

International Journal of INTELLIGENT SYSTEMS AND APPLICATIONS IN ENGINEERING

ISSN:2147-6799

www.ijisae.org

Original Research Paper

Deep Learning Based Segmentation of Brain MRI: Systematic Review (from 2018 to 2022) and Meta-Analysis

Priyanka Mahajan¹, Prabhpreet Kaur²

Submitted: 04/09/2023	Revised: 22/10/2023	Accepted: 08/11/2023
-----------------------	----------------------------	----------------------

Abstract:

Background This paper aims to perform an examination and statistical analysis of deep learning (DL) models utilized in the segmentation of brain tumor MR Images.

Methods The research systematically searched for pertinent research in databases such as PubMed, Science Direct, The Cochrane Library, and Web of Science. The studies related to deep learning (DL) in the context of brain tumor MR image segmentation are included for analysis. Meta-analysis focusing on the dice similarity coefficient (DSC) is conducted to evaluate the segmentation outcomes of these DL models. To categorize the research studies on the basis of sample size and method of segmentation, subgroup analysis is also carried out. Subgroup analysis is important to remove publication bias.

Results Thirty articles are selected from the published research works (n=445) and incorporated into the literature review scope. Eleven cohort studies met the inclusion criteria of the meta-analysis. For the performance of segmented tumors, the average DSC score for the included studies' DLAs is 0.93 (95% CI: 0.88–0.98). However, there is a large amount of variation amongst the papers that were included, and a bias toward publication can also be seen.

Conclusion The accuracy of DLAs used to automate the segmentation of gliomas is high, suggesting that they will be useful in neuroradiology in the future. However, accessible, high-quality public databases and extensive research validation are still required on a large scale.

Keywords Deep learning, Meta-analysis, segmentation, dice score, forest plots, publication bias.

1. Introduction

A tumor is when cancer cells grow uncontrollably in any part of the body. Brain tumors are the medical term for abnormal and unchecked expansion of brain or body tissue cells surrounding the brain (J. Liu et al., 2014). In terms of their point of origin, there exist two separate classifications of brain tumors: secondary and primary. Most primary brain tumors stay localized in the brain and never metastasize. In contrast, metastatic or secondary brain tumors originate from cancer that initially develops in another region of the body and later spreads to the brain. It is the rate of growth that determines whether a brain tumor is benign or malignant. Benign tumors have these hallmarks: a slow growth rate, a normal appearance, and well-defined borders,

 1 Research Scholar,

 Dept of Computer Engineering & Technology,

 Guru Nanak Dev University,

 Amritsar

 Email: p_pankaj_gupta@yahoo.co.in

 Orcid ID:0000-0002-6040-8943

 2Assistant Professor,

 Dept of Computer Engineering & Technology,

 Guru Nanak Dev University,

 Amritsar

 Email: prabhpreet.cst@gndu.ac.in

 Orcid ID: 0000-0001-8498-5940

while malignant tumors grow rapidly and have an irregular shape, both of which can be fatal(Nazir et al., 2021). Various tumor types along with their occurring percentages are shown in Fig.1

Fig. 1 Diverse brain tumor categories and their percentages of occurrence.

According to a survey by UNI, ten percent of all malignancies in India are brain tumors. The report refers to information provided by the International Association of Cancer Registries (IACR) affiliated with the World Health Organization (WHO) in their Globocan 2018 report. This analysis estimates that India diagnoses 28,142 new cases of brain tumors annually and, with 24,003 deaths as a direct result(M. I. Sharif et al., 2020). A news article from 'The

Hindu' in 2016 stated that over 2,500 children in India are diagnosed with a type of brain tumor called medulloblastoma each year (A. Tiwari et al., 2020). Up until now, researchers have identified approximately 120 distinct tumor types(Kaur & Gill, 2017), each exhibiting various shapes and sizes(Shinde & Girish, 2020).

Brain tumor diagnosis involves three key steps: classification, detection, and segmentation. Tumor detection algorithms focus on identifying the presence of tumors. On the flip side, tumor segmentation techniques are used to precisely pinpoint and separate different tumor tissues that may contain multiple tumors. Furthermore, tumor categorization methods are used to label aberrant images as either benign or malignant tumors. Traditionally, radiologists conducted these tasks manually, which was time-consuming and error-prone. To address this, researchers turned to deep learning and machine learning (Kumari & Saxena, 2018). Despite existing scientific research, there hasn't been a thorough review of deep learning algorithms (MLAs) for accurate glioma segmentation. This study aimed to fill this gap by reviewing DLA-driven brain tumor segmentation tools using MRI data. We identified strengths and weaknesses and made suggestions for future studies.

