

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4s), 01–15 | 1

A Squeeze Pack and Transfer Algorithm-based Efficient Framework for

Optimized Network Data Transfer in IoT Applications

Shiv Preet 1,2, Chirag Sharma 2, Rachit Garg3

Submitted: 01/09/2023 Revised: 20/10/2023 Accepted: 04/11/2023

Abstract: The wireless network is the driving force behind the new world's economy, and its invasion has spread far beyond Earth in an

interplanetary network using satellites. Wireless networks' productivity must be ur-gently improved because they are prone to signal

attenuation, slower transfer speeds, complete signal un-availability due to weather, and overcrowding of connected users. Due to the towers'

remote position, ex-cessive latency is also an issue, as is the enormous magnitude of data transfer that comes with the big data revolution.

The antiquated TCP protocol, which is ineffective for low consumption and limited storage IoT items as data buffer is insignificant in such

devices, is another problem for IoT applications. A novel SPT (Squeeze Pack and Transfer) algorithm has been proposed to increase mobile

network productivity and reduce storage by more than 90% for data files. Binary patterns, rather than conventional textual symbols

compress data, resulting in a higher compression ratio and faster compression speed. The suggested algo-rithm will significantly improve

network performance while also facilitating efficient data transfer for IoT devices with limited storage. Many researchers confront issues

such as low compression ratios and re-stricted support for multiple data formats from generic compression. All of these concerns are

addressed by the proposed method.

Keywords: Lossless compression algorithms, Internet of Things, binary keys, decompression, wireless network, mo-bile network, data files,

lossy compression algorithms.

1. Introduction

and the internet are going hand in hand nowadays. Users

post their Instagram reels or upload their info-tainment

content on YouTube with the help of the internet only. The

data boom has increased the content consumption of OTT

applications like prime videos, Netflix, Sling TV, HBO

Max, and even private IPTV applications [1]. The internet

is the crucial means to improvise or downgrade the macro

economy as well as the micro-economy of a country [2].

Economic sanctions on Russia, as well as Afghanistan, are

mainly imposed on online financial transactions only [3].

Cyber warfare is also developing at a rapid pace. Coun-

tries tend to have cyber-attacks on rival countries instead

of conventional war. Similarly, all business transactions

are now generally managed online. Paytm, Rupay, Bharat

Pay, and other financial applications are now replacing

traditional offline cash transactions [4].

The data boom in the modern world has led to the invention

of new formats for streaming content. SD (standard

definition) was the norm of cable tv and DTH (direct to

home) services for consuming content [5]. This trend has

changed nowadays. Users want to see HD (high definition)

or UHD (ul-tra-high-definition) content via these services

[6]. A symbol rate of 27500 or 2.5 Mbps is required to

transfer HD content via satellites.

Similarly, to transfer super HD video or 4K television

streams, a symbol rate of 4.0 Mbps or more is necessary

[7]. Without employing any compression method, ultra-

high definition broadcasts cannot be de-livered on a 4

Mbps channel. While transferring HD or 4K broadcasts on

the constrained available band-width, compression

algorithms assist save satellite capacity [8]. Although

improvements are being made to the satellite transponders'

carrying capacity, it still requires assistance from certain

technologies to effi-ciently transfer data over long

distances or in an interplanetary network [9]. Elon Musk's

Starlink and Greg Wyler's OneWeb are working to bring

satellite internet to every country. These services require

effective compression technologies in order to recoup the

higher latency costs associated with satellite broadband

than with optical fibre broadband [10].

1 Assistant Professor, Information Technology Department, ITM,

Dehradun 248001, India

2 Associate Professor, Department of Computer Science and

Engineering, Lovely Professional University, Phagwara 144401,

India

3 Assistant Professor, Department of Computer Science and

Engineering, Lovely Professional University, Phagwara 144401,

India

* Corresponding Author Email: saishivam@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4s), 01–15 | 2

Table 1. Data consumed per hour by different streming

applications.

S. No. Streaming Service
Data consumed per hour

in GB

1 Netflix 7

2 YouTube 15.98

3 Hulu 7

4 Amazon Prime 1.82

5 Hotstar 1.3

Fig 1. Per hour data consumption by different streming

applications.

Table 1 displays the data usage of popular streaming

services. The table clearly shows that the amount and

calibre of data being consumed per hour are increasing

exponentially. The mobile and ad hoc wireless networks

must be utilised as effectively as possible in order to

enhance connectivity and the user experience. The same

has been confirmed by figure 1. It is obvious that more than

one GB of data is used each hour for higher quality

streaming from reputable streaming sources.

Fig 2. Transmission of data in wireless and wired networks

Data transfer in wireless and wired networks is shown in

Figure 2. The procedure is initially started by a sender

sending a file over the network. The data file is first

compressed and encrypted before being delivered to the

transmission media [11]. Once it arrives at its intended

location, it is once more decrypted and decompressed

before being received by the recipient. Both wired and

wireless communication meth-ods are possible [12].

Additional divisions include fibre optics, telephone, and

other fixed broadband services. Wireless transmission may

use an ad hoc mobile or wi-fi network [13].

In computer science, compression refers to a technique that

uses fewer bits to represent a larger-sized data file. Not

only does compression reduce the amount of storage space

needed, but it also aids in en-crypting data by changing its

format [14]. Lossless compression and lossy compression

are the two main categories of compression technologies.

