
 

 

International Journal of 

INTELLIGENT SYSTEMS AND APPLICATIONS IN 

ENGINEERING 
ISSN:2147-67992147-6799                                       www.ijisae.org Original Research Paper 

 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 221–234 |  221 

Gated Dual Adaptive Attention Mechanism with Semantic Reasoning, 

Character Awareness, and Visual-Semantic Ensemble Fusion Decoder 

for Text Recognition in Natural Scene Images  

 
A. S. Venkata Praneel*1, Dr. T. Srnivasa Rao2 

 

Submitted: 20/08/2023         Revised: 11/10/2023           Accepted: 23/10/2023   

Abstract: Text recognition in natural scene images poses a significant challenge due to variations in font styles, sizes, orientations, complex 

backgrounds, and lighting conditions. In this paper, a Gated Dual Adaptive Attention Mechanism (GDAAM), a novel framework that 

combines Mask Scoring Region-based Convolutional Neural Networks (MS-RCNN), Pyramid-based Text Proposal Networks (PBTPN), 

and Transformation Component Networks (TCN) as encoder, along with semantic reasoning, character awareness, and a visual-semantic 

ensemble fusion decoder for accurate text recognition in natural scene images is proposed. The encoder component of GDAAM leverages 

two robust architectures: MS-RCNN and PBTPN+TCN. MS-RCNN is utilised for its strong object detection capabilities, allowing for 

accurate localisation of text regions within the scene images. PBTPN+TCN captures temporal dependencies and contextual information in 

images containing text sequences. GDAAM extracts comprehensive features from spatial and temporal dimensions by combining these 

encoders, enabling effective representation of text elements. To facilitate fine-grained attention modelling, it incorporates the GDAAM in 

its decoder. It allows the model to selectively focus on relevant visual and textual cues, dynamically adapting its attention weights based 

on the input. GDAAM efficiently integrates visual and textual information by incorporating gate mechanisms enhancing text recognition 

accuracy in challenging natural scene images. Semantic reasoning is another crucial aspect integrated into GDAAM. A reasoning module 

incorporates contextual information, enabling the model to reason and make informed decisions. GDAAM selectively attends to relevant 

visual and textual cues, leveraging attention mechanisms, enhancing its understanding, and promoting more accurate text recognition. 

GDAAM addresses character awareness to handle complex text layouts, irregularities, and occlusions commonly found in natural scene 

images. This awareness further improves the model's ability to accurately recognise text in challenging visual environments. The proposed 

visual-semantic ensemble fusion decoder in GDAAM combines the visual and semantic features to generate the final text recognition 

results. GDAAM achieves coherent and contextually consistent text recognition outputs by effectively fusing and integrating information 

from both modalities, improving overall performance. Extensive experiments on benchmark datasets like SVT, ICDAR 2013, ICDAR 

2015, IIIT5K, SVTP and CUTE 80 for text recognition in natural scene images demonstrate the effectiveness of GDAAM. The results 

show that GDAAM outperforms state-of-the-art approaches in terms of accuracy and robustness. GDAAM demonstrates superior 

performance in challenging text recognition tasks. The proposed model surpasses existing approaches, opening new avenues for accurate 

and robust text recognition in complex visual environments. 

Keywords: Instance Segmentation, Text recognition, TCN, PBTPN, MS-RCNN, GDAAM, Semantic Reasoning, Character awareness, 

Visual cue, Semantic cue. 

1. Introduction 

The field of computer vision and pattern recognition has seen active 

research in the domain of recognising deep text present in natural 

scene images. Over time, numerous approaches have been 

proposed to tackle the challenges associated with accurately 

extracting and recognising text from complex visual environments. 

In this section, we review and discuss the existing works related to 

text recognition in natural scene images, focusing on the 

fundamental methodologies, advancements, and limitations. 

 

1.1 Deep Learning-Based Approaches  

The field of text recognition in natural scene images has been 

transformed by advancements in learning, enabling significant 

progress in terms of accuracy and robustness. Convolutional 

Neural Networks (CNNs) have been widely adopted for feature 

extraction from scene images. Methods such as the Fully 

Convolutional Network (FCN) and Region Convolutional Neural 

Network (RCNN) have been utilised to localise and segment text 

regions within the images. These CNN-based approaches have 

demonstrated impressive performance in terms of text localisation. 

1.2 Attention Mechanisms  

Attention mechanisms have been widely employed to address the 

challenges of recognising text within complex scenes. Attention 

mechanisms enable models to focus selectively on relevant regions 

or characters within the scene, improving text recognition 

accuracy. Methods such as Spatial Transformer Networks (STN) 

and Visual Attention Mechanisms (VAM) have been integrated 
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into deep learning architectures to enhance the localisation and 

recognition of text regions. 

1.3 Character-Level Analysis  

Character-level analysis plays a crucial role in accurate text 

recognition. Many approaches have focused on modelling the 

interactions between characters to improve recognition accuracy. 

Methods based on Recurrent Neural Networks (RNNs), such as 

Long Short-Term Memory (LSTM) networks, have been employed 

to grasp sequential patterns and contextual details between 

characters. By considering the relationships and connectivity 

between characters, these models have shown improved 

performance in handling irregularities and occlusions in text 

layouts. 

1.4 Semantic Reasoning  

Semantic reasoning has emerged as an important aspect of text 

recognition in natural scene images. Models can better understand 

and recognise text in complex scenes by incorporating contextual 

information and higher-level semantics. Reasoning mechanisms 

based on Graph Neural Networks (GNNs) and Graph 

Convolutional Networks (GCNs) have been proposed to model the 

relationships between text regions and other visual elements within 

the scene. These approaches have demonstrated improved 

performance in handling scene-level context and improving text 

recognition accuracy. 

1.5 Ensemble Fusion Techniques 

Ensemble fusion techniques have been widely explored to enhance 

text recognition performance further. Fusing information from 

multiple modalities, such as visual and textual cues, has shown 

promising results. Fusion mechanisms based on deep attention 

mechanisms, multimodal memory networks, and graph-based 

fusion have been proposed to effectively combine information from 

different modalities and improve the robustness and accuracy of 

text recognition. 

1.6 Benchmark Datasets  

Several benchmark datasets have been established to evaluate and 

compare text recognition methods. Datasets such as ICDAR 

(International Conference on Document Analysis and 

Recognition), Street View Text, and CUTE 80 provide diverse 

collections of scene images with annotated text regions. These 

datasets have been extensively used to evaluate the performance of 

text recognition models, fostering advancements in the field. 

