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Abstract: Underwater images often exhibit colour variations and poor perceptibility due to wavelength dependent light absorption and 

scattering. In order to address these problems, we introduce a swift algorithm and hue-preserving based mechanism for an effective and 

reliable underwater image enhancement. In order to reduce the excessive pixel values, we initially used a simple logarithmic function as 

a preprocessing step. The brightness and contrast are then altered using a novel nonlinear enhancement operation that was developed 

empirically on the basis of mathematical, statistical and spatial data. Additionally, as a post-processing step, a regularisation function is 

used to rearrange image pixels in the natural dynamic range. We also used CHS and WDF techniques which perform on HIS and HSV 

colour models, respectively. Prior to applying a WDF method to the S and I components, the degraded images are initially transformed 

from RGB color model to HIS colour model. This model preserves hue component H. The image is then changed in the HSV color model 

in a similar way, with the H component being kept invariant and the S and V components being process using CHS method. Experimental 

findings shows that the enhancement of image quality in terms of qualitative and quantitative evaluation in the proposed method. Our 

method has been demonstrated successfully enhancing underwater images having colour distortion, poor contrast and detail loss.  

Keywords: Image Enhancement, Underwater Image, Swift Algorithm, Constrained Histogram Stretching (CHS), Wavelet Domain 

Filtering (WDF). 

1.Introduction  

The advancement of marine resource development, 

marine biological research, and undersea environmental 

evaluation is being accelerated by researchers' interest in 

underwater computer vision technologies. These 

accomplishments have made it possible for underwater 

imaging research to have strategic significance and 

practical application value [1]. However, an imaging 

component is not able to produce better quality 

underwater photographs since light is particularly 

observed by water throughout its propagation and the 

scatter by suspended microparticles as shown in Fig.1. 

The degraded photographs frequently suffered from low 

contrast and colour cast concerns. Therefore, there is still 

a need for study in the domain of computer vision to 

overcome the poor-quality underwater photographs. The 

target distance as well as underwater depth have an 

impact on the imaging quality of underwater images. The 

Jaffe McGlamery underwater optical imaging model 

considers light source, medium, sensor and object 

reflection qualities. The three forms of light scattering 

caused by water in this model are forward, backward and 

back scattering. 

These three scattering components are processed as a 

linear sum to create the total light scattering effect in 

underwater imaging. The forward scattering is slight 

angular deviation of the light reflected through water 

elements during its transmission in the lens. The direct 

scattering is the scattering of the target items to the 

imaging system. Details become hazy because the 

dispersed light's path diverges from its original 

transmission direction. When light strikes water 

impurities, it scatters, a phenomenon known as 

backscattering. Depth and the angle of imaging system as 

well as  the level of colour attenuation of underwater 

photographs is all affected differently by backscattering. 

However, the majority of documented underwater 

photography improvement techniques typically ignore 

the colour cast quality. Rather, they apply global 

processing to the whole image where it causes local RGB 

three-channel region to be overcompensated. 

This study develops a novel method for underwater 

image enhancement using a swift algorithm and hue 

preserving based mechanism. The key contributions of 

this study are summarised as follows.   

1) This study presents a competent image 

enhancing method by combining the hue saturation 

intensity (HIS) and hue saturation value (HSV) color 

models.   
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2) The noncomplex logarithmic function is applied 

as the preprocessing stage to obtain a reasonable intensity 

equalisation and remove immoderate pixel values.   

3) The method used wavelet domain filtering 

(WDF) and constrained histogram stretching (CHS) 

schemes operated on HIS and HSV colour models, 

respectively wherein the hue component (H) is preserved 

in both operations.  

The experimental findings support the accuracy of the 

color characteristic analysis, the generalizability of 

underwater photograph improvement techniques and the 

viability of underwater imaging improvement in a range 

of settings. Empirical results assures that the proposed 

method generates better results than other widely popular 

underwater enhancement algorithms in terms of both 

visually and quantitative analysis.   

 

 

Fig 1. Underwater imaging through a scattering medium [1] 

The rest part of this paper is structured as follows. A 

comprehensive study of related works is presented in 

Section 2 and Section 3 gives a detailed introduction to 

the enhancement techniques for underwater imaging 

including the swift algorithm, colour models and 

enhancement algorithms. The experimental validation of 

our strategy and discussion of the qualitative and 

quantitative evaluation are covered in Section 4. The 

proposed method is finally summarised in Section 5.  

2. Literature Survey  

The underwater enhancement methods such as 

underwater image restoration techniques [3]– [5], 

underwater image enhancement [6]– [8], and data-

driven techniques [9]– [11] has been put forward 

successively to enhance image quality. To reconstruct 

high-quality underwater photograph, image 

restoration methods account for the degraded physical 

model. Because of the many complicated underwater 

physical and optical aspects, restoration techniques 

are not easily adaptable. Without taking underwater 

imaging parameters into account, enhancement 

methods concentrate on modifying pixel values to 

improve underwater images [11]. Even though the 

enhancement methods are quick and easy, they often 

over-or under-enhanced because underwater optical 

imaging parameters are not taken into consideration. 

Data-driven techniques training is relied on artificial 

pairs of low- and high-quality images. Though, data 

driven approaches rely on the large numbers of 

training data as well as complex network 

architectures. By reversing the degraded procedures 

and computing parameters of degraded model, the 

underwater image restoration strategy aims to restore 

underwater images. The recovery of underwater 

images using polarization-based techniques [12], [13] 

may increase the clarity and contrast of the images. 

