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Abstract- Classification of medical images is essential for helping physicians make correct diagnoses and treatment choices. 

The performance of Deep Convolutional Neural Networks (CNNs) in a variety of image classification tasks has been 

exemplary. Single CNN models might not be able to capture all the subtleties inherent in the data due to the intricate and varied 

nature of medical imaging. In this paper, using the strength of ensemble learning and deep CNNs, we suggest a novel method 

to improve medical image classification. Our approach entails building an ensemble model out of several deep CNN 

architectures, each of which was trained using a portion of the medical image dataset. We seek to increase classification 

accuracy and robustness by using the diversity of these models. The ensemble model combines predictions from different 

CNNs using methods like bagging and boosting to provide a more thorough and trustworthy classification result. We run 

comprehensive tests on several medical imaging datasets to verify the efficiency of our suggested approach. Our ensemble 

learning architecture regularly outperforms single CNN models in terms of accuracy, sensitivity, and specificity. Additionally, 

we offer details on how the ensemble size, diversity of the constituent models, and other crucial elements affect the 

performance of the system. 
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I. Introduction 

Recent years have seen substantial progress in the 

area of automated medical image processing, with 

deep neural networks becoming a popular method 

for computer vision tasks. Particularly impressive 

predicting abilities have been shown for deep 

convolutional neural network designs, with 

performance on par with those of physicians. Deep 

learning-based automated medical image analysis 

has been integrated into clinical practise as a result 

of this trend, with the intention of improving 

diagnosis accuracy and streamlining laborious 

procedures. Medical Image Classification (MIC) is 

a subfield that focuses on labelling whole medical 

images using specified categories, such as diagnoses 

or illnesses. The goal is to use these models as 

clinical decision support tools, either by increasing 

the accuracy of diagnoses or by expediting 

labourintensive processes. 

Recent research has demonstrated the effectiveness 

and precision of MIC pipelines that use ensemble 

learning techniques [3]. Finding a hypothesis in 

machine learning that maximises predicted accuracy 

is the objective. However, because identifying the 

best hypothesis can be difficult, the technique has 

expanded to include integrating different hypotheses 

to provide a more reliable prediction that comes 

close to the best hypothesis. These hypotheses are 

represented by fitted neural network models in the 

context of deep convolutional neural networks. In 

order to attain better prediction performance, these 

models are combined in ensemble learning. Deep 

ensemble learning is the method used when various 

ensemble learning algorithms are included into deep 

learning pipelines.The performance and resilience of 

their MIC pipelines have been improved by a 

number of recent studies by effectively 

implementing deep ensemble learning 

methodologies. These deep ensemble learning-

based pipelines' underlying methodologies cover a 

wide range of strategies. Studies have shown that 

this spectrum encompasses merging many model 

types as well as concentrating on improving the 

inference of a particular mode. Furthermore, 

ensemble learning techniques that maximise the use 

of training data have grown in favour since medical 

imaging datasets are frequently of a restricted size 

[23]. 
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Medical image analysis is essential to contemporary 

healthcare because it helps clinicians make precise 

diagnoses, plan effective treatments, and track the 

progression of diseases. Deep learning and ensemble 

learning in particular have seen a significant 

increase in their use in recent years to improve the 

accuracy and reliability of medical picture 

classification. The integration of ensemble learning 

techniques with deep convolutional neural networks 

(CNNs) to improve medical picture categorization is 

the subject of this research, which also discusses the 

difficulties and potential advantages of this method 

[17]. 

The fusion of ensemble learning methods with deep 

convolutional neural networks (CNNs) has led to a 

significant shift in the field of medical image 

processing in recent years. The accuracy, 

robustness, and reliability of medical picture 

categorization, a crucial part of contemporary 

healthcare, could be greatly improved thanks to this 

convergence. Researchers have been investigating 

novel strategies in response to the need for accurate 

and effective diagnosis, and the combination of 

ensemble [32] learning and deep CNNs is a big step 

in this direction.Deep CNNs have revolutionised the 

classification of medical images by making 

automated feature extraction and pattern 

identification possible. 

 

Fig 1: Proposed method architecture diagram for image categorization 

These networks, which were modelled after the 

human visual system, have the capacity to directly 

learn complex feature hierarchies from raw picture 

data. These networks can recognise subtle patterns 

and structures in medical pictures thanks to their 

multi-layer architecture, which includes 

convolutional, pooling, and fully connected layers. 

The classification of photos into clinically 

applicable categories, such as identifying diseases or 

ailments, is subsequently made easier as a result of 

this. Deep CNNs' innate capacity to recognise 

intricate features has cleared the door for their 

incorporation into clinical practise, assisting medical 

practitioners in making decisions based on precise 

and rapid picture assessments [27]. 