1.7 Transmissions 

This section emphasizes the developments and improvements in 

recognising text within natural scene images. Approaches based on 

deep learning techniques, attention mechanisms, character-level 

analysis, semantic reasoning, and ensemble fusion techniques have 

improved text recognition accuracy. Benchmark datasets have 

enabled fair evaluations and comparisons between different 

methods. Despite significant progress, challenges such as handling 

variations in font styles, sizes, orientations, complex backgrounds, 

and lighting conditions remain open research problems. The 

proposed GDAAM framework addresses these challenges by 

combining multiple methodologies for accurate and robust text 

recognition in natural scene images.  

Numerous computer vision-based applications, including 

autonomous driving, travel translations, product retrieval, etc., 

have taken advantage of the text's rich semantic information. A key 

component of the scene text reading system is STR. The large 

differences in scene text's colour, font, spatial layout, and 

sometimes even uncontrollable background make text recognition 

in the wild difficult, despite the tremendous advances made in 

sequence-to-sequence recognition over the years [1,2]. Recent 

research efforts have predominantly concentrated on improving 

backbone networks [3,4], incorporating rectification modules [4], 

and refining attention mechanisms [1,2]. These endeavours aim to 

bolster the performance of STR by extracting more resilient and 

effective visual features. However, it is true that a human's ability 

to recognise scene text depends on both comprehensive 

comprehensions of the semantic context of text at a higher level 

and knowledge about visual perception. When only visual cues are 

considered, it is highly challenging to differentiate each character 

in such images, as some instances in Fig.1 demonstrate, particularly 

the characters outlined with pink dotted boxes. Humans are more 

likely to deduce the correct answer using the entire word's content 

than by ignoring the semantic context information.  

  

 

 

 

 

 

 

Fig .1: Example is an illustration demonstrating text in various 

scenarios: (a) a challenging scene text image, (b) individual 

characters extracted from the image (a), and (c) the semantic 

content of the words. The characters enclosed in pink dotted 

boxes in (b) are prone to misclassification. 

Regrettably, most text recognition methods handle semantic 

information unidirectionally, akin to one-way serial transmission. 

This approach, depicted in Fig. 2 (a), can be observed in various 

works such as [1,2,4], where the character semantic information 

from the most recent decoding time step is recursively perceived. 

This approach has many clear disadvantages: It can only 

comprehend a very small amount of semantic context from each 

decoding time step, and the initial decoding time step has no 

meaningful semantic information. Second, if the incorrect 

decoding is highlighted earlier, it might transmit incorrect semantic 

information and accumulate errors. Nevertheless, due to the 

challenges in parallelizing Fig. 2 (b) the serial mode, it becomes 

inefficient and time-consuming. 

 

 

 

 

 

 

Fig .2(a): Semantic context delivery is a serial transmission. 
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Fig .2(b): Semantic context delivery is a Parallel transmission. 

Deciphering text from diverse real-world settings poses a 

significant and complex hurdle for the multimedia civilization. 

This endeavour seeks to convert visual depictions of text into a 

sequence of symbols that computers can comprehend [5]. This job 

has been widely applied in various real-world applications, 

including self-driving vehicles, the human-computer interface, and 

visual aids. Recent advancements in deep learning technology have 

led to substantial improvements in the field of text recognition 

within scenes. Recognition models typically adhere to a standard 

procedure, commencing with an encoding network [6] to gather 

contextual visual data and culminating in a decoding model [7] that 

transforms feature vectors into the desired sequence. This decoding 

module predominantly adopts a 1D sequence-to-sequence model 

[7], which inherently addresses irregular text instances, especially 

those involving perspective or curved text. This introduces a novel 

challenge in converting text images into textual symbols. Recently, 

various approaches [4,8,9,10] have surfaced, broadly categorised 

into two types—two-dimensional (2D) attention-based methods 

and rectification-based methods—aiming to tackle the issue of 

recognising irregular text. For the 2D attention processes [9], 2D 

attention maps are employed to align features and facilitate 

sequence decoding. The erroneous attention maps, however, have 

a negative impact on recognition performance. Rectification-based 

algorithms that address irregular text cases to produce canonical 

representations employ specific sampling procedures to establish 

control points. For example, ASTER [4] uses a spatial transform 

network (STN) [11] to predict control points along the boundaries 

of text instances directly, and ScRN [8] extends this concept by 

incorporating additional supervision within the rectification 

module. As illustrated in Fig. 1(a) and (b), the rectification 

pipelines of ASTER [4] and ScRN [8] are shown. The approach of 

text-level equidistant sampling generally overlooks character-level 

details, potentially leading to distorted characters despite the use of 

various local features to achieve accurate text lines. Accurate 

character translation is crucial for text recognition since characters 

are the fundamental building blocks of text instances. Recognizing 

perspective and curved texts depends heavily on how correctly 

each character is rectified into a canonical form. The rectification 

results involving control points and their immediate surroundings 

are further refined by the TPS transformation, which precisely 

aligns the selected control points to their predetermined positions. 

Given the insights discussed earlier, we propose that rectifying 

irregular text instances using a character-level sampling approach 

could yield improved outcomes, as it would incorporate more 

character-specific guidance. 

 

 

 

 

 

 

 

 

Fig .3: Some illustrations of difficult scene text owing to 

character cropping, backdrop interference, occlusion, distortion, 

and blur. 

STR has garnered much attention recently because of its use in 

visual question and answer, information retrieval, and 

understanding of the visual world. However, as seen in Fig. 3, it is 

still challenging to recognise irregular text in an unrestricted setting 

due to visual distortion, blur, and rotation. The final image in Fig. 

3, in particular, can be identified as "guice" using the techniques 

from [9,12,13]. However, individuals are prone to correcting it as 

a "guide" through the use of contextual understanding. Methods 

centred around shape rectification [4], detection [14], and attention 

[15,16] can be categorised as earlier efforts to tackle the challenge 

of recognising irregular text. Rectification-based methods 

approximate regular text using traditional text recognition 

techniques after first transforming irregular material. However, 

fixing texts with a curved arrangement or significant deformation 

can be difficult. Character level annotation is followed by character 

identification using a localised character detection technique before 

processing all combined detected characters. Character- and word-

level annotations are used in attention-based approaches to align 

each character with visual attributes. The majority of recognition 

techniques [4,14,15,17] still call for encoding an image's feature 

map, which is retrieved as one-dimensional (1D) sequences and 

supplied to an RNN decoder via a convolutional neural network 

(CNN). Although the positive results that RNN-based recognition 

methods have produced, some intrinsic drawbacks may hinder their 

widespread use. First, because of its sequential construction, the 

RNN requires much time and is difficult to employ to build a deep 

network. Second, a vanishing or exploding gradient makes it 

difficult for the RNN to converge. Additionally, prior techniques 

like [15] have demonstrated that paying attention to 2D features 

can enhance recognition performance. To this end, we construct a 

direct link between a relational attention module inspired by the 

method in [18] and 2D picture feature maps. Post-processing 

methods can be used for the model's generated sequence labels to 

improve performance.  