Each has advantages as well as drawbacks [15]. Lossless

com-pression is advantageous for applications where the

integrity of the data is crucial. In applications where a

slight drop in quality positively impacts the information,

lossy compression can be used [16]. It's not a given that

quality will be compromised by using a compressed

format. Usually, deleting the unnecessary part improves

the quality. The JPEG (Joint Photographic Expert Group)

lossy technique eliminates the pixels that cause noise to

enhance the image quality [17]. This lossy technique

therefore aids in improving photos [18]. These examples

show that both lossy and lossless compression algorithms

are effective in a variety of real-world situations, and that

the appropriate technique should be employed depending

on the user's needs and the work at hand. Lossless

algorithms can come to the rescue occasionally, but lossy

al-gorithms can occasionally produce better results [19].

Lossy compression is a type of compression where some

of the original message is sacrificed in order to

approximate the original message from the compressed

format. This improvement in quality has a fa-vourable

effect on the message [20]. To improve picture quality,

noise from the raw photos is removed as an example of

lossy compression. One of the technologies used for lossy

compression is JPEG (Joint Pho-tographic Expert Group)

[21].

Lossless compression is a type of compression where the

original message's quality is preserved in the compressed

form. The quality of the data has not decreased [22]. The

amount of bits generated during the decompression

operation is identical to those in the datafile before to

compression [23]. For those re-al-time applications where

the integrity of the data is crucial, lossless compression is

essential. One of the lossless compression techniques is

Huffman coding. Loss-less compression is typically used

in the medi-cal professions to preserve image quality for

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4s), 01–15 | 3

prognosis and diagnosis [24].

Table 2. Comparison of Lossy and Lossless Compression

S. No. Lossy Compression Lossless Compression

1
Orignal form of the data

file is lost permanently.

Original form of the data file

remains intact.

2

Data holding capacity is

more than lossless

compression algorithm.

Data holding capacity is less

then lossy compressin

algorihtm.

3

Quality of data is altered in

lossy algorithm.

Quality of data remains

unchanged in lossless

compresion algorithm.

4

Lossy compression

algorithm affects size of

data.

Lossless compresion

algorithm does not affect

size of data.

5

Common examples of lossy

compression algorithm are

Discrete Cosine Transform,

JPEG and so on.

Common examples of

Lossless compression

algorithm are Run Length

Encoding, Arithmetic

encoding and so on.

Table 2 compares lossless and lossy compression. The

advantages of lossless and lossy compression in various

circumstances are clearly demonstrated in Table 2. In some

circumstances, where a minor loss in the original file

structure does not adversely affect usability, lossy

compression can be used. Large-scale, important

applications that require lossless data compression are

preferred [25].

IoT applications are more current technologies that build

an object-based network as opposed to a human one.

Without human intervention, objects and people can

connect with one another [26]. IoT devices cannot

function properly with the current TCP (Transmission

Control Protocol) protocol for three key reasons. The

initial configuration of the connection is the first problem.

Given the limited storage and processing capability of

Internet of Things (IoT) devices, TCP does not need to

carry as much data during the first connection

establishment. Second, they lack larger buffers, which

makes the commonly utilised TCP buffer concept

problematic for the efficient operation of IoT devices.

Thirdly, the TCP congestion control technique does not

help data sharing in IoT devices. Instead of the standard

TCP data transfer, IoT items function on small data

exchanges. The purpose of TCP congestion control is

merely to prevent IoT items from operating effectively

[27]. Because unattended IoT devices might not be

secured by the current security system, IoT devices also

need a new security mechanism. Complex security

measures created with desktop or laptop hardware in mind

are not very effective for energy-efficient IoT devices [28].

 An innovative compression method (SPT algorithm) is

suggested as a solution to the problem of crowded wireless

and mobile networks. The contribution of this work is

given below:

• SPT is an algorithm designed for wireless and mobile

networks. As a result, it looks after the energy-efficient

hardware of handheld and Internet of Things devices. It can

support low-power IoT and portable devices operating at

their peak efficiency.

• Instead of using ordinary dictionary patterns, the SPT

method uses binary patterns, which are compatible with

any format that can be translated to binary.

• Binary patterns of the SPT algorithm can help to provide

security to the IoT devices since its encrypted key file can

be created on low power, energy-efficient devices and

safeguard the data transit between two devices.

• By minimising the amount of storage needed for data

files, this technique relieves pressure on data centres and

helps the effort to combat global warming.

• In order to increase the productivity of mobile and

wireless networks without significantly al-tering the

network design, this research suggests the SPT algorithm.

• According to the study, SPT enhances data security by

encrypting it with non-conventional keys rather than

standard dictionary keys.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4s), 01–15 | 4

There are four sections in the research report. The many

types of compression are introduced in the first section. We

look at related work and other authors' contributions to

compression technologies in the second section. The

testing and result analysis for the SPT algorithm are

covered in the third section. In the fourth section,

performance of the SPT algorithm is summarised in the

conclusion.

2. Related Work

Euiseok Hwang et al. [1] in his work proposes a lossless

compression scheme for time-series smart meter data using

bit-back asymmetric numeral systems (BB-ANS). As

smart meters become more preva-lent, efficient

compression methods are needed to transmit and store

large amounts of data. Bit-back cod-ing, which uses

Bayesian inference modeling, has been introduced as a

novel compression method. When combined with

asymmetric numeral systems (ANS), which are stack-like

structures, significant compres-sion gains have been

observed in several cases. ANS is an approach for entropy

coding that combines Huffman coding and arithmetic

coding, and has a first-in-last-out (FILO) form suited for

bit-back coding. Compared to other compression methods,

bit-back coding effectively shares probabilistic models for

en-coder and decoder.