2. Nuclear Magnetic Resonance Imaging (NMRI)

In recent years, medical imaging techniques have made significant advancements in aiding disease detection and precise location identification. Magnetic resonance imaging (MRI) stands out due to its safety and ability to provide detailed 3D images (Kaur & Gill, 2017). MRI excels at accurately detecting soft tissue abnormalities (M. Sharif et al., 2020).

Compared to CT scans, MRI offers superior diagnostic benefits with lower radiation exposure and improved contrast (Amin et al., 2020). MRI is valuable for diagnosing various brain-related diseases, including Alzheimer's, Parkinson's, dementia, and more (Acharya et al., 2019), Parkinson's disorder (Amoroso et al., 2018), dementia (Bruun et al., 2019), and many others.

Fig 2 (online source: (*MRI T1 vs T2*, n.d.)) illustrates three distinct MRI sequences: Fluid Attenuated Inversion Recovery (FLAIR), T1, and T2. FLAIR sequences are characterized by significantly prolonged Time to Echo and Repetition Time intervals, which are essential for effectively identifying anomalies within brain images (A. Tiwari et al., 2020).

Fig 2. (a) T1- weighted (b) T2- weighted (c) FLAIR

3. Research Gaps

- While there has been notable progress in diagnosing brain tumors, these improvements haven't been widely adopted in clinical settings. This could be because of limited collaboration between researchers and medical professionals, leading to continued reliance on manual tumor examinations. Additionally, only a few studies used data from multiple MRI techniques. Utilizing all four MRI methods during training can help reduce overfitting and enhance accuracy (Flair, T1-c, T1, T2).
- 2. Even though Deep Learning Algorithms (DLAs) have been useful for pinpointing and categorizing brain tumors, there are still challenges to be overcome. The existing literature on this topic lacks a combined summary or meta-analysis.
- 3. A system that can simultaneously pre-process, enhance, feature-extract, select, classify, and detect tumor is essential.
- Relevant studies of previously published survey papers related to brain tumor diagnosis has shown that there was a publication bias because no interest was shown in publishing Deep Learning algorithms with poor performance.

This study seeks to fill gaps by conducting a meta-analysis of brain tumor segmentation research using Deep Learning Algorithms (DLAs). The goal is to summarize findings, point out strengths and weaknesses, and offer suggestions for future studies in this research area.

4. An Analysis of Segmentation-Related Literature

This section examines recent research on using deep learning for brain tumor MRI segmentation, covering articles published from 2018 to 2023. It's divided into three parts Part A summarizes commonly used datasets. Section B compares and contrasts different approaches. Section C provides a critical evaluation in a tabular format.

4.1 Datasets used for Brain Tumor diagnosis

When training a Deep Learning CAD system, a large trove of datasets are available for download for study ((M. I. Sharif et al., 2020); (Abd-Ellah et al., 2019)). Table 1 provides a basic list of the dataset names. The examined literature makes use of various datasets, still the BRATS dataset, with its larger size and better visualization properties, is the most frequently cited. Fig 3 shows the usage of datasets for diagnosis of tumorous region.

Fig 3 Datasets usage of brain tumor **Table 1.** Datasets of Brain MRI available.