There are two different post-processing methods: dictionaries and 

rectifications based on linguistic models. It would take a lot of time 

and be unpractical to retrieve label sequences for text recognition 

using a spelling check dictionary. Instead, a LM is used to choose 

the labels in the sequence based on the characters that were 

previously predicted. These post-processing methods, however, 

only take into account textual information and ignore visual cues. 

Our proposal for a unified framework that combines linguistic and 

visual representations to recognize scene text accurately is in 

response to the aforementioned observations. 
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2. Related Work 

In this section, we delve into the recently introduced text 

recognition algorithms that employ CNNs and explore the latest 

advancements in instance segmentation problems within the same 

research domain. 

2.1 Text Recognition 

Reading the text in a natural setting is a difficult task that has drawn 

much attention from industry and academics. Top-down and 

bottom-up techniques are two categories under which various 

strategies have been proposed in recent years. A comprehensive 

exploration of the progress in scene text recognition (STR) has 

been presented in [19], and we will now offer a brief overview of 

some state-of-the-art models in this part. Bottom-up methods 

[20,21] first produce character-level predictions before connecting 

each character to the appropriate sequences. To forecast each 

character in a text instance, a classifier is used to collect text 

information using hand-crafted feature extraction modules like 

strokelet generation [21] and semi-markov conditional random 

field [22]. By substituting hand-crafted feature extraction 

techniques with neural networks, recent deep learning-based 

methods include dramatically increased performance, including 

those found [23] instance, LCSegNet [24] generates character-

specific pixel-wise predictions using a segmentation model and 

smooths label assignments using a conditional random field, 

resulting in a promising performance in several open benchmarks. 

Another method of text recognition is used in a top-down approach, 

which reads full-text instances directly without making any 

predictions about individual letters. To recognise 90k words, 

Jaderberg [25] created a classification network with 90k categories 

inspired by the image classification problem. Due to the large 

number of classes in the classification network and the out-of-

vocabulary words, this method cannot be widely applied. The 

sequence approaches, loosely categorised into CTC (Connectionist 

temporal classification)-based and Attention-based methods, have 

been proposed to read text instances of arbitrary duration. CTC-

based approaches commonly employ deep networks to encode both 

visual context and sequence information, followed by utilising 

CTC to obtain conditional probabilities for texts of varying lengths, 

as seen in works like [26]. The integration of attention mechanisms 

into recognition models has gained prominence, as seen in [17] and 

[27], where focusing maps are constructed for each letter location 

within text regions to enhance recognition performance. 

2.2 Semantic Free Context Approaches 

Approaches based on context-free semantics consider STR solely 

as a visual classification task without explicitly incorporating 

semantic information. For instance, CRNN [26] combined CNN 

and RNN to extract sequential visual features from text images, 

while CTC [28] aimed to maximise the probability of all paths 

leading to the correct result based on position-specific visual 

classifications. Xie [29] introduced the aggregation cross entropy 

(ACE) loss to optimise character frequency along the time 

dimension, enhancing efficiency and reducing the computational 

burden of back-propagation in CTC loss. Liao [14] utilised FCN to 

predict character categories via pixel-level classification and 

grouped characters into text lines using heuristic criteria inspired 

by visual segmentation's success. However, this approach requires 

costly character-level annotations. Jaderberg [30] directly used 

CNNs to classify 90k text images representing individual words 

rather than optimising decoding accuracy at each step. These 

techniques often overlook the significance of semantic context. 

2.3 Semantic Aware Context Approaches 

Semantic context-aware techniques try recording semantic data to 

aid STR. The majority of these techniques use one-way semantic 

transmission. For instance, [27] guided visual features to attend the 

appropriate region using semantic information from the previous 

time step after horizontally encoding the input text image into 1D 

sequential visual features. As we previously said, some of the most 

recent efforts concentrate on extracting visual cues more 

successfully, particularly for irregular text. Before sequence 

recognition, [4] introduced a rectification module incorporating an 

STN [11], utilising numerous control point pairs to mitigate the 

adverse effects of perspective distortion and distribution curvature. 

End-to-end STR via iterative image rectification employed a line-

fitting transformation with iterative refinement to correct 

asymmetric text images. Symmetry-constrained rectification 

network for STR further enhanced rectification outcomes by 

developing a symmetry-constrained rectification network based on 

rich local attributes. Boosting spatial visual information can 

alleviate irregular text identification challenges to some extent. 

[31] retrieved scene text features from four directions to control 

feature contribution from different directions and implemented a 

filter gate. [1] introduced spatial coordinate encoding to heighten 

sensitivity to sequential orders on feature maps. However, the 

semantic context information we want to concentrate on in this 

research must be properly utilised in these efforts. 

2.4 Context Modelling Structure 

Context modelling structures are designed to capture information 

across specific time or space. While RNNs excel at capturing 

sequence data dependencies, they require assistance with parallel 

computation during training and inference. To address these 

challenges, ByteNet [32] and ConvS2S [33] employed CNNs as 

encoders, enabling full parallelisation during training and inference 

for optimised hardware utilisation. However, due to limited 

receptive field size, they may need help to capture global 

relationships effectively. In contrast, the transformer architecture 

was developed to capture global dependencies and establish 

connections between two signals at any point with constant 

computational complexity. The transformer framework has 

succeeded in various computer vision and natural language 

processing [34] tasks. In this study, we leverage the same 

framework to reason about semantic content and enhance visual 

encoding using a transformer structure. 

2.5 Regular Scene Text Recognition 

Early text recognition methods [21,35] typically employ a two-

stage recognition process involving character detection in the first 

step and character recognition in the second. Recent approaches 

have tried to use a model, like the RNN and CTC, to solve the 

problem since a scene text is primarily in sequence labels [27,36]. 

Using RNN modelling techniques, [26,37] handled CNN features 

as 1D sequences. These techniques eliminate the need for explicitly 

segmenting individual characters, and the CTC method primarily 

concentrates on efficient training for rapid predictions. Fang [38] 

introduced an approach to STR by combining character 

probabilities through a recognition module and linguistic rules. 
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2.6 Irregular Scene Text Recognition 

Three main categories of methods for recognising irregular scene 

text are based on attention, as in Fig.4, shape-rectification, and 

pixel-wise character segmentation approaches. A framework was 

proposed by rectify-based processes [4] that uses an STN [11] to 

correct irregular text images. The altered text images are then 

recognised using a sequence-based recogniser. Rather than 

rectifying the entire input image, Liu [39] extended the rectification 

process to individual characters. However, badly distorted texts are 

difficult to repair, which makes recognition difficult. Methods like 

[15,18] focused on the feature maps of 2D images and used a 

customised RNN to classify irregular text images. This method [31] 

included encoding 4 feature sequences from an image running in 

various directions in order to construct a character sequence. 