Adel Mahmoud et al. [2] proposed a variational auto-

encoder scheme for compression. The proposed scheme

uses a variational auto-encoder (VAE) to jointly learn

approximate posterior and likelihood be-tween message

and latent variables, enabling efficient compression of

smart meter data within finite time intervals. The scheme

is evaluated using an actual smart meter dataset, and the

results show that BB-ANS outperforms other state-of-the-

art lossless compression schemes. This study is the first to

apply bit-back coding to time-series smart metering data,

enabling efficient data compression with deep generative

mod-els.

Zhaoyi Sun et al. [3] work extensively in the lossless data

compression algorithms. In the field of data storage and

transmission systems, data compression is a trending topic.

Lossless compression is essential for binary files, telemetry

data, and high-fidelity medical and scientific images,

where it is necessary to retrieve the exact details. However,

there is no generic compression algorithm that provides the

best com-pression ratio on all data patterns. Authors

propose a hybrid lossless hardware architecture that

compresses most data patterns such as repeated data,

Gaussian distribution data, and images. The proposed

design is a highly parallelized architecture that can

compress/decompress 64 bytes/cycle with minor overhead.

Moreover, it provides high compression ratio on both small

and large block sizes. The proposed approach involves

profiling-before-compressing and then choosing the right

compression hardware.

Rani Nandkishor Aher and Mandaar Pande [4] explains the

use of compression in remote sensing. Remote sensing is

widely used in applications such as geo-exploration,

topographic mapping, and weather forecasting, which

produce vast amounts of multi and hyper-spectral image

data that require compression. However, the data

acquisition process often leads to artifacts in the form of

stripes with unpredictable po-sitions and amplitudes,

which deteriorate the smoothness of the original image and

pose challenges for high-ratio lossless compression. To

address this, a split-and-compress framework is proposed

in which the image is decomposed into a smooth part and

a sparse remainder, capturing the stripes and artifacts alike,

and compressing the two parts separately. The

decomposition is achieved using a fast, robust statis-tics-

based method with linear computational complexity on the

number of pixels.

Xizhe Cheng, Sian–Jheng LIN and Jie SUN [5] worked

intensively on the importation of the cloud technologies.

Organizations are undergoing modernization, and cloud

providers are playing a crucial role in this journey. Cost

efficiency and ROI are critical factors since there is a

significant investment required for modernization.

Additionally, there are overheads for maintaining legacy

systems until they are fully migrated. Therefore, there is a

lot of focus on cost reduction, influenced by storage,

compression, and per-formance parameters that directly

impact the cost. Authors focuses on studying data

compression patterns, specifically BROTLI and ZSTD, for

columnar databases. Structured and unstructured

compressed data loading, storage, and query execution

statistics are demonstrated to explain the impact of data

compression on the massive datasets.

Ge Zhang et al. [6] has proposed a scheme for lossless

compression for data matrics. A universal scheme for the

lossless compression of two-dimensional tables and

matrices is proposed in their research. Rather than standard

row- or column-based compression, the scheme sorts each

column first and records both the sorted table and the

corresponding permutation table of the sorting

permutations. These two tables are then separately

compressed, allowing both intra- and inter-column

correlations to be efficiently cap-tured, resulting in

improved compression ratios, particularly when both

column-wise and row-wise de-pendencies co-occur.

Kanemitsu Ootsu et. Al [7] has proposed in his work that

by combining more than one lossless algo-rithms, it is

possible to alter speed of compression and data transfer to

keep them in sync with network transfer rate. Jinyan Hu et.

Al [8] has reviewed many compression image formats. His

findings explains that compression Ratio of WebP is better

then PNG in lossless compression algorithms. Encoding

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4s), 01–15 | 5

and Decoding time of Webp compression is also better than

PNG Compression. SSIN of WebP is better than PNG

while it is comparable to JPEG. Webp might become one

of the most popular compressed image format in the near

future after JPEG. Masayuki Omote et. Al [9] has reviewed

the conventional compres-sion process on the wireless

network. His proposed methodology is to use different

cores for differenct processes of data compression. His

findings proposed that data compresion can be excuted on

a different core and data transfer can be setup on a different

core on a multiple core processor with the help of a con-

troller which keeps track of data transfer speed. It helps in

achieving better compression using generic compression

algorithms on mobile devices.

D. Engel and A. Unterweger, in their paper', have stressed

that lossless compressed on high-frequency data does not

yield an equal compression ratio. It has differential

compression on different segments of High-frequency data

[10]. F. Renault, D. Nagamalai, and M. Dhanuskodi have

pointed out that digital im-age processor requires some

compression algorithms to enhance the quality of images.

It can be a lossless compression algorithm or a lossy

compression algorithm [11]. Y. Bi, D. Zhang, and J. Zhao

have critically evaluated power quality data and its various

parameters. It proposes an algorithm based on high-order

data modulation and works on multiple differential

operations of different datasets to provide a better com-

pression ratio [12]. F. Xiaodong, C. Changling, L.