Dataset Name	Taken From	Modalities included	Types of images	No. of total	Link to the dataset
"IBSP"	the CMA	"T1- weighted"	I Normal	21	"https://doi.org/10.18116/c6wc
(Internet Brain	'autoseg'	11- weighted	II Segmentation	18	71"
Segmentation	biasfield		II Segmentation	10	/1
Repository)	blasheld				
"RIDER"	TCIA	"T1 T2-weighted"	Tumor	70.220	"https://wiki.concerimogingorc
RIDER	TCIA	11, 12-weighted	Tunior	10,220	hive.net/display/Public/RIDER +Collections <u>"</u>
"AANLIB"	Harvard Medical School	"T1- and T2- weighted MRI"	Normal, Tumor		"https://www.med.harvard.edu /aanlib/ <u>"</u>
"Allen brain atlas"	Allen Institute Publications for Brain Science	"T1, T2, and DTI"	Normal	20	"MRI Donor Data :: Allen Human Brain Atlas :: Allen Brain Atlas: Human Brain (brain-map.org) <u>"</u>
"Brain Web"	McConnell Brain Imaging Centre	"T2-, T1- Proton Density-Weighted"	Simulated normal Simulated Multiple Sclerosis	20	"https://brainweb.bic.mni.mcgill.c a/"
"CjData"	Harvard dataverse repository	"T1-weighted Contrast enhanced"	Pituatory, Glioma, Meningioma tumor	708,1426, 930	"brain tumor dataset (figshare.com) <u>"</u>
"BRATS_ 2012"	THE MICCAI challenge	"T1-weighted (T1Gd), T1, T2 FLAIR, T2- weighted (T2)"	GBM (Glioblastoma) / HGG and LGG	45 3D images	"https://www.smir.ch/BRATS/Sta rt2012"
"BRATS_ 2013"	THE MICCAI challenge	"T2 FLAIR, T1- weighted (T1Gd), T1, T2- weighted (T2)"	GBM (Glioblastoma) / HGG and LGG	65 3D images	"https://www.smir.ch/BRATS/Sta rt2013"
"BRATS_2014"	THE MICCAI challenge	"T2 FLAIR, T1- weighted (T1Gd), T1, T2- weighted (T2)"	GBM (Glioblastoma) / HGG and LGG	50 3D images	"https://www.smir.ch/BRATS/Sta rt2014"
"BRATS_2015"	THE MICCAI challenge	"T1-weighted (T1Gd), T1, T2 FLAIR, T2- weighted (T2)"	GBM (Glioblastoma) / HGG and LGG	300 3D images	"https://www.smir.ch/BRATS/Sta rt2015"
"BRATS_2016"	THE MICCAI BrainLes workshop	"T1-weighted (T1Gd), T1, T2 FLAIR, T2- weighted (T2)"	GBM (Glioblastoma) / HGG and LGG	300 3D images	"https://www.smir.ch/BRATS/Sta rt2016"

"BRATS 2017"	THE	"T1-weighted	GBM	285 3D	"https://www.cbica.upenn.edu/sbi
210112_2017	MICCAI-	(T1Gd), T1, T2	(Glioblastoma) /	images	a/Spyridon.Bakas/MICCAI_BraT
	2017	FLAIR, T2-	HGG and LGG	-	S/MICCAI_BraTS17_Data_
		weighted (T2)"			Training.zip"
"BRATS_2018"	BraTS	"T1-weighted	Glioblastoma	276 HGG and	"https://www.med.upenn.edu/sbia
	challenge	(T1Gd), T1, T2	(GBM/HGG) and	75 LGG 3D	/brats2018/data.html"
		FLAIR, T2-	lower grade	images	
		weighted (T2)"	glioma (LGG)		
BRATS_2019	MICCAI	"T1, T2 FLAIR,	Glioblastoma	384 HGG and	"https://www.smir.ch/BRATS/Sta
	challenge	T1(ce), T2"	(GBM/HGG) and	76 LGG 3D	rt2019"
			lower grade	images	
			glioma (LGG)		
BRATS_2020	MICCAI	"T1, T2 FLAIR,	lower grade	418 HGG and	"https://www.smir.ch/BRATS/Sta
	challenge	T1(ce), T2"	glioma (LGG) and	76 LGG 3D	rt2020"
			glioblastoma	images	
			(GBM/HGG)		

5. Brain Tumor segmentation methods

The primary motive behind segmentation is to identify tumor regions for easier detection and categorization of brain cancers by modifying the MR image representation. Differentiating tumor tissues like edema, necrosis, and active tumor from normal brain tissues is referred to as brain tumor splitting (Abd-Ellah et al., 2019). Brain MR scans are difficult to segment or classify due to their complex anatomy and significant level of inconsistency.

Deep learning simultaneously handles feature extraction mechanism and efficient task performance. Few broad classifications are as in Fig. 4

Fig. 4 Segmenting images of brain tumors using standard approaches.

Fig 5 shows the exemplar of brain tumor segmentation of BraTs 2013 dataset implemented through U-Net mechanism in Python language.

Fig. 5 Exemplar of segmentation of images of BraTS 2013 database through U-Net mechanism.

6. Meta -Analysis

In recent years, the use of deep learning, particularly Convolutional Neural Networks (CNNs), has surged for brain tumor image segmentation. These CNNs have excelled in recognizing objects in 2D and 3D images, driving the development of various CNN architectures aimed at improving accuracy. Some architectures focus on automatic segmentation, while others employ semiautomatic techniques, resulting in varying levels of tumor segmentation accuracy. This paper presents а comprehensive survey of popular methods for MRI brain tumor segmentation, highlighting potential for new approaches.