Similarly, [14] proposed a character attention FCN for precise 

character localization in a 2D setting. The next step was to classify 

scene text using an SSN. This was followed by employing a 

semantic segmentation network for scene text classification. Our 

method shares similarities with the approach described in [18], 

particularly regarding visual and textual feature extraction. Our 

approach is fundamentally inspired by the dot product, which was 

used by [18] to create links between word representations and a 

CNN encoder. Although the prior techniques show promise, they 

frequently just pay attention to visual patterns, need time-

consuming RNN models, or rely on separate post-processing 

procedures. This paper, in contrast, presents a unified framework 

that includes CNN for extracting image features, dot-product-based 

relational attention for connecting word representations and image 

features, and our proposed gated dual adaptive attention strategy 

for combining data from linguistic dependencies and visual cues. 

Our recognition model uses simple convolution and attention 

mechanisms for parallelisable training. To link word 

representations with image feature maps, this study offers a unified 

framework that uses mutual attention, dot-product-based relational 

attention, and CNN for image feature extraction. Simple 

convolution and attention techniques can be used to train the 

resulting recognition model in parallel. 

2.7 Language Models (LM’s) 

The non-RNN models [34,40,41,42] that allow for data 

parallelisation and quicker training are summarised in this section. 

A completely CNN-based design that permits parallelization over 

sequential tokens was introduced [33,40]. A transformer machine 

translation model that relies just on attention was proposed [34]. 

The transformer concept was expanded [41] to address problems 

like string copying that the original transformer architecture was 

unable to manage. The bidirectional encoder representation for 

transformers (BERT) [42] allows the model to learn a word's 

dependencies depending on the entire context. In this study, we 

align character sequences and image characteristics using the dot 

product from the transformer [34]. 

3. Proposed Method 

3.1 Framework 

Fig. 5 depicts the whole structure of the supplied approach. We will 

discuss the architecture in this section, following the encoder–

decoder architecture. Text recognition [15,17] and machine 

translation [41] both frequently employ this design. Our 

architecture consists of four components, which are as follows: 1) 

An image encoder (MS-RCNN +PBTPN+TCN) [43] responsible 

for extracting 2D features. 2) A relational attention mechanism 

based on dot products to compute the resemblance or likeness 

between visual and textual aspects. 3) a language module that 

extracts the context from words. To combine visual patterns and 

verbal representations, we devised the ground-breaking gated dual 

adaptive attention module. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig .4: Convolutional Adaptive Attention-based Model 

3.1.1 Notation  

In the context of a textual image, we use the term "image feature 

map" represented by the matrix K; here, "m" means the no. of 

visual cues, and "d" refers to the dimensions of a feature vector at 

a specific point in space. The label sequence associated with "n" 

tokens in the text image is denoted as Q = {q1 ,..., qn} in a matrix 

format of n rows and d columns. Each qn represents the nth token's 

feature vector. The weights in the various strata are indicated by 

the letter W, together with any necessary subscripts or superscripts. 

We avoid overcomplicating the notation by omitting the term "b" 

from the discussion to maintain clarity. 

3.1.2 Label embeddings 

As seen in the lower right corner of Fig.5, during the training phase, 

we combine a start token, "BOS," with the decoded character 

sequence to form the decoder input. The real labels are combined 

with the associated labels, together with the end token "EOS." To 

accommodate varying sequence lengths within a batch to ensure 

sequence alignment, a padding token ⟨PAD⟩ is introduced. In this 

research, the tokens ⟨BOS⟩, ⟨EOS⟩, and ⟨PAD⟩ are assigned the 

values 1, 2, and 3, respectively. For simplicity in subsequent 

sections, we analyse a single sequence as input, omitting the ⟨PAD⟩ 

token. As a result, we can write Iinput = (1, i1,i2,...,in) and Ioutput = 

(i1,i2,...,in,2)  to represent the input and output token sequences, 

respectively, where ‘n’ denotes the token count and in denotes the 

index of the nth token in the character set.  

Let's break down the process:1) Character Embedding: We employ 

a character embedding mechanism similar to that in other models 

that work with sequences. The i/p and o/p sequences are converted 

into a matrix, denoted as Inxd, where "n" is the sequence length and 

"d" denotes the dimension of the character embedding. We may 
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extract the character-specific information using this matrix. 2) 

Positional Encodings: Positional encodings are incorporated into 

the input embeddings at the beginning of the decoder to preserve 

the sequence order. These positional encodings offer a mechanism 

to identify each element's position within the sequence. This is by 

incorporating character embeddings and positional information, we 

create a richer representation of the input sequence that considers 

the characters themselves and their order within the sequence. This 

can enhance the model's ability to understand and generate 

meaningful outputs in tasks like text generation or translation.  

3.2 Visual Encoder 

As our visual feature extractor, we use the MS-RCNN + PBTPN + 

TCN model's conventional ResNet-50 architecture. After the final 

average pooling and fully linked layers were eliminated, the 

relational attention module immediately got the 2D features. We 

pad the margins to maintain the original aspect ratios while resizing 

all input photos to 128 (width) x 400 (height) 3 (channel) 

dimensions. Using convolutional processes, a 2D feature map 

measuring 49x512 is created.  

3.3 Reading Text with Relational Attention  

A relational attention module is constructed based on the outlined 

approach in references [18,34] is adopted, which comprises three 

key components: a) Masked Multi-Head Attention Layer: This 

layer facilitates learning distant relationships in the data. b) 2D 

Attention Layer: This layer links the two parts as a connection 

between the encoder and the decoder. c) Feed-Forward Layer: This 

layer refines the information independently and uniformly to each 

position. 

Let’s concisely describe the fundamental technique for generating 

attention maps, which we later extend. In this method 

regularisation represented by d-dimensional vectors (𝑸 𝝐 𝑹𝒏 𝒙 𝒅) 

and m key-value pairs from the visual data (K  𝝐 𝑹𝒎 𝒙 𝒅), using 

regularization the similarity matrix between the character 

representations and image feature is calculated as follows: 

𝑺 = 𝒔𝒐𝒇𝒕𝒎𝒂𝒙 (
𝑸𝑾 𝑸(𝑲𝑾𝑲)𝑻

√𝒅
)  ∈  𝑹𝒏 𝒙 𝒎       (1) 

Where: 𝑾𝟎 𝝐 𝑹𝒅 𝒙 
𝒅

𝑯     and 𝑾𝒌 𝝐 𝑹𝒅 𝒙 
𝒅

𝑯 are learned weight 

matrices. The parameter H is set to eight. The square root of d is 

used as a scaling factor to prevent excessively large dot products. 