Moreover, to acquire features of deep scene of 

multiple degrees of polarization, hardware devices are 

required. The dark channel prior (DCP) [14] has 

recently proved its dominance in the domain of image 

enhancement. Other algorithms are utilised for 

restoring the underwater images [16]– [18]. From the 

stance of a physical degeneration, Zhou et al. [2] 

presented a technique on the basis of for removal of 

color cast and backscatter pixel prior. Backscatter 

map, illumination map and depth map can all be 

accurately estimated using this strategy with just 

single underwater image as an input. In order to 

enhancing contrast, the backscatter estimation 

strategy is introduced on the basis of depth map for 
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underwater images. Further on the basis of 

illumination map, 

a method is established to eliminate color variations. 

In precise a color compensation method was 

developed to totally remove artifacts that have been 

caused by the robust removal of red channel. An 

underwater restoration approach on the basis of 

distribution of information and light scattering prior 

was presented to solve the degradation concerns [3]. 

In accordance with the details distributions as well as 

light scattering attributes of the background light 

region, it first estimates the background light. The 

relation between the brightness details as well as color 

attenuation is then used to achieve scene depth map as 

well as transmission map. To obtain a restored image, 

an underwater image details method is subsequently 

reversed. To remove color distortion, a method based 

on scene depth map as well as the color correction 

technique was put forth [4]. To construct the depth 

map, this technique first designs a technique for 

estimating the depth of underwater images. 

Backscatter is then computed and eliminated by the 

channel using this model in accordance with depth 

value of each pixel. A secondary guided transmission 

map-based technique was put forth that can 

successfully reconstruct the color, visibility, and 

authentic appearance of underwater images [17]. The 

enhancement of transmission map is carried out using 

optimised guided filtering. After processing the 

images, a polished transmission map is then restored. 

The restored image is then subjected to auto level 

processing to enhance the contrast.  

Sharma et al. [16] demonstrates by assigning the 

proper receptive filed size on the basis of traversing 

range of color channel that could result in a significant 

performance improvement. This method also 

incorporated attentive skip operation to iteratively 

improve learned multi-contextual properties. The 

feature priors influenced by underwater scene priors 

were recently proposed [15]. In more detail, this 

strategy creates a strong model for calculating the 

background light based on hue, brightness, and 

flatness feature priors that could efficiently decrease 

color distortion. The improved contrast is achieved 

while maintaining edge information with the finely 

tuned transmission map. By changing the pixel values 

of images, underwater image enhancing approach 

could improve the contrast and brightness. It mostly 

consists of histogram 

based [19]– [21], Retinex-based [22]– [24], and 

fusion-based  [25]. To enhance the visual quality 

while improving contrast, Ulutas et al. [5] combines 

local as well as global contrast enhancing techniques. 

Meanwhile local technique 

takes into consideration the local brightness 

properties, global technique guarantees the complete 

enhancing of image. Local color correction is also 

used on underwater images using this technique. This 

technique splits photograph into non-over-lapping sub 

blocks and employ histogram to them whereas 

methods in the literature used numerous methods to 

the global histogram of channels.  The technique 

corrects color using HSV color space, precisely the S 

and V components.  

Hu et al. [18] proposes a competent polarimetric 

recovery approach to enhance image quality on the 

basis of histogram attenuation prior while keeping in 

mind the benefit of the polarisation filter that contains 

a precisely constructed histogram processing 

technique called “cut-tail histogram stretching. The 

performance of the restoration can be further 

enhanced by this processing, which gets around the 

limitation of conventional histogram-based 

techniques. The use of physics-based dichromatic 

modelling (PDM) in combination with a method 

based on histogram-equalization (HE) approximation 

was also proposed [19]. Images that have been 

degraded by nature, including such underwater 

images, can be restored using the PDM, which 

explains the image formation process. However, it 

cannot guarantee that reconstructed image has better 

contrast. To reconstruct color irregularities and 

enhancement underwater photographs via context 

optimisation, this method suggests for approximating 

the traditional HE on the basis of PDM. Address the 

issues of color cast as well as poor contrast, a method 

to enhance underwater images related to colour 

correction and three-interval histograms stretching is 

presented [20]. Initially, a sub-interval linear 

transformation related color improvement technique 

is intended to correct color. In the meantime, the 

contrast is improved utilising three adaptive sub-

histogram equalisation algorithms, and the images 

produced by the aforementioned techniques are then 

blended using multi-scale fusion. A Bayesian retinex 

method is introduced by Zhuang et al. [6] utilising 

multi-order gradient reflectance and illumination 

priors. An efficient color correction technique is used 

for removal of color casts and restore naturalness. An 

underwater enhancing procedure on the basis of 

retinex inspired color correction and information 

preservation fusion method is presented [21] to 

address various issues in underwater images. To start, 

this technique uses a Retinex inspired color correction 

method modelled for getting rid of color casts caused 
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via scattering of lights. Further, blend three images 

obtained from color corrected local contrast improved 

version, global contrast improved and detail version 

of underwater images.  

A method based on Retinex is introduced by Hassan 

et al. [22]. The underwater image is first enhanced 

utilising CLAHE that reduces noise while enhancing 

brightness of image components at the expense of 

blurring the visual details. This strategy further 

performs Retinex based enhancement to recover the 

distorted colours. The novel enhancement was 

recently presented [23]. The lighting components are 

obtained utilising multiscale retinex approach. By 

linear quantisation, mean as well as mean square 

errors are introduced, and recovery of color factors 

are utilised for adjusting three channels for color 

improvement. Next, image noise is removed and the 

edge information are retained by considering image as 

anisotropic thermal diffusion in whole directions. 