Deep CNNs are not immune to problems, despite 

their extraordinary success. Their effectiveness may 

be impacted by the scarcity of annotated medical 

datasets, the danger of overfitting, and the sensitivity 

to network initialization. This is where ensemble 

learning comes into play as a powerful remedy [21]. 

The strengths of various models are combined 

through ensemble learning to produce a more 
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reliable and precise forecast. Ensemble learning 

reduces the hazards brought on by the biases and 

uncertainties inherent in individual model outputs. 

This method fits in well with the intricate and subtle 

character of medical picture classification, where the 

synthesis of various points of view can improve 

diagnostic precision.Each strategy used in ensemble 

learning is designed to tackle a particular problem, 

such as bagging, boosting, and stacking. Bagging 

entails training numerous CNNs on various dataset 

subsets and combining their predictions. This 

method increases the general dependability of 

forecasts while simultaneously lessening the impact 

of outliers. On the other hand, [24] boosting focuses 

on iteratively improving models by highlighting 

cases that earlier models incorrectly identified. This 

iterative process improves the model's capacity to 

categorise difficult cases accurately, ultimately 

leading to an improvement in overall performance. 

For the classification of medical images, the 

combination of ensemble learning and deep CNNs 

offers a number of appealing advantages. In the 

beginning, it improves prediction accuracy by 

lowering errors and lowering the possibility of 

misdiagnosis. Second, ensemble learning offers a 

level of robustness that is especially important in 

medical settings where accurate diagnoses are of the 

utmost importance [14]. The inherent variability and 

noise in medical picture data can be mitigated by 

combining the results of several models. Thirdly, 

group learning enables a more thorough 

investigation of the complex feature space found in 

medical images. As a result, subtle trends and 

anomalies that individual models would miss can be 

found.The combination of ensemble learning with 

deep CNNs is not without its difficulties, though. To 

acquire the best results, significant consideration 

must be given to the selection of the proper ensemble 

techniques and the optimisation of hyperparameters. 

Furthermore, it is necessary to handle the possible 

rise in computing complexity, particularly in 

medical settings with limited resources. 

Additionally, there is still room for improvement in 

the interpretability of ensemble-based forecasts, 

necessitating the creation of techniques that can shed 

light on how these models make decisions [15]. 

Contribution: 

Several significant advantages result from the 

classification of medical images using deep CNNs 

and ensemble learning.  

1. This paper advances the subject of deep ensemble 

learning and fills a gap in the literature by providing 

a comprehensive overview of contemporary 

ensemble learning algorithms for deep learning-

based MIC. 

2. The ensemble learning increases the reliability of 

automated diagnoses by providing robustness 

against dataset noise and unpredictability also it 

improves overall prediction accuracy, decreasing the 

possibility of incorrect classifications.  

3. The proposed method makes it possible to more 

thoroughly explore the feature space, making it 

possible to find subtle patterns that may be difficult 

for individual models to identify. 

The organization of paper is as follows: The 

classification of medical images, ensemble learning, 

and our research issue are all introduced in Section 

1. We discuss similar work in the field in Section 2 

of this article. Discuss the datasets that are used to 

support and validate the suggested strategy in 

section 3. The preprocessing techniques, deep 

convolutional neural network topologies, ensemble 

learning techniques, and pooling functions are 

covered in section 4. We present the experimental 

findings and go into great depth about them in 

Section 5. We wrap up our discussion in Section 6 

and offer suggestions for future research. 

II. Review Of Literature 

Small sections of medical images were used as local 

characteristics by Paredes et al. [1] and the 

classification algorithm k-nearest neighbour (k-NN) 

was used to classify the whole set of medical images. 

Modern accuracy was attained using this strategy. 

Using discrete wavelet transform (DWT), wavelet 

frame transform (WFT), and wavelet packet 

transform (WPT) to extract features, then Fuzzy C-

means to detect the presence of pneumonia from X-

ray pictures, Parveen and Sathik [2] concentrated on 

this problem. To categorise medical images with 

high precision, Caicedo et al. [3] used support vector 

machines (SVM) and the scale-invariant feature 

transform (SIFT) as a local feature descriptor. In 

contrast, Rublee et al. [4] proposed the effective and 

patent-free oriented fast and rotated binary robust 

independent elementary features (ORB) descriptor, 

displaying performance that was on par with SIFT 

and occasionally even beating it. Another important 

classification technique that was used successfully 

was SVM, which performed admirably in a number 

of medical picture classification tasks [5, 6]. Thus, 



International Journal of Intelligent Systems and Applications in Engineering                                    IJISAE, 2024, 12(4s), 106–121 |  109 

   

as representative classical approaches, this study 

makes use of the ORB descriptor and SVM. 