This matrix S captures the weighted relationships between the 

image and character features, a crucial step in our method. 

To capture information from different subspaces, the model 

simultaneously attends to multiple instances of attention, resulting 

in the combined output represented as O represented as: 

O = [O1, ... ,OH]WO ∈ Rn×d         (2)  

Here, [·, ·] signifies the concatenation of matrices horizontally, and 

𝑾𝟎  𝝐  𝑹𝒅 𝒙 𝒅 is a matrix subject to learning. 

The output of an instance of individual attention Oi is achieved 

through the values of weightes summation obtained as follows.  

𝑸𝒊 =  𝑺𝒊 𝑲𝑾 𝑲𝑲
𝒊  𝝐 𝑹𝒅 𝒙 

𝒅

𝑯  , 𝒊 𝝐 { 𝟏, … … , 𝑯 }           (3) 

where ‘i’ takes values from 1 to H. In this context,   𝑾𝑲
𝒊  𝝐 𝑹𝒅 𝒙 

𝒅

𝒉  

stands for a learned weight matrix, and d/h signifies the number of 

dimensions for the weights. 

This mechanism of jointly attending to multiple attention instances 

and computing weighted summations contributes to the model's 

ability to assimilate information from diverse subspaces, enhancing 

its overall performance. crucial since the order of elements carries 

valuable context in sequential data. 3) Sin and Cos Functions: We 

use sine and cosine functions to construct the positional encodings, 

drawing on ideas covered in [34]. This choice of functions is 

designed to create distinct patterns for different positions, ensuring 

that the model can differentiate between various parts of the 

sequence based on their order. 4)Position Matrix: A position matrix 

is the outcome of using the sine and cosine functions, represented 

as Pn×d, where "n" again signifies the sequence length, and "d" 

denotes the dimensions of the positional embedding. 5) Label 

Embeddings: We combine everything by adding positional 

encodings (Pn×d) to character embeddings (In×d). This combination 

results in label embeddings, denoted as Q, which contain character-

based and positional information. This can be expressed 

mathematically as Q = In×d + Pn×d. 

The attention module develops a function that transforms a query 

Q into a weighted sum of values, with the weights determined by 

the dot-product formula. Nevertheless, it is critical during training 

to keep the decoder from gaining access to places that still require 

decoding. This is accomplished at a certain decoding stage by 

masking out pointless places. The masked dot-product attention 

query's target is the 2D feature map that the 2D attention layer 

acquired from the CNN image encoder. The multi-head attention 

method presented in [34] enables us to build linkages between input 

and output sequences utilizing a fixed number of sequential 

operations (O (1)). With the help of this technique, we may convey 

the universal relationship between character encoding and visual 

cues irrespective of distance. 

Following the 2D attention stage, a position-wise feed-forward 

network comes into play. This network operates on a per-position 

basis, involving two linear projections. We proceed with the 

computation Kvi using the formula: 

𝑲𝒗𝒊 = 𝐑𝐞𝐋𝐔 (𝐎𝑾𝒍𝟏)𝑾𝒍𝟐 𝝐 𝑹𝒏 𝒙 𝒅                (4) 

where 𝑾𝒍𝟏 𝝐 𝑹𝒅 𝒙 𝒅𝒍𝒍 and 𝑾𝒍𝟐 𝝐 𝑹𝒅𝒍𝒍 𝒙 𝒅 are matrices with   

learnable weights. 𝒅𝒍𝒍 signifies the dimensionality of the inner 

layer. The enhanced visual representation is represented by 𝑲𝒗𝒊. 

We create a preliminary estimation n of the results sequence based 

on the calculated relational properties by using: 

𝑷𝒓 = 𝑺𝒐𝒇𝒕𝒎𝒂𝒙 (𝑲𝒗𝒊𝑾𝒓) 𝝐 𝑹𝒏 𝒙 𝒄                  (5) 

Here: 𝑾𝒓 𝝐 𝑹𝒅 𝒙 𝒄 is a matrix that is subject to learning. The letter 

"c" stands for all of the classes in the character alphabet.  

As our baseline for recognition in this study, OCRbaseline, we use 

the estimated value from Equation (5). In the sections that follow, 

we examine techniques to improve recognition accuracy. 
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3.4 Linguistic Encoder 

The standard transformer architecture described in reference [34] 

as a LM to comprehend character relationships is used. This LM 

takes in the identical character sequence 𝑸 𝝐 𝑹𝒏 𝒙 𝒅 , like the 

information provided to the relational attention module outlined in 

Section 3.3. The output of the LM yields attentive linguistic 

dependencies 𝑸𝒍𝒊 𝝐 𝑹𝒏 𝒙 𝒅, as defined by Equation (2). 

The LM proceeds to predict the next most probable token using the 

equation: 

𝑷𝒍𝒊 = 𝑺𝒐𝒇𝒕𝒎𝒂𝒙 (𝑸𝒍𝒊𝑾𝒍𝒊) 𝝐 𝑹𝒏 𝒙 𝒄                     (6) 

Where  𝑾𝒍𝒊 𝝐 𝑹𝒅 𝒙 𝒄   represents a matrix with learnable weights. 

3.5 Using Gated Dual Adaptive attention to generate visual and 

linguistic representations 

The ability to mix features from many models is one approach to 

conceptualize the attention process [44]. In this part, we propose 

the "gated dual adaptive attention" method, a straightforward yet 

powerful method for capturing the interaction of cross-modal 

stimuli originating from visual and linguistic representations. 

 

 

 

 

 

 

 

 

 

With "n" standing for the decoded text length and "d" standing for 

model’s dimensionality, the inputs, indicated as 𝑸𝒍𝒊 𝝐 𝑹𝒏 𝒙 𝒅  and 

𝑲𝒗𝒊 𝝐 𝑹𝒏 𝒙 𝒅, are drawn from the relational attention and LM's 

outputs. Following the principles outlined in Equation (1), the 

adaptive attention maps for linguistics conditioned on visual data 

termed adaptive attention I, can be computed as: 

𝑺𝒗𝒊 = 𝑺𝒐𝒇𝒕𝒎𝒂𝒙 (
𝑸𝒍𝒊 𝑾𝑸𝒍𝒊

(𝑲𝒗𝒊𝑾𝑲𝒗𝒊
)

𝑻

√𝒅
) 𝝐 𝑹𝒏 𝒙 𝒏   (7) 

The following is how the attention maps for linguistically 

conditioned visual data are created.: 