Our survey incorporates a wide range of papers and research from databases like Science Direct, PubMed, Scopus, and Web of Science. To ensure relevance, we applied specific criteria during selection, considering national and international journal papers and conference proceedings related to brain tumor segmentation. Studies that didn't meet these criteria, such as duplicates, inaccessible texts, or non-English articles, were excluded. Figure 1 summarizes the criteria used to identify the final publications for our study. Initially, a total of 3096 publications were identified through comprehensive searches of the databases selection. Additionally, 25 publications were discovered through cross-referencing. So, a total of 3121 publications were retrieved. After removing duplicate publications, 1783 papers remained for evaluation using the exclusion criteria. Further, 1338 publications were excluded based on the examination of their titles and abstracts. After screening 445 full-text research publications for suitability, 85 were chosen for this investigation. Fig. 6 shows the selection of research papers through the state- of -art PRISMA technique.

Here, Section 2 provides a comprehensive background on MRI imaging and brain tumor characteristics followed by section 3 which addresses research gaps identified in prior studies. Then section 4 discusses the datasets used for brain tumor analysis. Also, section 5 outlines the brain tumor diagnosis process, including detection, classification, and segmentation and section 6 details the meta-analysis, including search methods, keywords, and inclusion criteria. Finally, section 7 concludes the survey, summarizing key findings and suggesting future research directions.

This extensive review and meta-analysis adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (van Kempen et al., 2021). The literature on deep learning algorithms for brain tumor segmentation is reviewed, searching MEDLINE (via PubMed), Scopus, Springer, and other databases from April 1, 2018, to May 19, 2023. Section 6 provides the search strings, including keywords and criteria. The studies that used DLA-based techniques to segment brain tumor patients' MRI images are included and their results using a dice similarity coefficient (DSC) score are defined. All non-human and duplicate studies are excluded.

6.1 Review of Included Studies This review draws heavily from searches conducted in (1) Google Scholar, (2) Springer Library, (3) PubMed, (4) Scopus, and (5) Web of Science. The search query is quoted as (((("Brain Tumor") AND "Region Growing") AND "Segmentation") AND ("machine learning" OR "Deep Learning")). Pseudocode 1 elucidates the procedures that were followed while selecting the included works. In addition, the paper exclusion criteria (EC) and inclusion criteria (IC) are indicated on Table 3.

 Table 2. Inclusion and Exclusion criterias of research papers in Meta-analysis procedure.

IC1: Only MR scans of are	EC1: Research studies other					
taken during study excluding	than brain tumor diagnosis					
X-Ray scans.	C					
IC2: The studies which are	EC2: Research that makes use					
peer-reviewed are considered.	of other forms of medical					
	imaging besides MRI.					
IC3: Research article	EC3: Study which is not					
acceptance in review study is	related to segmentation and					
only for those which are either	classification (like brain					
web of science indexed or	metastasis)					
scopus indexed						
IC4: Research articles based	EC4: Survey based papers of					
only on segmentation through	Brain tumor diagnosis					
deep learning having the						
Mean Dice Score with std.						
deviation in that score.						
	EC5: Papers based on case					
	study					

The included research allowed us to extract the following types of data: (a) corresponding author and year of publication; (b) dataset used for segmentation purpose; (c) size of training set; (d) external validation was utilized or not; (e) study methodology, including MRI sequences utilized to determine the ground truth; (f) performance of the algorithm(s) in terms of accuracy, jaccard coefficient, f1-score, sensitivity, DSC score, and specificity for both the external/internal as well as training test sets.

Pseudocode 1 Algorithm for different databases search for collection of articles.

1: procedure COLLECT_FROM_DATABASE (Methods for Brain Tumor Segmentation Using Deep Learning)

2: Search_List_Databases ← Springer, Pubmed, Scopus, Web of Science

3: Search_Year \leftarrow 2018– 2022 AND Few papers from older years through references

4: j← 1	#initialization of counter variable
5: M← 5	#M is the count for online databases

6: for $j \le M$ do

7: Searching_keywords ← brain tumor, deep learning, region growing, segmentation, classification

8: if Link_for_search ∈ Searching_Databases and Year ∈ Searching_Year then

9: Search (Region Growing AND Segmentation AND Deep Learning

AND Classification AND Brain Tumor)

- 10: end if
- 11: end for

12:	if Count	Number of Papers ≥ 0 then
13:		Papers_refining
14:		Include_papers_in_database \leftarrow IC1, IC2, IC3
15:		$Exclude_papers \leftarrow EC1, EC2, EC3, EC4, EC5$
16:	end if	

17: end procedure

6.2 Quantitative Evaluation

The meta-analysis with a random effects model to gauge the overall accuracy of existing DLAs has been conducted. The studies that reported the DSC score along with standard error (SE), standard deviation (SD), or the 95% confidence interval (95% CI) are considered for selection. For studies providing SE or 95% CI, statistical evaluation of the standard deviation is carried out.