Convolutional Neural Networks (CNNs) are being 

used to classify medical images [35], and this has 

attracted a lot of attention, especially when they 

produced outstanding results in the ImageNet 

Challenge. To avoid the need for complex and 

expensive feature engineering, researchers took 

advantage of CNNs' ability to extract features. A 

customised CNN with shallow ConvLayer, for 

instance, was created by Qing et al. [8] to classify 

lung disease picture patches and showed promise for 

generalisation to a variety of medical image datasets. 

The effectiveness of CNN-based systems has also 

been shown in the diagnosis of chest X-ray films, 

particularly using the Stanford Normal Radiology 

Diagnostic Dataset and the ChestX-ray dataset [9]. 

InceptionV3 model with ImageNet weights was 

utilised to achieve high accuracy in identifying 

optical coherence tomography (OCT) pictures. 

Transfer learning, a common strategy in medical 

image classification, was successfully implemented 

in this study. When compared to human experts, the 

transfer learning strategy produced better results in 

several circumstances. To further illustrate its 

potential advantages, Vianna [10] investigated the 

use of transfer learning for the classification of X-

ray images. 

Despite being relatively young, capsule neural 

networks (CapsNets) have demonstrated potential 

thanks to their unique equivariance feature. The 

classification of brain tumours in MRI images using 

CapsNets was accomplished by Afshar et al. [18] 

with a notable improvement in prediction accuracy. 

In a similar manner, Tomas and Robertas [11] 

employed CapsNets to categorise breast tissue 

biopsies from breast cancer histology images, 

reporting outstanding accuracy and sensitivity. 

CapsNets outperformed CNNs in tiny and 

unbalanced datasets, according to Jimenez-Sanchez 

et al.'s [5] evaluation of CapsNets and CNNs on 

various datasets. Studies by Beşer et al. [12] 

demonstrate that research has also been conducted 

to comprehend the mechanical and structural 

alterations of CapsNets under various 

circumstances. 

A variety of techniques have been used to classify 

medical images, including time-tested techniques 

like ORB-SVM, CNNs, and CapsNets. These 

methods demonstrate a variety of results, from 

attaining cutting-edge precision to resolving issues 

brought on by particular medical imaging datasets. 

Utilising cutting-edge technologies like CNNs and 

newly emerging ones like CapsNets has the potential 

to revolutionise medical image processing, resulting 

in improved diagnostic accuracy and, ultimately, 

better patient care.The authors found that adding 

more models and increasing the number of 

ConvLayers significantly improved the final 

accuracy of CapsNets. Compared to the original 

approach, a 7-model constructed CapsNet with 

additional ConvLayers was significantly more 

effective. In addition, Tomas and Robertas raised the 

number of ConvLayers for their CapsNet, which was 

created exclusively for classifying breast cancer, to 

five. On the other hand, Afshar et al. [18] carried out 

a thorough investigation of CapsNet variations, 

optimising variables including input size, feature 

maps, ConvLayers, capsule numbers, dimensions, 

and neuron counts. They discovered that, for a 

variety of datasets, 64x64 input images, fewer 

feature maps (down from 256 to 64), and routing 

iterations no more than three produced the best 

results. 

The appropriateness of conventional techniques 

(SVM with ORB feature), CNN-based transfer 

learning, and Capsule networks for medical image 

datasets has been established in light of the reviews 

that have already been published. Even while CNN-

based transfer learning [36] has demonstrated 

superior accuracy performance across a variety of 

datasets, there hasn't been a direct comparison of 

these approaches on the same dataset, such as the 

pneumonia dataset. This paper will assess and 

contrast their results in the context of the same 

dataset in order to close this gap.Furthermore, [30] 

adjusting settings is a crucial component of these 

techniques. There are numerous characteristics and 

classifiers available for evaluation with traditional 

approaches. The paper chooses linear SVM and 

ORB features for classification as a starting point. 

The traditional method will also be evaluated in 

terms of data augmentation, a preprocessing strategy 

that may be used with all three approaches. The 

research will concentrate on retrained ConvLayer 

depths, classification layer complexities, and 

dropout rates as key factors in the outcome for CNN-

based transfer learning. The quantity of feature 

maps, capsules, and capsule channels will also be 

thoroughly assessed in the context of capsule 

networks to determine their impact on performance. 
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Table 1: Summary of related work in Image diagnosis and classification 

Paper Algorithm Finding Limitation Disadvantage 

[21] k-Nearest Neighbor(k-NN) 

Used local image patches to 

classify full medical images, 

achieving state-of-the-art 

accuracy. 

Dependence on the k-

NN parameter and 

efficient patch 

extraction. 

Significantly 

depends on the 

portrayal of local 

features. 

 [22] 

Discrete Wavelet Transform 

(DWT), Wavelet Frame 

Transform (WFT), Wavelet 

Packet Transform (WPT), 

Fuzzy C-means 

Combining wavelet-based 

feature extraction and fuzzy 

clustering allowed for the 

accurate detection of 

pneumonia from X-ray 

pictures. 