Multi-featured prior fusion (MFPF) approach is 

proposed for improving perceptual quality of images 

[7]. Thus, the final obtained underwater images will 

have better visual quality thanks to complementary 

multi-features. This method proposed a self-adaptive 

standard deviation based on color improvement 

technique that realizes color offset improvement on 

the basis of dominant color of an image. The 

brightness and structural 

details of the dark region were improved and are used 

to generate group of synthetic exposure maps 

arrangements from the low contrast images. For 

enhancing image quality, Wu et al.[24] developed a 

multiscale fusion GAN. This technique uses four 

convolutional branches to polish the information of 

three prior inputs as well as encode a source input, and 

blend the prior features utilising multiscale fusion 

networks that have been introduced, and then employs 

a channel attention decoder to produce better results. 

To boost the visual presentation of images, a two-

stage approach on the basis of color correction and 

image fusion by combination of deep learning and 

traditional image enhancing method was proposed 

[25]. First, a method for adaptive color compensation 

is traduced to replace the strongly attenuated channels 

that were lost. Color restoration is also used to 

compute the illumination of color casts triggered 

through selective attenuation light. Due to the fact that 

underwater photograph still has scattering and 

blurring after color restoration, a powerful technique 

on the basis of DIWF and GAN is developed that will 

additionally improve edge and contrast information.  

An effective and reliable enhancement of underwater 

images method called MLLE is developed by Zhang 

et al. [26]. This technique starts by locally adjusting 

the color of source image and information. Mean as 

well as variance of local image block are then 

computed using integral and squared maps that are 

used for adaptively control image contrast. Recently, 

Ucolor, a network for enhancement of underwater 

photograph was introduced [27]. In practice, this 

method first uses a multicolour space encoder 

network by fusing information of different color 

spaces into a single structure that enhances a variety 

of feature representations. Combined with the 

attenuation process, the maximum discriminative 

features that are obtained from many color-space that 

are adaptively incorporated and highlighted. In order 

to enhancing underwater images, Zhuang et al. [28] 

introduces a hyper Laplacian reflectance priors 

influenced retinex variational model. In precise, first 

and the second Furthermore, it is observed that l1/2-

norm tends to work well for calculating illumination 

accurately. 

The deep learning has recently demonstrated to 

perform exceptional in different computer vison 

works such as image segmentation [29], image 

defogging [30], super-resolutions [31], [32], and 

salient objection detection [33]. Furthermore, deep 

learning-based methods are steadily used to 

enhancing underwater images [34], [35]. The strategy 

developed by Liu et al. [8]  uses a deep residual 

structure. First, convolution neural network (CNN) 

models are trained using synthetic underwater images 

produced by CycleGAN. The Underwater Resnet 

model, a residual learning model for improving 

enhancing tasks is introduced along with a VDSR. 

Recently use of a LAFFNet was for enhancing 

underwater images [9]. An encoder-decoder design 

along with many AAF schemes constitute this model. 

The AAF generates multi-scale feature maps by 

combining branches with various kernel sizes. 

Moreover, these feature maps are adaptively 

combined using channel attention. To accomplish 

both perceptibility and task-oriented enhancement, a 

new enhancement model was proposed [10]. In order 

to put it more precisely, it reduces the need of paired 

data when using an un-supervised method and 

maintains highly significant details by combining 

with “twin inverse mapping. Besides, it uses 

contrastive cues during training phase to give 

reconstructed image more realistic appearance. The 

novel enhancing model was presented by Lin et al. 

[35] and can asymptotically improve underwater 

image quality. The generator specifically includes an 

advanced enhancement system and two independent 

networks. The base image as 
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Table 1. Summary of some of the underwater image enhancing models. 

well as several other parameter maps are needed for 

progressive enhancement are produce by dual-branch 

framework, respectively. It is suggested that 

underwater image quality be iteratively increased 

Ref. Year Method Approach used 
Performance 

metrics 
Advantage 

Zhuang 

et al. [6] 
2021 

Bayesian 

retinex 

algorithm 

The multiorder gradient priors is 

used to create a maximum a poste-

riori (MAP) formulation that 

applies 1st order and 2nd order 

gradient priors to both reflectance 

and illumination in order to better 

capture the finer scale and full 

structures. 

 

UIQM, UICM, 

UIConM, 

UISM, CCF, 

UCIQE, 

NIQMC and 

Entropy 

The extensive 

investigations 

demonstrate the 

successful results in case 

of colour accuracy, 

parameter evaluation, and 

algorithm convergence 

Liu et al. 

[8] 
2019 Deep learning 

The CycleGAN are presented to 

generate synthetic underwater 

photographs as training dataset for 

CNN models and underwater 

RasNet model which is the residual 

learning model is applied for 

enhancement tasks. 

 

PSNR, SSIM, 

UICM, 

UISM, UIConM 

and UIQM 

The visual effects of 

underwater images are 

greatly enhanced, which 

is beneficial for the 

execution of vision 

related underwater tasks. 

Yang et al. 

[9] 
2021 

 

Deep 

convolutional 

neural 

networks 

(CNNs) 

An encoder decoder method with 

numerous AAF schemes composed 

of lightweight adaptive feature 

fusion network (LAFFNet). AAF 

generates multi-scale feature maps 

by combining branches with 

various kernel sizes. Furthermore, 

these feature maps are adaptively 

combined via channel attention. 

PSNR, SSIM, 

UIQM 

 

 

In this model, AAF 

schemes were able to 

extract multiscale 

features and combine 

them by channel attention 

instead of down- and up-

sampling. In addition, it 

designs the lightweight 

model quicker than other 

cutting-edge models by 

reducing the channel of 

convolutions. 