Changling, and S. Huihe proposed in their work that with

the help of adaptive recording limit and outliers-detecting

rules, swinging door trending can be im-proved to achieve

a better compression ratio with the elimination of the

outliers [13]. F. Zhang, L. Cheng, X. Li, Y. Sun, W. Gao,

and W. Zhao proposed a combination of exception

compression and swinging door trending for wide-area

measurement systems. This technology can achieve real-

time compression for crit-ical live data [14]. H. Li, N.

Sheng, and L. Zhi have proposed in their work to compress

the PMUs with the waveform difference method. It

achieves better compression for data generated by PMUs

[15]. J. D. A. Correa, A. S. R. Pinto, C. Montez, and E.

Leão proposed swinging door trending technology to

identify major compression parameters. It helps in scaling

compression speed alongside compression ratio for IoT

devices-based data generation [16]. J. E. Tate has proposed

new methods for preprocessing phasor angle to help

existing techniques for better compression of the PMUs. It

reduces data entropy and improves the compression ratio

[17]. J. Uthayakumar, T. Vengattaraman, and P.

Dhavachelvan have critically evaluated the data

compression techniques to observe their impact on data.

Various coding schemes have been tested to check their

reliability in compressing the data [18].

Table 3. Analysis of the related work.

Reference Main Contribution Gaps

Euiseok

Hwang et

al. [1]

By using bit-back

asymmetric numeral

systems (BB-ANS), it is

possible to achieve better

compression ratios

It is suited mainly fir

bit back coding only.

Adel

Mahmoud

et al. [2]

Variational auto-encoder

scheme combined with BB-

ANS can provide far better

compression ratio using

deep generative models.

It is bit slower and

complex then normal

lossless compression

algorithms.

Zhaoyi

Sun et al.

[3]

Hybrid lossless hardware

architecture can compresses

most data patterns such as

repeated data, Gaussian

distribution data, and

images.

This scheme requires

a specic set of

hardware to execute

its functioning

smoothly.

Rani

Nandkisho

r Aher and

Mandaar

Pande [4]

A split-and-compress

framework is proposed in

which the image is

decomposed into a smooth

part and a sparse remainder,

capturing the stripes and

Process is complex

and can be used

mainly for multi and

hyper-spectral image

data.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4s), 01–15 | 6

artifacts alike, and

compressing the two parts

separately.

5

Common examples of lossy

compression algorithm are

Discrete Cosine Transform,

JPEG and so on.

Common examples

of Lossless

compression

algorithm are Run

Length Encoding,

Arithmetic encoding

and so on.

Xizhe

Cheng,

Sian–

Jheng LIN

and Jie

Sun [5]

Main area of study is

BROTLI and ZSTD, for

columnar databases and

structured and unstructured

compressed data loading as

well as storage.

This scheme is

generally suitable for

massive datasets. Its

complexity hinders

its use for small

datasets.

Ge Zhang

et al. [6]

A universal scheme for the

lossless compression of

two-dimensional tables and

matrices is proposed which

sorts each column first and

records both the sorted

table and the corresponding

permutation table of the

sorting permutations.

This scheme is

suitable where there

are dependiencies

cooccurring between

row wise and

column wise data.

Kanemitsu

OOTSU,

Takashi

YOKOTA

, Takeshi

OHKAW

A [7]

By integrating three

compression algorithms it is

possible to alter speed of

compression and data

transfer to keem them in

sync with network transfer

rate

Improved Data

transfer with respect

to network transfer

rate can be achieved.

Jinyan Hu,

Shaojing

Song,

Yumei

Gong [8]

Compression Ratio of

WebP is better then PNG in

lossless compression

algorithms. Encoding and

Decoding time of Webp

compression is also better

than PNG Compression.

SSIN of WebP is better

than PNG while it is

comparable to JPEG

WebP can be

thought of a better

substitute for image

compression other

than JPEG

Masayuki

Omote,

Kanemitsu

Ootsu,

Takeshi

Ohkawa

and

Takashi

Yokota [9]

Data compresion is excuted

on a different core and data

transfer is setup on a

different core on a multiple

core processor with the help

of a controller which keeps

track of data transfer speed.

It helps in achieving better

compression using generic

Mobile devices can

use generic

algoroithms in the

future for

compression over

mobile network.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4s), 01–15 | 7

compression algorithms on

mobile devices.

Hasitha

Muthumal

a

Waidyaso

oriya,

Daisuke

Ono,

Masanori

Hariyama

and

Michitaka

Kameyam

a [10]

With the application of

BPE and BWT (Burrows -

Wheeler Transform), there

is an increase in 25% of

compression ratio for text

data files.

Data files with text

having different

encodings and with

linguistic

differentiation can

be compressed in an

efficient way using

this compression.

The contribution of numerous authors in the field of

compression technologies is summarized in Table 1. It also

outlines the research gaps they came up with during their

investigation. Some ideas are beneficial for a particular

format only. Compressions algorihms which are working

flawlessly on images and hyper spectral data might not be

efficient for other kinds of datasets. The crux of the

research gap is the lack of general compression methods

for an extensive range of formats, as well as the

inconsistent compression ratios achieved by different

techniques for various formats. There is need to device and

algorithm which could circumvent all these issues. The

SPT compression algorithm takes a leap ahead in resolving

these issues by proposing the usage of binary patterns

rather than standard dictionary patterns.

3. SPT (Squeeze Pack and Transfer) Algorithm

One of the more recent techniques used in lossless

compression is the SPT algorithm. Instead than using

conventional text or ASCII code, it searches for recurring

patterns in the data file's binary form [29]. It generates key

files for the compression and offers codes for common

binary patterns. For file decompression, the receiver also

receives the same key file. It elevates the SPT algorithm to

a renowned algorithm that can virtually compress any

format.