Sensitivity to the 

parameters used for 

the wavelet and 

clustering. 

Noise and image 

quality differences 

are a concern. 

 [23] 

Scale-Invariant Feature 

Transform (SIFT), Support 

Vector Machines (SVM) 

SIFT and SVM were used to 

classify medical images with 

a high degree of precision. 

Unable to represent 

deep patterns; only 

supports local feature 

representation. 

Having to deal with 

intricate feature 

hierarchies. 

 [24] 

Oriented FAST and Rotated 

Binary Robust Independent 

Elementary Features (ORB) 

A patent-free local feature 

descriptor (ORB) with 

performance on par with or 

better than SIFT was shown. 

Depends on precise 

parameter tweaking 

and is rotateable. 

May have trouble 

with some image 

modifications. 

 [3] 

Convolutional Neural 

Networks (CNN), Transfer 

Learning (e.g., InceptionV3) 

Achieved outstanding 

outcomes in medical picture 

categorization tests, 

occasionally exceeding 

human specialists. 

Big labelled datasets 

are necessary for the 

best performance. 

High computing 

demands; overfitting 

with small data. 

 [18, 

31] 
Capsule Networks 

Exhibited equivariance and 

showed potential in 

classifying breast tissue 

samples and brain tumours. 

Less well-established 

architectures and scant 

research. 

Potentially more 

demanding on 

resources and 

training complexity. 

 

III. Dataset Used 

A. Dataset 1:  

CT Medical Image Dataset 

The provided dataset offers a flexible framework for 

examining the complex interactions between the use 

of contrast agents and patient age in CT imaging 

data. The main goal is to identify important trends in 

statistical patterns, visual textures, and 

distinguishing traits that strongly correlate with 

these particular attributes. This project might make 

it easier to create simple tools that can recognise 

misclassified photos, outliers, or abnormal cases 

automatically. A small fraction of carefully chosen 

photos from the Cancer Imaging Archive make up 

the collection. It includes the core slice of CT scans 

obtained in situations where precise age, modality, 

and contrast information could be obtained. A 

repository of 475 series, originating from 69 

different patients, has been created as a result of this 

careful curation procedure. These series have the 

potential to shed important light on the subject of 

medical imaging analysis. 
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Table 2: Details of Dataset 1 

No of 

Records 

Attribute Details 

475 series 

Patient Age The patients' ages at the time a CT image was taken. 

Modality The imaging method employed in this instance, specifically CT scans. 

Contrast If contrast agents were present or not when the image was taken. 

Image Texture Examining the textures in the CT images to find patterns and traits connected to the 

patient's age and contrast usage. 

Statistical 

Patterns 

Investigating statistical aspects of photos to find connections between patient age and 

contrast delivery. 

Classification 

Tools 

Creating automated methods for picture classification that can help identify cases that 

were incorrectly categorized or suspicious outliers. 

Anomaly 

Detection 

Locating anomalies that might be signs of prospective difficulties, such as inaccurate 

readings, concerns with machine calibration, or odd cases. 

 

B.  Dataset 2: 

Skin Cancer ISIC Dataset: 

The International Skin Imaging Collaboration (Skin 

Cancer ISIC) collection is a crucial resource for the 

advancement of dermatology and the identification 

of skin cancer. The pictures in this dataset show a 

variety of skin conditions, including benign and 

malignant lesions. The major goal of this dataset is 

to facilitate the development and evaluation of 

machine learning algorithms and image analysis 

techniques for accurate skin cancer diagnosis and 

classification. 

Table 3: Details of Dataset 2 

No of 

Records 

Feature Details 

23,328 

images 

Lesion Type Classifies lesions according to their type, such as basal cell carcinoma, nevus, 

and melanoma. 

Image Modality Dermoscopic pictures, which offer a better visual representation of skin 

structures, are included. 

Anatomical Site Describes the precise region on the body where the lesion is, which helps 

context-based analysis. 

Age The patient's age at the time of image acquisition is noted. 

Sex Captures the patient's gender, allowing for potential analysis that is gender-

specific. 

Clinical Diagnosis Provides clinical evaluations of the lesion, assisting in the establishment of a 

baseline for algorithm evaluation. 

Benign/Malignant 

Label 

Determines the lesion's malignant or benign status, a key factor in detecting 

skin cancer. 

Image Quality Analyses image quality, which may have an impact on the accuracy of the 

diagnostic algorithms. 
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Data Source Origins in both clinical and non-clinical settings, allowing for a variety of real-

world instances to be represented. 

Image Resolution Contains high-resolution photos that capture the minute details required for 

precise analysis. 