Hu et al. 

[18] 
2021 

Histogram 

attenuation 

prior 

It combines the polarimetric 

recovery model with a specific kind 

of local histogram processing. By 

employing a polarisation filter to 

create a cross-linear image, it 

further improves the contrast. 

BRISQUE, 

EME, NIQE, 

Entropy 

An efficient local 

histogram-based 

polarimetric recovery 

technique that can greatly 

improve image contrast 

and partially correct 

colour distortion. 

Zhuang et 

al. [28] 
2022 

Retinex 

variational 

model 

The retinex variational model was 

influenced by hyper-Laplacian 

reflectance priors.  In particular, the 

1st order and 2nd order reflectance 

gradients' 𝑙1/2-norm penalties are 

used to generate the hyper 

Laplacian reflectance priors. 

UCIQE, PCQI, 

UIQM and 

Entropy 

This technique is more 

effective at penalising 

multi-order gradients in 

terms of reflectance that 

enhances edges and 

details as well as restores 

the true colours. 𝑙2-norm 

is also useful for 

enforcing linear 

smoothness on the 

illumination as well as 

spatial smoothness. 

Jiang et al. 

[34] 
2022 

Adversarial 

fusion network 

Using manually created multi-scale 

dense enhanced muddy restoration 

and deep aesthetic colour 

correction schemes, we create a 

target oriented perceptual 

adversarial fusion network. 

UCIQE, UIQM, 

UISM, UICM, 

UIConM, PSNR, 

SSIM, PCQI 

The restoration of 

photographs with vibrant 

appearances and 

substantial contents 

works better with this 

technique. 
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using the progressive enhancement algorithm. 

According to Huang et al. [36], an 

order reflectance gradient l1/2-norm penalty is used to 

define the hyper-Laplacian reflectance priors. Such 

priors make use of complete-comprehensive and 

sparsity-promoting 

reflectance to improve both salient structures and tiny 

information, and restore the authenticity of real  

colour. 

AGA could dynamically choose visually 

complementary channels on the basis of dependencies 

thereby requiring fewer additional attention 

parameters. The TOPEL was recently proposed [34]. 

This method precisely considers the turbidity and 

chromatism factors that contribute to underwater 

image degradation. The process first makes a 

deep aesthetic render scheme in order to fortify 

perceptual contrast and implement color correction, 

respectively. The DCAM is then used which is 

followed by a guided adaptive fusion of latent features 

that incorporates manifold information and showcase 

appropriate perceptibility. In the reconstruction, a 

global local adversarial system is incorporated to 

close the gap across synthetic and real-world datasets. 

Summery of some of the methods has been tabulated 

in Table 1.  

3. Proposed Methodology  

This section summarises overall stages of the 

proposed algorithm The schematic flowchart for our 

method is shown in Fig. 2. A swift algorithm for 

enhancing contrast in images is introduced in the first 

stage. It consists of three distinct steps: (a) a 

preliminary preprocessing step for reducing the 

excessive pixels values, (b) a subsequent processing 

step for modifying brightness and contrast, (c) a 

concluding postprocessing stage to rearrange pixels to 

their natural dynamic range. In addition, as illustrated 

in Sections 2.1.1 and 2.1.2, a conversion across RGB 

color models and the HSV/HIS color model is 

provided. Then, in Section 2.2, the enhancement 

model for underwater colour model utilising the hue 

preservation technique is described. 

3.1 Swift Algorithm   

This algorithm attenuates the immoderate pixel values 

and modify the contrast of both images[37]. At pre-

processing phase, it uses a non-complex logarithmic 

function to obtains a suited intensity equalization and 

remove immoderate pixel values. If not managed 

properly such immoderate levels can result in 

excessive whiteness. The following is how the 

logarithmic operation is computed [38] as 

u(x,y) = log(1 + G̅(x,y))                                             (1) 

where G̅(x,y) represents an above filtered image having 

intensity in the range [0, -1], u(x,y) represents an 

output image from preprocessing stage, and (x, y) 

indicate the special coordinates. The adjustment 

function is determined and will be utilized later in 

novel constructed magnitude modification function. 

The initial adjustment parameter ϛ, that is a rectified 

sample standard deviation of an image u(x,y) is the 

technique which can be used to compute an extant of 

variation and distribution in the set of pixel scores. In 

computer vision, ϛ is a sensible to contrast attributes 

where image having poor contrast will carry low ϛ 

scores than image having high contrast. The 

adjustment factor ϛ is determined by [39] as 

ϛ = √
1

n − 1
∑(ui − u̅)

2

n

i=1

                                              (2) 

u̅ =
1

n
∑ui
n

i=1

                                                                   (3) 

where ui represents vector representation of an image 

u(x,y) and u̅ represent average of ui. Further, n  

represents number of components at maximum size in 

ui . Therefore, the second adjustment function η is 

computed utilizing following equations. 

η =
(u(x,y))

λ

λ!
                                                                (4) 

where λ denotes a tweaking function that is set as 

default (λ = 3). An image u(x,y) is next subjected to 

the actual processing step which adjust the brightness 

and contrast. This process entails the implementation 

of a new nonlinear function relating to mathematical, 

statistical, and spatial details designed 

experimentally. The following is how the nonlinear 

function is determined as 

f(x,y) = exp (
tan(u(x,y) − ϛ)

exp(u(x,y) − η)
)

Г

                                   (5) 

where tan represents a tangent in radius of each image 

pixel u(x,y) and f(x,y) represents a photograph with 

improved tonality. Where г denotes an adjustment 

factor which governs a level of enhancement and must 

fulfil г > 0, where a low г value resulting in brighter 

contrast enhancement results and a high г value 

resulting in less-bright contrast enhancement results. 