Fig 3. process flow of the SPT algorithm.

 The SPT algorithm's flow is shown in Figure 3. It begins

with the sender choosing a source file, and it is completed

when the recipient receives an exact copy of the source file.

There are nine steps in this method. Each stage of the

algorithm serves as a foundation for the following stage.

Each stage of this pro-cess is well defined and described in

the pseudo-code.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4s), 01–15 | 8

SPT Algorithms

Algorithm 1: SPT Key Generation Process (first

step).

Input: Source file from the sender.

Output: Key file for the receiver

SF: Source File

BSF: Binary Source File

Pt: Pattern Buffer

BKF: Binary Key File

bk: Binary Key

Si: Start Index

Lim: Buffer Limit

Ct: Counter

SS: Symbol Store

SSI: Symbol Store Index

FL: File Length

LC: File Length Checker

Rc: Receiver

Begin

SF= fetch_SourceFile()

BSF=Create_BSF(SF)

Pt=get_buffer(BSF,Si,Lim)

Si+=Lim

BKF=Create_KeyFile()

SSI=0

LC=0

FL=length(BSF)

While (LC<=FL)

{

 Ct=0

 While (BSF.EOF==False)

 {

 While (Pt= get_buffer(BSF,Si,Lim))

 {

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4s), 01–15 | 9

 Ct++

 Si+=Lim

 }

 If(Ct>0

 {

 BKF.add(Pt,Symbol(SS,SSI))

 SSI+=1

 }

FL+=Lim

}

Rc.getKeyFile(BKF)End

End

The production of a binary key file and its

transmission to the recipient are both shown in Algorithm

1. The algorithm first examines recurring binary patterns

from the data file. By giving codes to the regular binary

patterns discovered, it subsequently builds a binary key

file. In the first communication procedure, it delivers the

key file to the recipient as a last step.

Algorithm 2: SPT Compression Process (Second step).

Input: Source file from the sender.

Output: Compressed file to the receiver

BSF: Binary Source File

BCSF: Binary Compressed Source File

BKF: Binary Key File

bk: Binary Key

Kp: Key Pattern

Rc: Receiver

KSi: Key Start Index

Begin

KSi= 0

While (BSF.EOF==False)

{

BKSF.add(BSF.replace(BKF(Kp[KSi]), BKF(bk[KSi])))

KSi++

}

BSF.Send_To_Receiver(RC)End

End

The data file's compression is shown in Algorithm 2.

It substitutes codes for patterns in the data file using the

key file that algorithm 1 generated. It contributes to the

compressed data file's size reduction. The dataset may be

compressed more than once using the same key file in

some minor variants. It facilitates better compression.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4s), 01–15 | 10

Algorithm 3: SPT Decompression Process

(Third step).

Input: Compressed file from the receiver.

Output: Decompressed file to the receiver

BSF: Binary Source File

BCSF: Binary Compressed Source File

SF: Source File

BKF: Binary Key File

bk: Binary Key

Kp: Key Pattern

Rc: Receiver

KSi: Key Start Index

Begin

KSi= 0

While (BCSF.EOF==False)

{

 BSF.add(BCSF.replace(BKF(bk[KSi],

BKF(Kp[KSi]))

 KSi++

}

SF=Create_SF(BSF)

End

The method of data decompression is described in

Algorithm 3. The receiver reconstructs a decompressed

copy of the compressed file it got from the sender using the

key file it produced in algorithm 1. Again, if multi-ple

compression was employed, decompression follows the

identical procedures but in the other direction.

The basic process of the SPT algorithm is described

in below steps:

• Select source file SF which the sender wants to

send to the receiver. It can be of any format.

• Convert source file SF into binary file BSF.

• Find similar/regular binary patterns in the binary

file BSF.

• Create a new key file, KF.

• Record regular binary patterns from the binary

file BSF to the key file KF.

• Assign codes to the binary patterns in the key file

KF. KF now contains binary patterns and their

corresponding assigned code. KF= {Pattern1:Code1,

Pattern2:Code2, Pattern3:Code3, …. Patternn: Coden}.

• Send key file KF to the receiver.

• Create a compressed source file CSF from binary

file BSF using key codes from the file key file KF.

• Split compressed source file CSF into subparts.

• Transfer subparts to the receiver.

• Rejoin the subparts at the receiver end.

• Decompress the rejoined CSF file using the key

file sent earlier in step 7.

Implementation

The effectiveness of the SPT algorithm has been described

in a notepad file with 347 characters. Figure 2 illustrates its

content. Notepad is used to create this file. It has also been

demonstrated that the character length of the compressed

file can explain how the SPT algorithm functions. This

procedure is enclosed in the actual world [30].

Fig 4.Text file (Sample) for the SPT algorithm.

The SPT algorithm's material is shown in Figure 4. Those

347 characters are in this notepad docu-ment. One byte of

RAM is required for each character (two bytes are required

for Unicode characters). The 31 unique characters in the

file are also shown in Figure 3. Utilising the Python

programming language, it has been estimated. To find

binary patterns, this example file will be momentarily

turned into a binary file. In order to discover recurring

binary patterns in larger files, they can be separated for

parallel analysis. It facilitates effective load balancing and

expedites the dataset's processing so that binary patterns

can be found there [31]. A condensed form of the binary

file is shown in Figure 3, from which regular binary pat-

terns can be extracted to produce a binary key file that will

be transmitted to the recipient at the start of the data

transmission.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4s), 01–15 | 11

Fig. 5. Binary file (abridged) from the sample text file.