 

Fig 2: Sample images of Chest CT scan 

IV. Methodology 

The figure 3 shows the classification approach used 

in this study for medical photos, which combines the 

benefits of ensemble learning with deep 

convolutional neural networks (DCNNs) to increase 

the accuracy and reliability of image categorization. 

In ensemble learning, various basic classifiers are 

trained to recognise various aspects of the data, and 

their predictions are then merged to provide a more 

accurate outcome. Support Vector Machines 

(SVMs), Decision Trees, and Random Forests are 

just a few of the models that are separately trained 

using this technique on the dataset. To obtain the 

final ensemble forecast, their individual projections 

are then combined through a vote process. To extract 

complex characteristics from raw image data, deep 

convolutional neural networks (DCNNs) are used 

concurrently. Convolutional layers are used in these 

DCNNs to capture regional patterns and textures, 

then pooling layers are used to reduce the 

dimensions, and fully connected layers are used to 

classify data. These layers are created so that the 

network can recognise intricate patterns and make 

precise predictions by automatically learning 

hierarchical representations of the input images. 

The DCNN architecture is then updated to include 

the ensemble learning technique. The outputs of 

many DCNN models with various topologies and 

initializations are blended using ensemble methods 

like majority voting or weighted averaging. This 

combination of forecasts makes use of the diversity 

of DCNN models, balancing out model biases and 

improving overall forecast accuracy.The work uses 

a hybrid methodology that combines ensemble 

learning and DCNNs to enhance medical picture 

classification. DCNNs capture the complex features 

present in medical images, whereas ensemble 

learning makes use of the variety of base classifiers. 

This dual strategy has the potential to increase 

accuracy and resilience, which would strengthen the 

validity of medical picture categorization and aid in 

the development of better diagnostic results. 
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Fig 3: Stepwise flow of proposed method 

A. Support Vector Machine 

The Support Vector Machine (SVM), a potent 

machine learning method, is frequently used to 

classify medical images because of its potent ability 

to distinguish between and classify complicated data 

patterns. SVM is used in medical imaging to 

automatically analyse and classify different kinds of 

medical pictures, improving patient care, diagnosis, 

and therapy.SVM works by locating an ideal 

hyperplane that divides classes of data in the data 

space as much as possible. By acting as a judgement 

boundary, this hyperplane enables the algorithm to 

correctly identify novel, unseen images. In medical 

image analysis, where images may contain intricate 

and subtle patterns that lead to diagnostic insights, 

SVM's usefulness resides in its capacity to handle 

high-dimensional feature spaces.SVM first begins 

by extracting pertinent features from the photos, 

which may include textures, forms, and statistical 

patterns suggestive of particular medical disorders. 

The SVM model is then trained using these features. 

Once trained, the SVM can categorise fresh, 

unexplored medical images by classifying them 

according to their feature representations. 

Step 1: Data collection and Preprocessing: 

Collect a dataset containing data on medical images, 

perform any necessary feature engineering or 

dimensionality reduction prior to training the model 

by converting the data into a format suitable for 

training and converting features as needed. Let 𝑥𝑖 

represent the ith feature of an instance, and 𝑦𝑖   be its 

label. 

Step 2: Extraction of feature: 

Represent instances of medical dataset as feature 

vectors. You could use statistical characteristics 

such as mean, variance, and other network packet 

characteristics as your features. The mean of a 

feature x is determined by adding all of the feature's 

values and dividing by the total number of data 

points. 

𝑀𝑒𝑎𝑛(�̅�) =  
∑ 𝑥𝑖

𝑁
𝑗−1

𝑁
                (1) 

The variance of a characteristic x indicates how 

widely the values deviate from the mean. It is 

computed by averaging the squared deviations 

between each data point and the mean. 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝜎2) =  
∑ 𝑥𝑖− 𝑥 ̅𝑁

𝑗−1

𝑁
     (2) 

Step 3:  Optimal Hyperplane for SVM 

The SVM algorithm seeks to identify the optimal 

hyperplane that maximally separates the two 

classes. The numerical representation is as follows: 

𝒇(𝒙) = 𝐬𝐢𝐠𝐧 (∑ 𝑤𝑖𝑥𝑖 + 𝑏

𝑛

𝑗=1

)    (3) 
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Here, 𝑤𝑖  are the weights and b is the bias term. 

Step 4: Optimization 

The objective is to determine w and b that 

maximize the margin within the constraints. 