J Jamovi, a user-friendly interface for R statistical software is employed, for the quantitative meta-analysis (Viechtbauer, 2010), offering a great alternative to software like SPSS and SAS. This research considered p<0.05 as statistically significant for two-sided tests. The DSC score, a popular metric for assessing segmentation accuracy, is main focus. The repeatability by comparing DSC scores and manual and automatic segmentations (Yeghiazaryan & Voiculescu, 2018) is assessed. A DSC score of ≥ 0.8 was considered good, while scores ≤ 0.5 were deemed insufficient.

All estimated DSC scores from included studies in a forest plot are represented, displaying the overall performance. If there was overlap between the 95% Confidence Intervals in subgroup analyses, additional statistical analysis is not conducted. The Higgins I²-test is conducted to assess heterogeneity among studies; More than 75% indicates high heterogeneity, while 0-40% suggests modest heterogeneity (Higgins et al., 2003). Stata, a statistical software, is used to create a funnel plot, visualizing potential publication bias. Table 3 lists these DLA meta-analysis studies.

First author	Training set	Testing	MRI	Dataset	Subgroups	Method used	Specificity	Dice Score	Sensitivity
(published		Set	Sequence	Name		for			
year) (Ref.)						segmentation			
Kavitha et. al.	293 Training + 125	166	No	BraTS 2019	Whole Tumor	Shuffled YOLO	0.93	0.978	0.921
(2023) (Kavitha	validation								
& Palaniappan,									
2023)									
Kavitha et. al.	BraTS 2020	BraTS	No	BraTS 2020	Whole Tumor	Shuffled YOLO	0.952	0.986	0.943
(2023) (Kavitha		2020							
& Palaniappan,									
2023)									
Ladkat et. al.	293 training + 125	166	No	BraTS 2019	Whole Tumor	3-D attention U-	0.852+-0.004	0.823+-0.062	0.895+-0.042
(2022) (Ladkat	validation					Net Model			
et al., 2022)									
Ladkat et. al.	293 training + 125	166	No	BraTS 2019	Tumor Core	3-D attention U-	0.721+-0.004	0.712+-0.132	0.793+-0.176
(2022) (Ladkat	validation					Net Model			
et al., 2022)									
Ladkat et. al.	293 training + 125	166	No	BraTS 2019	Enhancing	3-D attention U-	0.934+-0.002	0.603+-0.293	0.723+-0.273
(2022) (Ladkat	validation				Tumor	Net Model			
et al., 2022)									
Jasmine et. al.	BraTS 2013 (700 T1 c	e+ and	No	BraTS 2013	Whole Tumor	YOLO Deep		0.89	
(2022) (Anita	Flair images)				Tumor core	Learning		0.9	
Jasmine et al.,					Enhanced Core			0.92	
2022)									
Ranjbarzadeh	228 (HGG + LGG)	29	"FLAIR,	BraTS 2018	Whole Tumor	Cascaded CNN		0.9203	0.9386
et. al. (2022)		(HGG +	T2-w, T1-		Tumor core			0.8726	0.9712
(Ranjbarzadeh		LGG)	w, T1-ce"		Enhanced Core			0.9113	0.9217
et al., 2021)									
Shidong et. al.	220 HGG +54 LGG (1	110 for	"Flair, T1,	BraTS 2015	Whole Tumor	ROI + U-Net		0.877 +- 0.060	
(2022) (S. Li et	testing)		T1c, T2						
al., 2022)			image"						
Ilhan et. al.	369 (HGG + LGG)		"Flair, T1,	BraTS 2020	Whole Tumor	U-Net	0.9983	0.88+-0.32	0.8362
(2022) (Ilhan et			T1c, T2						
al., 2022)			image"						
Ilhan et. al.	335 (259 HGG + 76 L	GG)	"Flair, T1,	BraTS 2019	Whole Tumor	U-Net	0.9982	0.87+-0.32	0.8301
(2022) (Ilhan et			T1c, T2						
al., 2022)			image"						

 Table 3. Included studies after the filtration carried out using PRISMA technique.