An abbreviated version of the binary file created from the

sample text file is shown in Figure 5. This file was created

solely for the time being. It is merely described here to

show how the SPT algorithm functions. This file will be

created in the temporary files of a real-world programme,

and once a key file is made from it, memory will be

promptly freed up. Figure 3 illustrates binary files

developed using both two-byte storage for each character

(UNICODE) and only byte storage for each character

(ANSI). Because the SPT algorithm also compresses

complicated characters, it can be used with both ANSI and

UNICODE characters. each character (UNICODE) and

only byte storage for each character (ANSI). Because the

SPT algorithm also compresses complicated characters, it

can be used with both ANSI and UNICODE characters

Fig. 6. key file (abridged) for assigned keys to the binary

patterns.

The key file's partial content is depicted in Figure 6. Codes

are allocated to binary patterns so that they can be

substituted in place of entire words. The SPT method can

be configured to perform multiple passes in order to

generate keys for the specified codes. It also aids in

reducing the size of the compressed file and improving

compression. Figures 6 and Figure 7 after final

compression both depict this procedure. By showing the

final compressed version of the data file, both figures

demonstrate the effectiveness of the SPT method. It should

be emphasised that the final compressed version is merely

displayed to illustrate how the SPT algorithm compresses

data. This will not be displayed in real-world scenarios as

the codes will be encrypted only.

Fig. 7. File (abridged) undergoing the SPT Compression

Process.

The condensed method for generating the key file for the

SPT algorithm is shown in Figure 7. The key file can be

constructed in n passes, where n is the number of times the

codes will be handled as a string in order to discover the

regular patterns in it and build various new keys based on

fresh codes. As a result, less memory is required to store

the final compressed version.

Fig. 8. Final compressed file undergoing the SPT

Compression Process.

This compressed file's final state is shown in Figure 8. It

appears at first glance that these are the English language's

alpha-bets arranged in alphabetical order. However, if one

looks closely, it is possible to spot certain alterations in this

pattern. However, it is clear that a file with 347 characters

was only compressed to 22 characters. With the aid of the

SPT algorithm, storage space is increased by 93.66%.

Analysis of the result

In addition to being able to compress a wide variety of data

file types, the SPT algorithm offers a su-perior

compression ratio. Any form that can be converted to

binary digits (0, 1) can be compressed using the SPT

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4s), 01–15 | 12

algorithm [28]. The SPT technique attempts to convert the

original file into a binary format before compressing it

using key patterns derived from regular patterns discovered

in the binary file.

Fig. 9. Statistics of compressed and uncompressed

versions of the data file.

Figure 9 displays the statistics for the file's compressed and

uncompressed versions. While com-pressing a file of 347

characters, it only uses 22 characters. The uncompressed

version's initial file size was 347 bytes, however the SPT

Algorithm's compression procedure reduced it to to 24

bytes.

Fig. 10. In-depth comparison of the uncompressed and

compressed files.

The data file's compressed and uncompressed versions are

contrasted in Figure 10. It is clear that the SPT algorithm

allows data to be compressed by an average of more than

90%. Figure 8 demonstrates a rise in character length of

93.66%. Only 22 characters remain from the original 347

characters in the com-pressed version. Similar to how the

memory size of 347 bytes is reduced to 24 bytes, only

93.08% more memory storage is gained. Figure 9 shows

that only 6.34% of the actual storage is required for

character length, and the remaining characters can be

truncated to reduce the file size.

Similar to that, saving the file only uses 6.92% of the

available memory. The remaining memory can be retrieved

and put to use for other purposes. It is crucial for online

storage services like Google Drive, OneDrive, and other

similar services to compress files in order to ease the

burden on data centres and combat global warming.

 Fig. 11. Line chart for compression parameters.

Fig. 12. compression parameters revisited.

The relationship between the causes and consequences of

compression settings and their impacts is shown in Figure

12. Input settings for the file's uncompressed version are

located on the far right side. Their compressed results are

described on the left [35]. This graph makes it clear that

during the compression process, the SPT algorithm

drastically altered the value of the data file. The figure

indicates that the SPT algorithm focuses on character

length. It is simple for the SPT algorithm to offer the best

compression ratio as a lossless data compression solution

once the character length is reduced.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4s), 01–15 | 13

Table 4. Comparison of space and time complexity.

S.No.
Software/

algorithm

Space

Complex

ity

Time

Complexity

1 Deflate O(n) O(1)

2 LZSS O(n) O(1)

3 LZMA O(n) O(1)

4 SPT Algorithm O(n) O(1)

Table 4 compares the SPT algorithm's time and space

complexity to that of other methods. O(n) space

complexity and O(1) time complexity are required for the

widely used lossless compression. The RAM required to

compress the input file grows linearly in proportion to the

input size. The space com-plexity of the Deflate algorithm

is O(n), and its time complexity is O(1). Similar to this, the

LZSS algo-rithm's time and space complexity are O(n) and

O(1), respectively. In terms of space and temporal com-

plexity, LZMA (Lempel-Ziv-Markov chain) algorithm

also achieves O(n) and O(1). Similar time and space

complexity is also achieved by the SPT algorithm

implementation, which was developed in JAVA, as shown

in Table 7. Table 7 clearly shows that the time and space

complexity of the SPT algorithm are comparable to those

of other well-known compression methods.

