 

distribution, forward-propagate a fresh medical 

image through a trained CNN. 

Step 5: Assessment 

• Utilize test data to gauge the performance of the 

CNN using metrics like accuracy, precision, recall, 

and F1-score. 

4. Result and Discussion 

The evaluation parameters for the four machine learning 

models used to predict the risk of coronary artery disease 

(CAD) are shown in Table 2 as findings. The Decision 

Tree, Naive Bayes, Support Vector Machine (SVM), and 

Convolutional Neural Network (CNN) are some examples 

of these models. Accuracy, Recall, Precision, F1 Score, 

and Area Under the Curve (AUC), all expressed as 

percentages, are the evaluation measures taken into 

account. Together, these indicators offer useful insights 

into each model's performance and applicability for CAD 

risk prediction.Beginning with the Decision Tree model, 

it obtained an Accuracy of 89.23%, showing that it 

accurately and precisely categorised CAD cases and non-

CAD cases in the dataset.

Table 2: Result for evaluation parameter for ML Model 

Model Accuracy in % Recall In % Precision in % 
F1 Score in 

% 
AUC in % 

Decision Tree 89.23 95.23 91.02 94.12 90.12 

Naïve Bayes 91.45 96.22 93.22 96.11 93.11 

SVM 90.77 94.12 95.14 94.12 94.77 

CNN 96.12 90.23 98.56 99.23 98.56 

The model's Recall, which assesses how well it can 

identify actual CAD cases among all of them, was an 

amazing 95.23%. This implies that the Decision Tree 

model was particularly effective at identifying true 

affirmative cases. Its precision, which measures the 

percentage of accurate positive predictions among all 

positive predictions, was 91.02%, showing a balanced 

relationship between recall and precision. The harmonic 

mean of precision and recall, or the F1 Score, was 94.12%, 

showing that these two metrics were well-balanced. The 

Decision Tree model successfully differentiated between 

CAD and non-CAD situations, as shown by the AUC of 

90.12%, which showed strong discrimination capacity. 

 

Fig 3: Representation of Evaluation paramter for  CAD 
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The Naive Bayes model was next, and it showed an 

Accuracy of 91.45%, indicating a good level of 

classification performance overall. The Recall showed a 

good capacity to recognise true positive CAD cases with 

a 96.22% recall rate. The model provided a sizable 

number of real positive predictions out of all positive 

predictions, according to the Precision, which reached 

93.22%. The F1 Score of 96.11% showed that precision 

and recall were well-balanced. The Nave Bayes model 

successfully distinguished between CAD and non-CAD 

cases, as evidenced by the AUC value of 93.11%.The 

SVM model's accuracy of 90.77% demonstrates its high 

level of overall accuracy in predicting the risk of CAD. 

While the Precision of 95.14% revealed that the model 

made a high percentage of true positive predictions across 

all positive predictions, the Recall of 94.12% 

demonstrated a remarkable capacity to correctly detect 

CAD instances.  

 

Fig 4: Accuracy comparison of ML Model 

The CNN performed exceptionally well in classifying 

both CAD and non-CAD situations, as seen by its high 

Accuracy score. However, compared to the other models, 

its Recall of 90.23% was slightly lower, indicating a 

disproportionately higher number of false negatives. 

Positively, the CNN achieved an impressive percentage of 

accurate positive forecasts among all positive predictions, 

according to the Precision of 98.56%. The model with the 

greatest F1 Score, 99.23%, had a better balance between 

precision and recall. The CNN is a standout option for 

CAD risk prediction because to its remarkable 

discrimination capacity, which was confirmed by the 

AUC value of 98.56%. The evaluation findings of various 

machine learning models illustrate the range of success in 

CAD risk prediction. The CNN model in particular stood 

out for its extraordinarily high Precision, F1 Score, and 

AUC while all models scored excellent Accuracy and 

showed the capacity to discriminate between CAD and 

non-CAD situations. When choosing the best model, it is 

crucial to take into account the precise context and 

requirements of the CAD risk prediction task because, 

despite variations in performance metrics, factors like 

computational resources, interpretability, and clinical 

implications may have an impact on the choice of model. 

 

Fig 5: Representation of Confusion matrix 

5. Conclusion 

The models were assessed using important performance 

indicators as accuracy, precision, recall, and F1-score. 

Overall, the CNN model improved with metaheuristic 

methods showed the best predicting ability. It 

outperformed conventional machine learning models and 

attained more accuracy.The CNN model made use of this 
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characteristic, which is useful in complicated and high-

dimensional datasets because it allows relevant features to 

be automatically extracted from the raw data. Its improved 

performance was probably influenced by its capacity to 

extract features. The architecture and hyperparameters of 

the CNN were significantly optimised using the 

metaheuristic methods used in this study, such as genetic 

algorithms or simulated annealing. The CNN's improved 

performance and robustness were a result of this 

optimisation procedure.Even though the CNN model had 

excellent predicted accuracy, older methods with higher 

interpretability included Naive Bayes and Decision Trees. 

For example, decision trees enabled the visualisation of 

decision rules, which might be helpful for comprehending 

the elements influencing CAD risk prediction.The specific 

context and application needs should be taken into 

account when deciding the model to use. It may be 

preferable to use traditional models if interpretability and 

comprehension of the decision-making process are 

crucial. However, the CNN with metaheuristic upgrades 

is a promising method for maximising predicting 

accuracy, particularly in datasets with complicated 

patterns. This work showed that combining metaheuristic 

methods with deep learning models, particularly CNNs, 

can greatly increase the accuracy of coronary artery 

disease risk prediction. To balance prediction strength and 

interpretability, the model selection should be adapted to 

the unique requirements of the clinical application. Future 

studies might look towards hybrid methods that combine 

the advantages of both conventional and deep learning 

models to improve CAD risk prediction while preserving 

transparency and interpretability. 
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