𝑺𝒍𝒊 =  𝑺𝒗𝒊
𝑻  𝝐 𝑹𝒏 𝒙 𝒏                             (8) 

By using adaptive attention, the attended visual and language 

characteristics can be succinctly expressed as: 

𝑶𝑸𝒍𝒊
= [𝑶𝑸𝒍𝒊

𝟏  , … … . . , 𝑶𝑸𝒍𝒊

𝑯 ]𝑾𝑶𝒍𝒊
 𝝐 𝑹𝒏 𝒙 𝒅          (9a) 

𝑶𝑲𝒗𝒊
= [𝑶𝑲𝒗𝒊

𝟏  , … … . . , 𝑶𝑲𝒗𝒊

𝑯 ]𝑾𝑶𝒗𝒊
 𝝐 𝑹𝒏 𝒙 𝒅          (9b) 

Fig .5: The proposed model overview. We use Resnet 50 as the backbone in the MS RCNN with PBTPN and TCN as Encoder, 

and the Decoder uses a relational attention module and an LM.  
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Fig 6: The internal organization of a dual adaptive attention layer..  

 

 

 

Using a residual link and a feed-forward network, we integrate the 

visual representations once the attention-based features have been 

collected as indicated in Equations (9a) and (9b): 

𝑲𝒗𝒊
′ = 𝑹𝒆𝑳𝑼( [ 𝑲𝒗𝒊, 𝑶𝑲𝒗𝒊

]𝑾𝒗𝒊
′  ) +  𝑲𝒗𝒊 𝝐 𝑹𝒏 𝒙 𝒅             (10) 

In this equation, [·, ·] represents horizontal matrix concatenation, 

and 𝑾𝒗𝒊
′  𝝐 𝑹𝟐𝒅 𝒙 𝒅 is a weight matrix subject to learning. 

Likewise, linguistic information can be combined as follows: 

𝑸𝒍𝒊
′ = 𝑹𝒆𝑳𝑼( [ 𝑸𝒍𝒊, 𝑶𝑸𝒍𝒊

]𝑾𝒍𝒊
′  ) +  𝑸𝒍𝒊 𝝐 𝑹𝒏 𝒙 𝒅     (11) 

This approach effectively fuses cross-modal features using 

attention mechanisms and feed-forward networks, capturing 

intricate relationships between visual and linguistic 

representations. 

On the other hand, the matrix  𝑾𝒍𝒊
′  𝝐 𝑹𝟐𝒅 𝒙 𝒅  represents a weight 

matrix with learnable parameters. 

This approach refines multimodal features by iteratively extracting 

and propagating intricate relationships within each modality, 

enhancing the overall understanding and representation of the 

cross-modal information. 

3.6 Fusion of the Visual and Linguistic representation using a 

gated network 

To simplify the example given in Fig. 6, we add a layer to the 

linguistic and visual representations of single attention. The 

combined representations generated by Equations (10) and (11) are 

used to compute the final result using a gated technique that 

integrates a portion of visual attributes with verbal context: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑷𝒇𝒖 = 𝑺𝒐𝒇𝒕𝒎𝒂𝒙 (𝑭𝒈𝒂𝒕𝒆[ 𝑲𝒗𝒊
′  , 𝑸𝒍𝒊

′  ])𝑾𝒈𝒂𝒕𝒆
′  𝝐 𝑹𝒏 𝒙 𝒄     (12) 

In this equation 𝑾𝒈𝒂𝒕𝒆
′  𝝐 𝑹𝟐𝒅 𝒙 𝒄  is a matrix with learnable weights. 

The letter "c" stands for how many classes there are in the alphabet. 

For each modality, 𝑭𝒈𝒂𝒕𝒆 , a non-linear function, calculates 

attentiveness. 

Essentially, the gated network gives the model the ability to 

dynamically learn and ascertain the contributions made by each 

modality to the representations across modalities. 

Additionally, in the ablation studies described in Section 4.3. This 

exploration helps to comprehend the effectiveness of different 

fusion techniques in the context of the model's performance. 

3.7 GDAAM algorithm 

1. Begin 

2. Function:GDAAM_Model(input_feature_map, target_text) 

3. num_classes # Number of output classes , input_channels # 

Number of input image channels (e.g., RGB) , kernel_size # 

Size of the convolutional kernel , stride # Stride of the 

convolution operation, hidden_units # Number of hidden units 

in the fully connected layers , dropout_prob # Dropout 

probability 

4. model = Model(num_classes, input_channels, kernel_size, 

stride, hidden_units, dropout_prob) 

# Encoder: Feature Map 

  # Input feature map is generated using MS-RCNN, PBTPN, 

and TCN 

5. ms_rcnn= 

models.detection.maskrcnn_resnet50_fpn(pretrained=True) 

6. features_ms_rcnn = ms_rcnn(input_image) 

7. pbtpn = module.PBTPNModel() 

8. features_pbtpn = pbtpn(features_ms_rcnn) 

9. tcn = module.TCNModel() 

10. feature_map = tcn(features_pbtpn) 
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11. return feature_map 

#  The feature map represents high-level features extracted from 

the input data 

 # Text Preprocessing 

 # Tokenize and encode the target_text into character-level 

embeddings 

12. encode_text_to_char_embeddings(target_text, char_to_index, 

max_sequence_length) 

13. target_text: The input target text as a string. 

14. char_to_index: A dictionary that maps characters to their 

corresponding numerical indices. 

15. max_sequence_length: The maximum sequence length for 

padding. 

16. char_embeddings= encode_text_to_char_embeddings(target_text, 

char_to_index, max_sequence_length) 

17. return char_embeddings 

 # Decoder: Adaptive Attention 

 # Initialize the Adaptive Attention Decoder 

18. input_size # Number of unique characters in the input , output_size  

# Number of unique words in the output 

vocabulary,char_embedding_dim  # Dimension of character 

embeddings, pos_embedding_dim  # Dimension of positional 

embeddings ,hidden_dim # Dimension of hidden state in the, 

num_layers # Number of layers, dropout_p # Dropout probability, 

attention_type # Choose the appropriate attention mechanism, 

max_sequence_length # Maximum sequence length for positional 

embeddings 

19. encoder = CharacterEmbeddingEncoder (input_size, 

char_embedding_dim, hidden_dim, num_layers, dropout_p) 

20. decoder = AdaptiveAttentionDecoder (output_size, 

char_embedding_dim, pos_embedding_dim, hidden_dim, 

num_layers, dropout_p, attention_type) 

  # Dual Adaptive Attention Mechanism 

  # Calculate bidirectional attention scores between feature 

map and character embeddings 

21. bidirectional_attention= 

BidirectionalAttention(feature_map_dim, 

char_embedding_dim) 