4. Conclusion

This paper discusses in detail the SPT compression

algorithm. Textual data was compressed by more than 92%

in a test implementation. In the process, it employed three

sub-algorithms. (1) Instead of using regular text, binary

patterns were used to produce keys. (2) Data is compressed

using a key file at the sender's end. (3) At the receiver's

end, data is decompressed with the same key file created in

step one (1). The SPT algorithm's high compression ratio

guarantees it will minimize storage space requirements

while enhancing network bandwidth productivity during

data transfer. In that regard, it can benefit emerging

Internet of Things devices as they have less storage than

traditional telecommunications equipment. The SPT

algorithm contributes to data security by using non-

conventional binary patterns instead of typical dictionary

definitions in its key file and enhances the security of

handheld and IoT devices. This algorithm is still in its early

stages of development, and it will be refined and further

optimized soon to provide more excellent service to

technology.

References

[1] Euiseok Hwang, "Lossless Data Compression with Bit-

back Coding on Massive Smart Meter Data", IEEE, 2022

[2] Adel Mahmoud; Samuel Farid; Mark Maged; Othman

Mohamed; Reham Karam; Khaled Salah; M. Watheq El-

Kharashi, "An Efficient Hardware Accelerator For

Lossless Data Compression", IEEE, 2022

[3] Zhaoyi Sun; Yuliang Huang; Roberto Leonarduzzi; Jie

Sun, "A low-complexity destriping method for lossless

compression of remote-sensing data", IEEE, 2022

[4] Rani Nandkishor Aher; Mandaar Pande, "Analysis of

Lossless Data Compression Algorithm in Columnar Data

Warehouse", IEEE, 2022

[5] Xizhe CHENG; Sian–Jheng LIN; Jie SUN, "SortComp

(Sort-and-Compress) - Towards a Universal Lossless

Compression Scheme for Matrix and Tabular Data", IEEE,

2022

[6] Ge Zhang; Huanyu He; Haiyang Wang; Weiyao Lin,

"Integer Network for Cross Platform Graph Data Lossless

Compression", IEEE, 2022

[7] Kanemitsu OOTSU, Takashi YOKOTA, Takeshi

OHKAWA,"A Consideration on Compres-sion Level

Control for Dynamic Compressed Data Transfer

Method",IEEE"2016

[8] Jinyan Hu, Shaojing Song, Yumei Gong,"Comparative

Performance Analysis of Web Image

Compression",IEEE"2017

[9] Masayuki Omote, Kanemitsu Ootsu, Takeshi Ohkawa

and Takashi Yokota,"Efficient Data Communication using

Dynamic Switching of Compression Method",IEEE"2013

[10]]Hasitha Muthumala Waidyasooriya, Daisuke Ono,

Masanori Hariyama and Michitaka Kameyama,"Efficient

Data Transfer Scheme Using Word-Pair-Encoding-Based

Compres-sion for Large-Scale Text-Data

Processing",IEEE"2014

[11] D. Engel and A. Unterweger, "Lossless compression

of high-frequency voltage and

[12] current data in smart grids," Proc. IEEE Int. Conf. Big

Data, pp. 3131-3139, 2016.

[13] F. Renault, D. Nagamalai and M. Dhanuskodi,

"Advances in digital image processing and information

technology," Proc. 1st Int. Conf. Digit. Image Process.

Pattern Recognit., pp. 23-25, 2011.

[14] Y. Bi, D. Zhang and J. Zhao, "A new data compression

algorithm for power quality online monitoring," Proc. Int.

Conf. Sustain. Power Gener. Supply, pp. 1-4, 2009.

[15] F. Xiaodong, C. Changling, L. Changling, and S.

Huihe, "An improved process data com-pression

algorithm," Proc. 4th World Congr. Intell. Control Autom.,

vol. 3, pp. 2190-2193, 2002.

[16] F. Zhang, L. Cheng, X. Li, Y. Sun, W. Gao and W.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4s), 01–15 | 14

Zhao, "Application of a real-time data compression and

adapted protocol technique for WAMS," IEEE Trans.

Power Syst., vol. 30, no. 2, pp. 653-662, Mar. 2015.

[17] H. Li, N. Sheng, and L. Zhi, "WAMS/PMU data

preprocessing and compression," Adv. Mater. Res., vol.

986/987, pp. 1700-1703, Jul. 2014.

[18] J. D. A. Correa, A. S. R. Pinto, C. Montez, and E.

Leão, "Swinging door trending compres-sion algorithm for

IoT environments," Proc. Companion Proc. 9th SBESC,

pp. 143-148, 2019.

[19] J. E. Tate, "Preprocessing and Golomb–Rice encoding

for lossless compression of phasor angle data," IEEE

Trans. Smart Grid, vol. 7, no. 2, pp. 718-729, Mar. 2016.

[20] J. Uthayakumar, T. Vengattaraman and P.

Dhavachelvan, "A survey on data compression techniques:

From the perspective of data quality coding schemes

datatype and applications," J. King Saud Univ. - Comput.

Inf. Sci., vol. 33, pp. 119-140, 2021.

[21] K. Gibson, D. Lee, J. Choi, and A. Sim, "Dynamic

online performance optimization in streaming data

compression," Proc. IEEE Int. Conf. Big Data, pp. 534-

541, 2018.