𝒚𝒊 (∑ 𝑤𝑖𝑥𝑖 + 𝑏

𝑛

𝑘=1

) ≥ 𝟏    (4) 

The optimization problem stated that: 

min 𝑤, b 
1

2
Square(∥ 𝑤 ∥)   (5)   

subject to: 

𝒚𝒊(∑ 𝑤𝑖𝑥𝑖 + 𝑏𝑛
𝑘=1 ) ≥ 1 , for all records 

Step 5: Prediction and Detection 

Once the SVM model has been trained with the 

optimal weights and bias, it can be used to predict 

new, unseen instances, for a new instance x with the 

characteristics x 1, x 2,x n, use the decision function: 

𝑓(𝑥) = sign (∑ 𝑤𝑖𝑥𝑖 + 𝑏

𝑛

𝑗=1

)    (6) 

If 𝑓(𝑥) > 0, 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦 𝑎𝑠 𝑛𝑜𝑟𝑚𝑎𝑙;  𝑖𝑓𝑓(𝑥)

< 0, 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦 𝑎𝑠 𝑖𝑛𝑡𝑟𝑢𝑠𝑖𝑣𝑒. 

Step 6: Evaluation Metrics 

Evaluate the efficacy of your SVM-based 

classification using a variety of metrics, including 

precision, recall, F1-score, and ROC curves. 

B. Ensemble Method: 

By merging the results of various base classifiers, 

ensemble methods are effective tools for improving 

the predicted accuracy of medical picture 

categorization. These techniques make use of the 

idea that combining predictions from various models 

can frequently produce outcomes that are superior to 

those of depending just on one model. The "Voting" 

ensemble, which aggregates the judgments of 

individual classifiers through a voting process, is a 

popular ensemble technique. 

Voting as a group in an ensemble 

A voting ensemble determines the final class label 

for a particular medical image by combining the 

predictions of many base classifiers that were 

trained independently on the same dataset. When 

individual classifiers have complementary strengths 

and weaknesses, this method is especially effective. 

Hard voting and soft voting are the two primary 

categories of voting ensembles. 

Hard Voting: In Hard Voting, each prediction made 

by a base classifier is treated as a vote, and the class 

with the most votes becomes the outcome. This 

approach works well with classifiers that generate 

discrete class labels. Assume that there are N base 

classifiers (C1, C2,..., CN) and K classification 

classes. The ensemble forecast y_ensemble for a 

given medical image x is established as: 

𝑦𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 = 𝑚𝑜𝑑𝑒(𝐶1(𝑥), 𝐶2(𝑥), … 𝐶𝑁(𝑥))   (7) 

Soft Voting: In this method, the class with the 

highest average probability is selected as the final 

prediction after averaging the class probabilities that 

each base classifier outputs. When classifiers offer 

probability estimates for each class, this strategy is 

appropriate. The class probability calculated by each 

base classifier for class k (for each k = 1, 2,..., K) 

should be P_k in the case of soft voting. The formula 

for the ensemble prediction y_ensemble is 

𝑦𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘(
1

𝑁
∑ 𝑃𝑘

𝑖

𝑁

𝑖=1

)   (8) 

Voting ensembles are an example of an ensemble 

approach that makes use of the diversity of base 

classifiers to build a better and more reliable overall 

model. Ensemble approaches considerably increase 

classification accuracy and reliability in medical 

images by integrating the advantages of separate 

classifiers. This improves diagnostic skills and 

eventually improves patient care. 

C. Deep Convolution Neural Network: 

Deep Convolutional Neural Networks (DCNNs), 

which automatically extract hierarchical and 

significant features from raw pixel data, have 

revolutionized the categorization of images. DCNNs 

are especially made to handle grid-like data, like 

photographs, and have excelled at a number of 

computer vision applications, including the 

classification of medical images. 

Step 1: Input Layer: 

The convolutional layer computes a set of feature 

maps Z using a set of filters W and a bias term b, 

given an input image X represented as a matrix. 

Z =  f(X ∗ W + b)  (9) 

Step 2: Pooling Layer: 

Common pooling operations include maximum 

pooling and average pooling, which help extract 

pertinent information and enhance the network's 

resiliency against variations. By combining layers, 



International Journal of Intelligent Systems and Applications in Engineering                                    IJISAE, 2024, 12(4s), 106–121 |  115 

   

the spatial dimensions of the feature maps are 

diminished. Max pooling, in which the utmost value 

in a local region is selected, is frequently employed. 

 

𝑃(𝑖, 𝑗) = max(𝑆2𝑖, 2𝑗, 𝑆2𝑖, 2𝑗 + 1, 𝑆2𝑖 + 1,2𝑗

, 𝑆2𝑖 + 1,2𝑗 + 1)   (10) 

Where, 

• P(i,j) is the value at position (i,j) of the pooled 

feature map. 

• S2i,2j represents the value at position (2i,2j) of the 

input feature map 

Step 3: Fully Connected Layer: 

The last pooling layer's output is flattened and fed 

into one or more layers that are fully linked. For a 

solitary neuron in the layer with all connections: 

a =  f(W ∗ P + b)  (11) 

Step 4: Output layer: 

Backpropagation and gradient descent are used to 

optimize the model parameters (weights and biases) 

in order to minimize a loss function, typically cross-

entropy loss: 

𝐿 = −∑𝑖(𝑦𝑖 ⋅ log(𝑃(𝐶normal ∣ 𝑥𝑖)) + (1 − 𝑦𝑖) ⋅

log(𝑃(𝐶malicious ∣ 𝑥𝑖)))   (12) 

Where: 

• L is the loss function. 