Above equation has the substantial impact on image 
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tonality enhancement. Thus, using the tangent in 

radians and elementwise exponential parameters 

helps to generate two dissimilar curve transformation 

for filtered images. When these two parameters are 

utilized with adjustment factors ϛ and η, they prefer 

for enhancing brightness and generate perceptible 

tone shift in some situations. The values and 

experimental function are decreased by two separate 

adjustment factors ς  and η , and to overcome such 

effects. Both functions could provide an enhanced 

curvilinear transformation for the utilized functions.  

The parameter ϛ id the common measure which can be 

utilized in numerous real-world applications however 

η are obtains experimentally. One last hurdle that 

should be deal with is a photograph contrast f(x,y) is 

restricted for the specific dynamic range. Therefore, 

it must be regularized to provide suited quality 

performance. Thus, as a last postprocessing step, a 

regularization function is used for redistribution of 

image pixels to their native dynamic range. The 

regularisation operator that was used could be 

determined as in [40]. 

3.2 Colour models  

The RGB model which is most widely used and is present 

in practically each computer system, TV and video is 

described by three chromaticity of green, red and blue 

addictive primaries. A unit cube is typically used to 

display the RGB model, which is sensitive to variations 

in lighting intensity. We therefore look for other 

illumination-invariant colour model. The HSV/HIS 

model is a nonlinear version of RGB colour model and it 

defines colour highly accurate for human interpretation 

than the RGB model does [41]. Three components make 

up the HSI/HSV colour model: HSI/V. Both colour 

models are broadly utilised in the fields of computer 

vision since each one's three components may be handled 

independently and separately.  

3.2.1 RGB-HIS Conversion: The results range from 0-

360 for H and from 0-1 for S and I when RGB variables 

have values between 0 and 255. The HSI formulas are 

[42]: 

𝐻 = {
𝜃                        𝑖𝑓 𝐵 ≤ 𝐺
360 − 𝜃            𝑖𝑓 𝐵 > 𝐺

  

 

Fig 2. Methodological flowchart of the proposed algorithm 

𝑤𝑖𝑡ℎ 𝜃

=  𝑐𝑜𝑠−1
{(1/2)[𝑅 − 𝐺] + (𝑅 − 𝐵)}

[(𝑅 − 𝐺)2 + (𝑅 − 𝐺)(𝑅 − 𝐵)]1/2
    (6) 

𝑆 = 1 −
3[𝑚𝑖𝑛(𝑅, 𝐺, 𝐵)]

(𝑅 + 𝐺 + 𝐵)
                                                (7) 

𝐼 =
1

2
(𝑅 + 𝐺 + 𝐵)                                                     (8) 

3.2.2 RGB–HSV Conversion: According to Travis [43], 

the conversion of RGB to HSV is based on the 

normalised RGB values: 
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𝐻 =

{
 
 

 
 
5 + 𝐵′        𝑖𝑓 𝑅 = 𝑀𝐴𝑋 𝑎𝑛𝑑 𝐺 = 𝑀𝐼𝑁 

1 − 𝐺′        𝑖𝑓 𝑅 = 𝑀𝐴𝑋 𝑎𝑛𝑑 𝐺 ≠ 𝑀𝐼𝑁

1 + 𝑅′        𝑖𝑓 𝐺 = 𝑀𝐴𝑋 𝑎𝑛𝑑 𝐵 = 𝑀𝐼𝑁

3 − 𝐵′        𝑖𝑓 𝐺 = 𝑀𝐴𝑋 𝑎𝑛𝑑 𝐵 ≠ 𝑀𝐼𝑁

5 + 𝐺′                                   𝑖𝑓 𝑅 = 𝑀𝐴𝑋

5 − 𝑅′                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

× 60   (9) 

         S = 1 −
MIN

MAX
                                                                  (10) 

𝑉

= 𝑀𝐴𝑋,                                                                           (11) 

   MAX = max (R, G, B)           MIN = min (R, G, B 

   𝑅′ =
𝑀𝐴𝑋−𝑅

𝑀𝐴𝑋−𝑀𝐼𝑁
       𝐺′ =

𝑀𝐴𝑋−𝐺

𝑀𝐴𝑋−𝑀𝐼𝑁
      𝐵′ =

𝑀𝐴𝑋−𝐵

𝑀𝐴𝑋−𝑀𝐼𝑁
 

3.3 Enhancement Algorithms 

This strategy uses a two-step method. Prior to using WDF 

technique on the saturation coefficient of S and intensity 

coefficient I, an image is first transformed from RGB 

model to HIS model while preserving hue coefficient H. 

The component H is then continuously kept during the 

conversion to HSV color model and the CHS scheme is 

utilised to stretch S and V components. As previously 

said, the proposed method contains various stages. Fig. 2 

depicts the processing flowchart for our method.  