[22] K. Zhiwu, X. Rui, L. Xianling and Y. Rui, "Research

on lossless compression technique based on running-data

of the nuclear power plant," Proc. Int. Conf. Comput.

Intell. Commun. Netw., pp. 956-959, 2015.

[23] M. A. Khan, J. W. Pierre, J. I. Wold, D. J. Trudnowski,

and M. K. Donnelly, "Impacts of swinging door lossy

compression of synchrophasor data," Int. J. Elect. Power

Energy Syst., vol. 123, 2020.

[24] M. Cui, J. Wang, J. Tan, A. R. Florita and Y. Zhang,

"A novel event detection method using PMU data with

high precision," IEEE Trans. Power Syst., vol. 34, no. 1,

pp. 454-466, Jan. 2019.

[25] M. H. F. Wen and V. O. K. Li, "Optimal phasor data

compression unit installation for wide-area measurement

systems—An integer linear programming approach," IEEE

Trans. Smart Grid, vol. 7, no. 6, pp. 2644-2653, Nov. 2016.

[26] P. H. Gadde, M. Biswal, S. Brahma and H. Cao,

"Efficient compression of PMU data in WAMS," IEEE

Trans. Smart Grid, vol. 7, no. 5, pp. 2406-2413, Sep. 2016.

[27] R. Jumar, H. Maaß, and V. Hagemeyer, "Comparison

of lossless compression schemes for high rate electrical

grid time series for smart grid monitoring and analysis,"

Comput. Elect. Eng., vol. 71, pp. 465-476, 2018.

[28] R. Klump, P. Agarwal, J. E. Tate, and H. Khurana,

"Lossless compression of synchronized phasor

measurements," Proc. IEEE PES General Meeting, pp. 1-

7, 2010.

[29] R. Wenyu, Y. Timothy and N. Klara, "ISAAC:

Intelligent synchrophasor data real-time compression

framework for WAMS," Proc. IEEE Int. Conf. Smart Grid

Commun., pp. 430-436, 2017.

[30] Shiv Preet, Ashish Kr. Luhach, "Comparison of

Various Routing and Compression Algo-rithms: A

Comparative Study of Various Algorithms in Wireless

Networking," Springer, 2016.

[31] Shiv Preet, Ashish Kr. Luhach, Ravindra, "An

overview of the Internet of Things and its Research Issues,"

``In International Journal of Computer Technology and

Applications," IJCTA, 2016.

[32] Shiv Preet, Dr. Amandeep Bagga " Predefined SPT

(Squeeze, Pack And Transfer) Key File Update: A

Mapreduce Way Of Automatic Key Updates For SPT

Algorithm," ICICCT, 2021.

[33] Shiv Preet, Dr. Amandeep Bagga "Satellite Internet

Communication: A Race With Con-temporary Optical

Fiber Network with the Help of SPT Algorithm," ICTSGS,

2021.

[34] Shiv Preet, Dr. Amandeep Bagga "Squeeze Pack, and

Transfer Algorithm: A new over-the-top compression

application for Seamless data transfer over the wireless

network," IJITEE, 2019.

[35] Shiv Preet, Dr. Amandeep Bagga," Lempel–Ziv–

Oberhumer: A critical evaluation of loss-less algorithm and

its applications," ICCS, 2018.

[36] W. Wang et al., "Frequency disturbance event

detection based on synchrophasors and deep learning,"

IEEE Trans. Smart Grid, vol. 11, no. 4, pp. 3593-3605, Jul.

2020.

[37] W. Wang, C. Chen, W. Yao, K. Sun, W. Qiu and Y.

Liu, "Synchrophasor data compression under disturbance

conditions via cross-entropy-based singular value

decomposition," IEEE Trans. Ind. Informat., vol. 17, no. 4,

pp. 2716-2726, Apr. 2021.

[38] W. Wang, W. Yao, C. Chen, X. Deng, and Y. Liu,

"Fast and accurate frequency response estimation for large

power system disturbances using the second derivative of

frequency da-ta," IEEE Trans. Power Syst., vol. 35, no. 3,

pp. 2483-2486, May 2020.

[39] W. Yao et al., "A fast load control system based on

mobile distribution-level phasor meas-urement unit," IEEE

Trans. Smart Grid, vol. 11, no. 1, pp. 895-904, Jan. 2020.

[40] X. Wang, Y. Liu, and L. Tong, "Adaptive Subband

Compression for Streaming of Continu-ous Point-on-

Wave and PMU Data," 2021.

[41] Z. Jellali, L. Najjar Atallah and S. Cherif, "Linear

prediction for data compression and re-covery

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4s), 01–15 | 15

enhancement in wireless sensor networks," Proc. Int.

Wireless Commun. Mobile Comput. Conf., pp. 779-783,

2016

[42] Vijayalakshmi, V., & Sharmila, K. (2023). Secure

Data Transactions based on Hash Coded Starvation

Blockchain Security using Padded Ring Signature-ECC for

Network of Things. International Journal on Recent and

Innovation Trends in Computing and Communication,

11(1), 53–61. https://doi.org/10.17762/ijritcc.v11i1.5986

[43] Mark White, Thomas Wood, Maria Hernandez, María

González , María Fernández. Enhancing Learning

Analytics with Machine Learning Techniques. Kuwait

Journal of Machine Learning, 2(2). Retrieved from

http://kuwaitjournals.com/index.php/kjml/article/view/18

4