• yi is the true label (1 for normal, 0 for malicious) for 

sequence xi 

 

V. Result And Discussion 

Three different types of training and testing datasets 

were employed in the study: "Normal," "Bacteria," 

and "Virus." These kinds were distributed as follows 

within the datasets: for the training dataset, 

"Normal" samples made up roughly 24.50% of the 

samples, "Bacteria" samples made up a higher 

percentage at 49.20%, and "Virus" samples made up 

the remaining 26.30%. The distribution of the 

samples in the testing dataset, however, was slightly 

different, with "Normal" making up 38.60% of the 

samples, "Bacteria" making up 36.20%, and "Virus" 

making up 25.20%. With this classification scheme, 

we hoped to adequately represent the variety of 

situations and ensure a thorough assessment of the 

model's performance in several areas. The training 

and testing datasets differing ratios of each kind 

allowed for a representative and fair evaluation of 

the model's generalisation potential and efficiency in 

categorising various sorts of instances. 

Table 4: Dataset 1 Training and Testing records 

Types Training dataset Testing dataset 

Normal 24.50% 38.60% 

Bacteria 49.20% 36.20% 

Virus 26.30% 25.20% 

 

Table 5: Dataset 2 Training and Testing records 

Types Training dataset Testing dataset 

Normal 26.30% 25.20% 

Bacteria 49.20% 36.20% 

Virus 24.50% 38.60% 

 

The distribution of training and testing records from 

Dataset 2 is shown in Table 5, which is divided into 

case kinds. The dataset is divided into three 

categories: Bacteria, Virus, and Normal. Normal 

cases make up 26.30% of the data in the training 

dataset, while Bacteria cases make up the bulk at 

49.20% and Virus cases make up 24.50%. On the 

other hand, the proportions slightly vary in the 

testing dataset. The percentage of normal instances 

is 25.20 percent, bacteria cases are 36.20 percent, 
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and virus cases are noticeably 38.60 percent of the 

testing results. This distribution shows how cases are 

split between the training and testing sets, shedding 

light on the dataset's make-up and its potential 

effects on the development and testing of models. 

 

Table 5: Training Evaluation of proposed model learning rate, batch normalisation, and dropout Rates 

Type Model Training image DRP1 VAG16 

Dataset 1 

SVM 5223 1.2 88.5 

Ensemble Model 5223 0.2 89.8 

DCNN 5223 0.8 90.6 

Dataset 2 

SVM 6588 0.8 90.2 

Ensemble Model 6588 0.4 91.7 

DCNN 6588 0.6 93.6 

 

With a focus on the effects of learning rate, batch 

normalisation, and dropout rates on three different 

models Support Vector Machine (SVM), Ensemble 

Model, and Deep Convolutional Neural Network 

(DCNN) we give the testing assessment findings for 

the proposed model in Table 6. In each instance, 

there are 2232 test photos. A learning rate of 0.8 was 

used for the SVM, which resulted in an accuracy of 

89.5%. Moving on to the Ensemble Model, the 

accuracy increased to 90.8% with a learning rate of 

0.6. The DCNN displayed the highest accuracy of 

91.2% and also had a learning rate of 0.6.  

 

Fig 4: Training model learning rate, batch normalisation, and dropout Rates 

These findings highlight the importance of adjusting 

learning rates, and they show that the Ensemble 

Model and DCNN both benefit from the chosen 

learning rate. This testing evaluation offers 

insightful information on how each model performs 

under various learning rate settings, highlighting 

their individual advantages in handling the given 

dataset. 
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Table 6: Testing Evaluation of proposed model learning rate, batch normalisation, and dropout rates 

Type Model Testing image DRP1 VAG16 

Dataset 1 

SVM 2232 0.8 89.51 

Ensemble Model 2232 0.6 90.86 

DCNN 2232 0.6 91.22 

Dataset 2 

SVM 1265 0.6 90.54 

Ensemble Model 1265 0.5 93.83 

DCNN 1265 0.7 92.21 

 

The performance indicators for several classifiers 

across diverse datasets are comprehensively 

summarised in Table 7. Ensemble Model, Deep 

Convolutional Neural Network (DCNN), and 

Support Vector Machine (SVM) are three of the 

classifiers that were assessed. With a balanced 

combination of F1 score, sensitivity, and AUC of 

96.11%, 96.66%, and 98.55%, respectively, for the 

CHMNIST dataset, SVM obtained an accuracy of 

97.12%.  