3.3.1 WDF in HIS Colour Model  

The conventional HF [44] is generalised in image 

processing technique that combines grey-level 

transformation and frequency filtering. It could be 

utilised in reducing effects of uneven lighting and 

improve image information. Here, the WDF method that 

could be reduce noise that is amplified by enhancement 

process. A photograph is made up of frequency 

component 𝑖 (𝑥, 𝑦)  as well as reflectance component 

𝑟 (𝑥, 𝑦) of lightning when the image formation is taken 

into account, as 

well as the characteristics of light. The illustration in 

provided  

by  

𝑓(𝑥, 𝑦)

= 𝑖(𝑥, 𝑦)  × 𝑟(𝑥, 𝑦)                                             (12) 

The following six steps composed the WD filter method 

implementation: 

Step 1: Using the logarithm of the image to separate the 

components of illumination and reflectance: 

𝑔(𝑥, 𝑦)     = ln(𝑓(𝑥, 𝑦)) 

               = ln(𝑖(𝑥, 𝑦)) × 𝑟(𝑥, 𝑦)                                   (13) 

= ln(𝑖(𝑥, 𝑦)) + ln(𝑟(𝑥, 𝑦)) 

Step 2: After taking a logarithm, calculate the fourier 

transform of an image; 

𝐺(𝜔𝑥 , 𝜔𝑦) = 𝐼(𝜔𝑥 , 𝜔𝑦)

+ 𝑅(𝜔𝑥 , 𝜔𝑦)                            (14) 

Step 3: Filtering in the frequency domain using the 

homomorphic filter H (u, v). 

𝑆(𝜔𝑥, 𝜔𝑦) = 𝐻(𝜔𝑥 , 𝜔𝑦)  × 𝐼(𝜔𝑥, 𝜔𝑦)

+ 𝐻(𝜔𝑥 , 𝜔𝑦)  × 𝑅(𝜔𝑥 , 𝜔𝑦)           (15) 

   where, 

𝐻(𝜔𝑥, 𝜔𝑦) = (1 − exp (−(
𝜔𝑥
2 +𝜔𝑦

2

2𝛿𝜔
2

))) ×  (𝑟𝐻 − 𝑟𝐿)

+  𝑟𝐿 , 

where the cut-off frequency is controlled by a factor 𝛿𝜔, 

and the maximal and coefficient values are 𝑟𝐻 = 2.5 and 

𝑟𝐿 = 0.5. These parameters are chosen empirically. 

Step 4: Multiscale soft thresholding for denoising in 

WD. Use the following thresholding formula to the 

wavelet coefficient at each level: 

𝑊′𝑇𝑖,𝑗 = {

𝑊′𝑇𝑖,𝑗 − 𝑇𝑖,𝑗                 𝑊
′𝑇𝑖,𝑗 > 𝑇𝑖,𝑗     

𝑊′𝑇𝑖,𝑗 + 𝑇𝑖,𝑗                𝑊
′𝑇𝑖,𝑗 < −𝑇𝑖,𝑗

0                                    |𝑊′𝑇𝑖,𝑗|  <   𝑇𝑖,𝑗

     (16)                                    

where  𝑊′𝑇𝑖,𝑗 = 𝜆.𝑊𝑇𝑖,𝑗 

where 𝑇𝑖𝑗 represent threshold value, 𝑖 is the wavelet scale 

coefficient and 𝜆 is the enhancing component where 𝑗 =

1,2,3, (𝐻𝐻,𝐻𝐿, 𝐿𝐻).   

Step 5: Estimation of an inverse wavelet transform as 

well as reconstruction of wavelet component.   

Step 6: An inverse fourier transform are computed to 

restore the spatial domain and the exponent is than used 

to get the filtered image.  

When the WDF method is applied to the degraded image, 

the contrast can be improved, non-uniform lighting issues 

can be resolved, and accidentally amplified noise can be 

suppressed, however colour imbalance could result. 

Similar to the HSI colour model, the elements S and I 

provide a larger variety of colours while coefficient H 

determines color of an image. Only S and I are used in 

this instance of the WDF method while coefficient H is 

preserved.   

3.3.2 CHS in HSV Colour Model 

It is an easy and simple procedure to enhance images 

which is differs from histogram equalisation, which is 

more complex. The pixel values which aim to improve 

contrast in the image are scaled linearly as a result. To do 

this, a desired range of values is covered through 
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stretching a range of I values. The formula below is used 

to scale each pixel individually:  

𝑃𝑜𝑢𝑡 = (𝑃𝑖𝑛 − 𝑐)
(𝑏 − 𝑎)

(𝑑 − 𝑐)

+ 𝑎                                        (17) 

where 𝑃𝑜𝑢𝑡  represents normalised pixel value and 𝑃𝑖𝑛  

represents pixel value, where a and b upper and lower 

value limits, c and d represent the lowest and higher pixel 

values presently contain in the images, respectively. 

Same as WDF processing approach, component H is 

preserved maintained continuously in this case as well to 

guarantee colour fidelity. Additionally, stretching the S 

and I values of HSV color model utilising an above-

mentioned transform function on S and V components.   

4. Experimental Results and Discussion  

Several existing methods are utilised to validate the 

performance of the proposed method, namely robust 

back scattered light estimation with polarisation 

(RBLE-P) [13], twin adversarial contrastive learning 

(TACL) [10], Bayesian retinex underwater image 

enhancement (BRUIE) [6], deep residual framework 

(DRF) [8] and LaFFNet [9]. The enhancement 

performance of each algorithm is assessed both 

visually and quantitatively. We run the source code 

with the recommended parameter settings provided by 

the corresponding authors for obtaining best possible 

results for both quantitative and qualitative 

assessments. In terms of quantitative analysis, it is 

primarily computed in terms of SSIM, PSNR [1] [45], 

UIQM [1] and PCQI [1]. An enhanced image with 

higher visibility is signified by an entropy value that 

is high. The high PCQI value signifies an 

enhancement image with higher contrast. The high 

UIQM value signifies that an enhanced image has 

improved luminance, saturation, chroma balance. In 

the experiment, we analysed our method using a 

standard underwater dataset made available by Li et 

al. [46]. The dataset contains 893 underwater images 

that were found online. As can be seen in Fig. 3-7, we 

selected a number of underwater degraded photographs 

that were taken in various challenge scenarios (low-light, 

bluish, turbid, and with artificial lightning) for 

comparison.  