22. attention_scores_fm_to_char, attention_scores_char_to_fm = 

bidirectional_attention(feature_map, char_embeddings) 

  # Apply gating mechanisms to control information flow between 

modalities 

23. gated_fusion = GatedFusionModule(text_dim, visual_dim) 

24. fused_representation = gated_fusion(text_input, visual_input) 

  # Text Generation 

  # Initialize the decoder with the combined context 

  #Generate text description character by character using the 

decoder 

25. generated_text = generate_text_description(decoder, hidden, 

cell, max_length=100, char_to_index) 

 #    Predict the next character based on the previous character 

and context information 

26. model = CharLanguageModel(input_size, hidden_size, 

output_size, num_layers) 

  # Define an initial hidden state 

27. hidden = (torch.zeros(num_layers, 1, hidden_size), 

torch.zeros(num_layers, 1, hidden_size)) 

  # Sample the next character based on the previous character 

and context 

28. previous_char = torch.tensor([1])  # Replace with the index of 

the actual previous character 

29. next_output, hidden = model(previous_char, hidden) 

30. next_char = sample_next_char(next_output) 

  # Use a character embedding vocabulary to sample the next 

character 

31. Return target_text 

32. End Function 

3.8 Optimization 

The model underwent optimisation through a multitask loss 

approach, incorporating three distinct cross-entropy loss functions 

as follows: 

L_total = L_rel * WL_rel + L_li * WL_li + L_gate * WL_gate (13) 

Where: L_rel = -log (Prel), L_li = -log (Pli), and L_gate = -log (Pg) 

(5), (6), and (12), as specified, respectively. 

WL_rel ∈ Rc×c, WL_li ∈ Rc×c, and WL_gate ∈ Rc×c represents matrices 

of learnable weights. 

The model can learn and improve based on the relational attention, 

linguistic attention, and fused attention outputs using this 

configuration of the multitask loss function, with the corresponding 

weight matrices contributing to the final learning process. 

3.9 Bidirectional Training 

In our method, we make use of a bidirectional transformer network, 

drawing inspiration from recent developments. During the training 

phase, we input the decoder for a specific s sequence with both left-

to-right (Fig .7 (a)) and right-to-left (Fig .7 (b)) sequences. This 

method enhances the model's comprehension by enabling it to view 

the image and related text from two alternative perspectives. 
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Table 1. Scene Text Recognition Accuracy on different Datasets. “None” represents that no lexicons are used. 

 

 

 

 

 

 

 

 

 

 

Fig .7: (a) Left to Right Decoding and (b) Right to Left Decoding 

for the bidirectional training. 

The bidirectional training process, as shown in Fig 7, resembles 

unidirectional learning with one important exception—we mask 

out future tokens. In the Fig.7 the black blocs will represent the 

allow to attend characters and the hallow blocks are the preventing 

from attending. The model's ability to successfully capture 

contextual information coming from different directions is greatly 

improved by this bidirectional technique. 

4. Experiments 

The only synthetic datasets used for the proposed model's training 

were the Synth90K dataset, SynthText dataset which contains nine 

million items [30], and eight million items [45] respectively. On a 

number of publicly accessible benchmark datasets, our trained 

model was assessed, and its performance was measured against that 

of cutting-edge techniques. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig .8: Comparison of STR accuracy of proposed work with 

existing works on various Datasets. 

4.1 Datasets 

The evaluation took place on the following benchmark datasets: 

I.IIIT5K: Comprising 3000 test images, predominantly featuring 

regular text instances. 

II. Street View Text (SVT): Consisting of 647 test samples 

extracted from Google Street View images. 

Method Regular Text Irregular Text 

IIIT5K IC13 SVT IC15 SVTP CUTE 80 

None None None None None None 

Shi et al. 2016 [6] 81.9 88.6 81.9 - 71.8 59.2 

Cheng et al. 2017 [17] 87.4 93.3 85.9 - 71.5 63.9 

Shi et al. 2018 [4] 93.4 91.8 93.6 - 73.0 79.5 

Li et al. 2019 [15] 91.5 91.0 84.5 69.2 76.4 83.3 

Wan et al. 2020 [12] 93.9 92.9 90.1 79.4 84.3 83.3 

Zhiguang et al. 2021[44] 96.6 96.4 94.1 81.6 85.6 91.4 

Ours et al. 2023 97.8 97.5 96.2 83.7 86.9 93.1 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 221–234 |  231 

III. SVT-Perspective (SVTP): Derived from Google Street View 

images, this dataset contains text instances distorted due to 

perspective. 

IV. ICDAR 2013 (IC13): Involving 1,095 regular word patches for 

testing. Non-alphanumeric characters were removed, leaving 1,015 

test images. 

V. ICDAR 2015 (IC15): Comprising 2077 images captured 

incidentally at varying angles. We removed non-alphanumeric 

characters to create a subset known as IC15-1811 that allows for a 

fair comparison with earlier techniques. 

VI. CUTE80: Encompassing 288 cropped patches. 

These benchmark datasets served as a basis for assessing the 

model's performance and comparing it with the achievements of 

previous approaches. 

4.2 Experimental Results 

The state-of-the-art approaches are compared with our proposed 

solution in this section utilizing a variety of datasets that contain 

both regular and irregular text instances. Table 1 displays the 

recognition's outcomes. The Table 1 results of the STR accuracy of 

different methods are compared with our proposed method on 

different datasets is shown in Fig 8. 

Table 1's findings show that, even when using the lightweight 

image encoder ResNet 50, our model consistently outperformed 

competing methods on test datasets comprising both regular and 

irregular texts. By using a baseline model that is more reliable than 

the OCR baseline, the recognition performance could be further 

enhanced. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9: A few examples of our model's success. The terms "Gt" 

and "Pred" stand for the ground truth, "Ours" for multimodal 

fusion utilizing our gated dual adaptive attention technique, and 

"Pred" for model prediction OCRbaseline based purely on visual 

information. 

A few successful applications of our technology are shown in Fig. 

9. For instance, our OCRbaseline, which relies purely on visual 

features, struggled to deal with noisy images (Fig. 9(a) and 9(d)) 

caused by continuous scanning and printing methods. Through the 

GDAAM, our system made use of both language and visual 

representations to make more precise predictions. As seen in the 

examples in Fig. 9(b),9(c) the model was adept at resolving images 

with characters who had similar appearances. In Fig. 9(f), where 

the background noise obscured the letter "I", it also demonstrated 

the capability of recovering overlooked characters that the OCR 

baseline missed. 

While our method showed triumphs, it's crucial to highlight that 

there were also failures and certain restrictions, which we go over 

in Section 5. 

4.3 Ablation Study 

Within this section, we delve into an examination of the factors that 

impact our model's performance. 