 

Fig 6: Testing model learning rate, batch normalisation, and dropout rates 

The Ensemble Model showed a marginally higher 

accuracy (97.50%) but a noticeably lower F1 score, 

sensitivity, and AUC for CHMNIST. The Ensemble 

DCNN, on the other hand, greatly outperformed the 

SVM and Ensemble Model on CHMNIST, 

obtaining an accuracy of 98.67% and displaying 

superior F1 score, sensitivity, and AUC values. 
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Table7: Summary of Performance metrics of classifier 

Method 

CHMN

IST 

Acc. In 

% 

CHMN

IST F1 

CHMNIS

T Sens. 

In % 

CHMNIS

T AUC In 

% 

ISIC Acc. 

In % 

ISIC F1 

In % 

ISIC 

Sens. In 

% 

ISIC 

AUC In 

% 

SVM 97.12 96.11 96.66 98.55 98.22 97.21 97.76 99.65 

Ensemble 

Model  
97.50 94.77 94.23 97.43 98.32 95.59 95.05 98.25 

Ensemble 

DCNN 
98.67 97.87 97.11 98.31 99.71 98.91 98.15 99.35 

 

Using the ISIC dataset as a comparison, SVM 

demonstrated strong classification performance with 

an accuracy of 98.22% and competitive F1 score, 

sensitivity, and AUC scores of 97.21%, 97.76%, and 

99.65%, respectively. Although the F1 score, 

sensitivity, and AUC of the Ensemble Model were 

marginally inferior to those of the SVM, it 

nevertheless maintained a high accuracy rate 

(98.32%). Surprisingly, the Ensemble DCNN 

performed admirably once more, with astounding 

accuracy (99.71%) and surpassing other measures as 

well. 

 

Fig 7: Comparison of Performance metrics of classifier 

 

Fig 8: Accuracy Comparison of classifier 
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Basically, the Ensemble DCNN consistently 

displayed the best performance across all assessed 

parameters and datasets, indicating its promise as a 

reliable classifier. With Ensemble DCNN emerging 

as a particularly successful option for precise and 

thorough classification, the results of each classifier 

offer useful insights into their respective strengths 

and capabilities for handling various datasets.The 

Support Vector Machine (SVM), Ensemble Model, 

and Ensemble Deep Convolutional Neural Network 

(DCNN) proposed approaches were thoroughly 

assessed on two separate datasets, CHMNIST and 

ISIC, as shown in figure 8. Their categorization 

accuracy on these datasets is reflected in the results. 

SVM displayed its consistency in performance 

across many data domains by reaching an accuracy 

of 98.22% on the ISIC dataset and a remarkable 

accuracy of 97.12% on the CHMNIST dataset.The 

Ensemble Model, which was created by combining 

different models, demonstrated slightly increased 

accuracy on the CHMNIST dataset (97.5%), while 

maintaining its robustness (98.32% accuracy) on the 

ISIC dataset.  

This demonstrates how well the Ensemble Model 

can generalise its categorization abilities across 

various data sources.Surprisingly, the Ensemble 

DCNN took first place in both datasets, achieving 

the greatest accuracy levels. It excelled further with 

an outstanding accuracy of 99.71% on ISIC after 

reaching an impressive accuracy of 98.67% on 

CHMNIST. These findings highlight the 

effectiveness of deep convolutional neural networks 

with ensemble learning, demonstrating Ensemble 

DCNN's capacity to capture subtle features and 

patterns for precise categorization. 

VI. Conclusion 

The use of deep convolutional neural networks 

(DCNNs) and ensemble learning in the classification 

of medical images has demonstrated amazing 

potential for improving diagnostic precision and 

streamlining laborious procedures. The field's 

extraordinary growth underlines how important it 

will be in transforming healthcare procedures. It has 

been demonstrated that integrating ensemble 

learning algorithms into DCNN architectures is a 

potent strategy for enhancing prediction 

performance by combining the advantages of many 

models. By addressing the issues raised by small 

medical imaging datasets, this synergy improves 

robustness and dependability.Success in numerous 

research has shown that ensemble learning 

techniques, such as mixing various model types or 

optimising inference algorithms, are adaptable to a 

variety of medical imaging tasks. The inclusion of 

DCNNs has also increased the potential of medical 

image classification systems because of their 

inherent capacity to extract significant features and 

patterns. Utilising pre-trained networks and transfer 

learning and fine-tuning approaches, sparse medical 

data has been used effectively.These developments 

have a great deal of potential for clinical applications 

in the actual world, providing helpful decision 

assistance to medical professionals and possibly 

quickening patient care, diagnosis, and treatment. 

These techniques will be refined as the area develops 

thanks to ongoing study and cooperation, opening 

the door for ever more precise, effective, and 

dependable medical picture categorization systems 

that contribute to better patient outcomes and 

improved medical practises. 
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