4.1. Parameters Settings 

In case of existing LDCT image denoising techniques 

(i.e., RBLE-P, TACL, BRUIE, DRF and LaFFNet), 

parameters are set as instructed by the authors of the 

respective articles. In terms of proposed algorithm, the 

parameters. In terms of proposed algorithm, the 

𝜆 indicates a tweaking parameter which by default is 

considered as 3. The maximal and the minimal 

component values represented by 𝑟𝐻 and 𝑟𝐿is 2.5 and 0.5. 

Further, 𝛿𝜔 indicates a factor that controls the cutoff 

frequency. The simulations are conducted in 

MATLAB R2019b on the 64-bit Windows 10 PC with 

an Intel (R) Core (TM) i9-9900k CPU running at 3.6 

GHz and 16 GB of RAM.   

4.2. Qualitative Evaluation  

This section evaluates the performance of proposed 

method visually along with different image enhancement 

and restoration techniques such as DRF, BRUIE, 

LaFFNet, RBLE-P, and TACL method. Two strategies 

are typically used to assess the results of underwater 

photographs; both qualitative 

and quantitative assessment. In terms of comparison, as 

seen in Figs. 3-7, we selected a number of underwater 

degraded photographs taken in various challenge 

scenarios. The underwater images in Fig. 3 show a 

variety of greenish conditions, which appear to be the 

norm in coastal waters. It is noticeable that the proposed 

method, the TACL technique and the BRUIE method all 

greatly increase perceptibility. However only the 

proposed approach and TACL can bring back more 

vibrant colour. As observed in 3rd column of Fig. 3(b), 

the BRUIE approach, in contrast, has the issue of 

injecting excessive red colour into the restored output. 

The natural green tones in the image are also aggravated 

by the DRF technique. Both the LaFFNet and RBLE-P 

techniques fall short in terms of revealing scene details, 

and neither one is able to adjust the image's overall tones. 

The blueish image makes it difficult and challenging for 

most underwater dehazing techniques to work. This 

situation prevents the green channel from maintaining its 

intensity which prevents it from offering enough valuable 

data for photograph improvement or restoration. As seen 

in Fig.4, the methods of DRF, BRUIE, LaFFNet, and 

RBLE-P have little impact on resolving this issue. 

Although it contributes to colour correction, TACL 

appears to be less robust as observed in 2nd to final 

column of Fig.4. Fortunately, the obtained findings of our 

strategy successfully address this problem by revealing 

more information and achieving an acceptable colour 

performance. The unfavourable consequences of 

dispersion become more obvious in a setting with murky 

waters. In this situation, it can give the contrasted 

approaches a good opportunity to assess how well they 

perform when dehazing.  

Fig. 5 displays the matching retrieved results produced 

from three typical underwater images shot in murky 

conditions. In reality, the conventional method 

contributes to haze removal; 

nevertheless, variations of this algorithm like BRUIE and 

RBLE-P can also significantly reduce the appearance of 
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haze. But both of these methods will reduce overall 

brightness of the images by producing unpleasant visual 

effects. Similar to the BRUIE method, the results of 

TACL algorithm are prone to whitening the intended 

situation. Additionally, their inability to discern certain 

features is hampered by their lack of sharpness. The 

reconstructed outputs produced by our technique are 

better to these algorithms in case of dehazing notably for 

maintaining colour accuracy. In addition to colour cast 

and dispersion, restoration of lighting is another problem 

that needs to be resolved for the low-light situation. As 

seen in Fig. 6, while the RBLE-P approach definitely 

over enhances the red and green channel and as a result 

introduces some additional colour deviation, the DRF 

method reduces image brightness. The results of the 

BRUIE, LaFFNet, and TACL based approaches can 

marginally increase visibility, but they are still lacking. 

On the other hand, the method we proposed is more 

effective at colour restoration and illumination recovery, 

and it also reveals more details that were before buried in 

darker regions. The underwater photography with 

artificial lighting is a unique but not uncommon situation. 

The utilisation of artificial lighting is required in some 

water locations where natural light is obstructed or 

diminished. The capacity to isolate its influence and 

appropriately reconstruct or enhance the photograph is 

the main criterion to evaluate the performance of the 

underwater dehazing algorithms because of several light 

attenuation rates in the artificial lighting regions.  The 

experimental results of DRF and LaFFNet approach 

which are shown in Fig. 7 are not as good as anticipated 

because they initially do not take this circumstance into 

consideration. Although the BRUIE method reasonably 

avoided influence of this regions, the overall  

 

 

Fig 3. Comparative analysis of underwater greenish scene. From left to right; original image and the results generated by 

DRF, BRUIE, LaFFNet, RBLE-P, TACL and ours, respectively. 

 

Fig 4. Comparative analysis of underwater bluish scene. From left to right; original image and the results generated by 

DRF, BRUIE, LaFFNet, RBLE-P, TACL and ours, respectively. 
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Fig 5. Comparative analysis of underwater turbid scene. From left to right; original image and the results generated by 

DRF, BRUIE, LaFFNet, RBLE-P, TACL and ours, respectively. 

response of image is not immediately apparent. In 

contrast to BRUIE, the RBLE-P algorithm is unable to 

prevent the issue of over enhancing caused by the uneven 

illumination. However, the TACL method and our 

technique can discreetly brighten the images and improve 

contrast in the darker areas. It has been discovered that 

our technique can produce more precise features and a 

sharper edge contour when compared to the TACL 

method. We provide several additional examples with 

higher textural 

structure and histogram in Fig. 8 to further demonstrate 

this superiority. There is a clear difference between the 

TACL and our approach. We also include histogram of 

RGB colours of some original and restored images in Fig. 