4.3.1 Encoder backbone 

In order to evaluate the effectiveness of several CNN architectures 

as image encoders, we looked into the VGG-16, VGG-19, ResNet-

34, ResNet-50, and ResNet-101 models. The performance 

improvements were negligible as we used deeper convolutional 

architectures to increase the parameter count. Because the ResNet 

-50 produces noticeably superior results, we chose it. 

4.3.2Multi-Task Loss Function 

Three loss functions were used to optimize the suggested model, 

and the following three terms were found to be effective. We 

discovered that employing just the Lrel as our baseline, represented 

by OCRbaseline, already produces competitive performance in 

comparison to the other approaches. However, when employing 

simply Lgate, which comprised a pre-trained LM with a significant 

amount of previous information about the labels, the recognition 

performance fell short of OCRbaseline. During training, this caused 

convergence to happen quickly. 

Consequently, the visual models were not properly learned, such 

We tested the efficacy of these terms by optimizing our suggested 

model using three different loss functions. Using merely the Lrel 

term as our baseline, abbreviated as OCRbaseline, already produced 

competitive performance when compared to other approaches. 

Rapid convergence during training, however, resulted in a drop in 

recognition performance when only using the Lgate term, which 

comprised a pre-trained LM equipped with significant preliminary 

label information. This rapid convergence was helpful for the LM, 

but it interfered with the correct acquisition of visual 

representations, which eventually affected prediction accuracy. 

We merged the two loss terms, Lgate and Lrel, to strike a balance 

between acquiring useful visual representations and avoiding 

biases from the linguistic model. In comparison to our baseline, 

OCRbaseline, this combination of linguistic rules and visual 

relational characteristics produced a significant 2.1 % improvement 

(from 81.6% to 83.7%) on the IC15 dataset. 

The pre-trained LM's introduction considerably improves model 

convergence while lowering loss. In contrast to RNN-based 

techniques, which frequently encounter problems like 

vanishing/exploding gradients, our method makes use of the 

benefits of sequence training to improve both training and model 

performance. Using labels from training examples of text images 

to fine-tune the LM may be an option to further improve 

recognition performance. 
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4.3.3 Ensemble Strategies 

First, we looked at how deep mutual attention affected system 

performance. The proposed GDAAM, straightforward feature 

concatenation, and bilinear interpolation were the next strategies 

we experimented with. 

Although the suggested dual adaptive attention may theoretically 

be stacked with several layers, we found that, unlike machine 

translation, adding too many deep joint attention layers could have 

a negative impact on identification performance. As a result, we 

assessed the first, third, and eighth layers of adaptive attention. On 

the IC13 dataset, the resulting recognition accuracy values were 

97.5%, 96.7%, and 95.3%, respectively. This phenomenon is 

similar to those found in [7], where it was discovered that long-

range dependency modeling was not as important for brief 

sequences. As a result, we used a single-layer dual adaptive 

attention technique. 

The independent examination of linguistic and visual 

representations in the logit summation strategy may have enhanced 

performance. On the other hand, combining multimodal features by 

means of straightforward concatenation improves the starting 

point. Bilinear interactions [46] between multimodal 

representations [47] produced a noticeable improvement in 

performance. The best results were obtained using the gated 

adaptive attention approach we devised, which allowed the gated 

network to find more cross-modality correlations that improved 

model discrimination. We also evaluated the model size and 

training time of our suggested approach. Using a single, dual 

adaptive attention layer as stated in Section 3.4, we calculated the 

average training speed for five hundred batches with a total of 256 

samples. 

4.3.4 Implementation 

The tests were run on a server that had sixteen gigabytes of memory 

and eight NVIDIA Tesla V100 GPU cards. All 8 GPU cards were 

used to parallelize the model's training, and an ADAM optimization 

batch size of 2,048 was used. We started the image encoder using 

pre-trained weights for picture classification from ImageNet. We 

used a learning rate schedule where the rate was linearly raised over 

the initial 10 training steps and subsequently decreased, according 

to [34]. After 15 epochs, the model has attained convergence. To 

fully represent all categories in the open benchmark datasets used 

for evaluation, we selected 172 label classes containing 52 case-

sensitive letters, ten digits, 106 non-alphanumeric characters, and 

four unique tokens. It was decided to use feature dimensions (d) of 

512. 

The model used to generate the results in Table 1 was trained using 

the synthesised datasets Synth90K [30] and SynthText [46]. To 

preserve a constant aspect ratio, input photos were scaled and 

padded to dimensions of 128x400.  

We used the benchmark corpus of One Billion Words [48] to train 

the LM. Then, we either applied the pre-trained LM or improved it 

by using all of the labels from the two synthesis datasets plus 

training data from publicly available datasets. The synthesised 

training images were so distinct from the accessible benchmark 

datasets that overfitting was prevented because our model took 

both text and images as inputs. 

 

 

 

 

 

 

 

 

 

 

 

Fig .10: Examples of our model's failure cases. We use "Gt" to 

stand for "ground truth," "Pred" for "model prediction," and we 

provide “Reason” potential explanations for failure scenarios. 

5. Limitation 

Our method was unable to handle vertical text images since they 

weren't present in the training data (Fig. 10(f)). We illustrate a few 

examples in Fig. 10 when our technique fell short. Our method 

attempted to infer the text from noisy images, as shown in Fig. 

10(a-b), however it provided unfavourable predictions due of 

occlusions or blurring. Low R (resolution) and unique lighting (Fig. 

10(c-d)). Additional sources of erroneous recognition included the 

placement of some character special positions and many text lines 

(Fig. 10(e) and Fig. 10(f)). 

6. Conclusion 

In this study, we suggested a unified, neural component-based STR 

system that does not require a vocabulary. The decoder 

comprises an LM that computes contextual information and a 

relational dual adaptive attention module that connects character 

and visual embeddings. An MS-RCNN and PBTPN+TCN encoder 

that extracts 2D visual patterns uses ResNet 50 as its backbone. A 

dual adaptive attention module was developed to incorporate 

language dependencies with visual cues. This greatly enhanced 

identification efficiency. The suggested design is flexible because 

it offers encoder and decoder alternatives. The model was 

simultaneously trained using the teacher-forcing method, and it 

converged much more quickly when a pre-trained LM was used. 

The STR architecture is extensible since the recommended 

GDAAM module can be modified to provide more text recognition 

outputs, such as [15]. In the future, we'll run an experiment to 

confirm this. The provided framework can be enhanced in a variety 

of ways as a meta-algorithm. In order to improve recognition 

performance, it is first plausible to investigate a wider range of 

visual representation strategies, such as layered multi-scale picture 

characteristics with 2D attention. Using a bidirectional LM, like the 

BERT, can increase language dependence.  
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