8. Clearly, the proposed technique surpasses the TACL 

method in case of edge performance and discloses more 

information. 

 

 

 

Fig 6. Comparative analysis of underwater low light scene. From left to right; original image and the results generated by 

DRF, BRUIE, LaFFNet, RBLE-P, TACL and ours, respectively. 
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Fig 7. Comparative analysis of underwater artificial lighting scene. From left to right; original image and the results 

generated by DRF, BRUIE, LaFFNet, RBLE-P, TACL and ours, respectively. 

 

4.3. Quantitative Evaluation  

We use a number of objective indicators including 

PSNR, SSIM, 

UIQM, and PCQI, which are frequently used to analyse 

performance for the underwater image enhancement 

quantitative assessment. The PSNR calculates the 

intensity difference across the ground truth photograph 

and the enhanced photograph. The SSIM metric 

measures how similar two images are to one another. On 

the basis of structural data, SSIM offers accuracy. The 

UIQM and PCQI measures are specifically made for 

evaluating underwater images, whereas SSIM and PSNR 

are general-purpose metrics for evaluating image 

contrast. While the PCQI measure us utilised to assess 

the visual distortion of a photograph by decomposing an 

image mean intensity, signal intensity and signal 

structural components by adaptive representation of local 

patches, the UIQM measures image performance through 

a linear combination of colourfulness. Table 2 displays 

the quantitative evaluation findings from Figs. 3–7 

produced by the five comparative approaches and the 

proposed methodology. The higher values show the 

better performance for all metrics. Regarding the 

greenish image and the image taken under artificial 

illumination, it could be observed that proposed 

technique achieves nearly the better values across all 

parameters due to its excellent effectiveness in boosting 

contrast and reviving bright colour. Since DRF, BRUIE, 

and LaFFNet technique scores are typically close to 1, 

they have little impact on contrast for blueish images. 

Although TACL performs better in terms of PCQI and 

UIQM, its limited resilience and colour accuracy render 

it useless. The results that BRUIE and LaFFNet 

techniques obtained in the murky water and dimly lit 

scenario have a lot of dark patches. Additionally, their 

irregular high PCQI and UIQM readings are aberrant and 

at odds with the subjective perceptual assessment. In 

spite of this, the proposed technique still obtains ideal 

results in terms of PCQI and UIQM metrics when 

compared to other methods. It can be observed from the 

Table 2, the more PSNR and SSIM scores verify that the 

proposed method contributes on improving the contrast 

of the underwater photographs. Additionally, the PCQI 

and UIQM measures are generally above 0.8 and 1.5, 

respectively that further indicates superiority of the 

proposed method in robustness for dehazing and colour 

correction. The average values of measures SSIM, 

PSNR, UIQM, and PCQI for the restored images 

produced by all of the methods that were compared. We 

may conclude from Table 2 that, in case of ideal values 

of the four metrics the proposed technique performs 

better than other comparative methodologies in terms of 

both visually and quantitative evaluation.  
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Assessments for underwater images with greenish scene (Fig.3) 

 DRF BRUIE LaFFNet RBLE-P TACL Proposed 
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Assessments for underwater images with blueish scene (Fig.4) 

 DRF BRUIE LaFFNet RBLE-P TACL Proposed 
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Assessments for underwater images with turbid scene (Fig.5) 

 DRF BRUIE LaFFNet RBLE-P TACL Proposed 
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Assessments for underwater images with low-light scene (Fig.6) 
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Table 2. Quantitative analysis of the reconstructed images presented in Figs. 3-7 using PSNR, SSIM, PCQI and UIQM 

measures. The bold values indicate the best scores. 

 

 

Fig 8. Comparisons of histograms distributions of R, G, B channels; (a) Original images and (b) the results of proposed 

method
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5. Conclusion and Future Work  

In this research, we introduce a competent underwater 

image enhancing strategy based on swift algorithm and 

hue-preserving based method. There are three distinct 

steps in the swift algorithm: a preliminary preprocessing 

stage to reduce an excessive pixel value, a follow-up 

stage for modifying contrast and brightness and the final 

postprocessing stage for rearranging pixels to their native 

dynamic range. On the HIS and HSV color models, 

respectively, we used WDF and CHS techniques. The 

method is applied to a collection of underwater colour 

photographs and the experimental findings demonstrates 

how successfully the real-color image dynamic range can 

be compressed while maintaining accurate colour 

reproduction and resolving non-uniform illumination. In 

terms of experimental findings, fifteen representative 

poor-quality photographs with several challenge scenes 

are chosen and compared to the other five popular 

methods. The significant visual and quantitative results 

demonstrates that our strategy obtains better in case of 

improving visibility and colour interpretation. The great 

natural appearance and detail preservation are adequate 

to prove that proposed method is capable to eliminate 

noise generated by suspended particles.  Additionally, the 

proposed framework can broaden its application in 

underwater computer visions and image processing such 

as target identification and image recognition in addition 

to contribution for better technique to address the 

problems of underwater image enhancement. We are 

constantly extending our framework to considers more 

elements that might damage underwater image quality. 

For instance, underwater images frequently experience 

motion blurring, yet this phenomenon is rarely 

deliberated in restoration and enhancement techniques. 

Additionally, one of our future research focuses will be 

on adapting our approach to handle video processing.  
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