Aminian et. al.	30 (HGG + LGG)	10	"Flair, T1-	BraTS 2013	Whole Tumor	Two-Path Caps-		0.90	0.91
(2022)		(HGG)	CE"	(Testing set)	Tumor core	Net		0.85	0.82
(Aminian &					Enhanced tumor			0.78	0.8
Khotanlou,									
2022)									
Aminian et.	164 (HGG + LGG)	110	"Flair, T1-	BraTS	Whole Tumor	Two-Path Caps-		0.88	0.9
al.(2022)		(HGG +	CE, T1,	2015	Tumor core	Net		0.79	0.8
(Aminian &		LGG)	T2 "	(Testing Set)	Enhanced tumor			0.77	0.78
Khotanlou,									
2022)									
Swaraja et.	285 (210 HGG + 75 L	LGG)	"Flair, T1-	BraTS 2017	Whole Tumor	Transfer	0.986 (with	0.9125	0.98 (with
al.(2022)			CE, T1,			Learning	MSVM)		MSVM)
(Meenakshi et			T2"						
al., 2022)									
Swaraja et. al.	274 (220 HGG + 54 L	LGG)	"Flair, T1-	BraTS 2015	Whole Tumor	Transfer	0.99 (with	0.9225	0.982 (with
(2022)			CE, T1,			Learning	MSVM)		MSVM)
(Meenakshi et			T2"						
al., 2022)									
Swaraja et. al.	30 (20 HGG + 10 LG	G)	"Flair, T1-	BraTS 2013	Whole Tumor	Transfer	0.993 (with	0.94	0.987 (with
(2022)			CE, T1,			Learning	MSVM)		MSVM)
(Meenakshi et			T2"						
al., 2022)									
Ahmadi et. al.	1120	80	"T2-w"	Private	Whole Tumor	CNN + PCA	0.998	0.912	0.999
(2021) (Ahmadi				dataset					
et al., 2023)									
Futrega et. al.	1251 training + 219	570	"T1, T1-	BraTS 2021	Whole Tumor	Optimized U-		0.9149	
(2021) (Futrega	validation		weighted			Net with Deep			
et al., 2022)			(T1Gd),			supervision			
			T2-w and						
			T2-						
			FLAIR"						
Elhamzi et. al.	285		"T1, T1c,	BraTS 2017	Whole Tumor	CNN for glioma	0.997	0.86+-0.016	0.8
(2022)			T2, and		Tumor Core	segmentation	0.997	0.82+-0.094	0.816
(Elhamzi et al.,			FLAIR"		Enhanced		0.997	0.6+-0.089	0.614
2022)					Tumor				
Elhamzi et. al.	285			BraTS 2018	Whole Tumor	CNN for glioma	0.998	0.88+-0.024	0.832
(2022)					Tumor Core	segmentation	0.996	0.77+-0.161	0.828

(Elhamzi et al.,			"T1, T1c,		Enhanced		0.997	0.65+-0.1	0.612
2022)			T2, and		Tumor				
			FLAIR"						
Elhamzi et. al.	369		"T1, T1c,	BraTS 2020	Whole Tumor	CNN for glioma	0.998	0.87+-0.027	0.765
(2022)			T2, and		Tumor Core	segmentation	0.998	0.91+-0.032	0.895
(Elhamzi et al.,			FLAIR"		Enhanced		0.998	0.79+-0.06	0.76
2022)					Tumor				
Liang et. al.	285	66	"T1, T1c,	BraTS 2019	Whole Tumor	BTSwin-UNet	NA	90.28	NA
(2022) (Liang			T2-w, and		Tumor Core			81.73	
et al., 2022)			FLAIR"		Enhanced			78.38	
					Tumor				
Liang et. al.	285	166	"T1, T1c,	BraTS 2018	Whole Tumor	BTSwin-UNet	NA	91.74	NA
(2022) (Liang			T2-w, and		Tumor Core			85.53	
et al., 2022)			FLAIR"		Enhanced			81.93	
					Tumor				
Zheng et. al.	2475	289	Not	Private	Whole Tumor	SCU-Net for	NA	0.9262	NA
(2022) (Zheng			defined	Dataset		segmentation			
et al., 2022)									
Neelima et. al.	285	66	"T1, T1c,	BraTS 2019	Whole Tumor	U-Net Modified	NA	0.93	NA
(2022)			T2-w, and						
(Neelima et al.,			FLAIR"						
2022)									

6.3 Review of the included studies

The systematic review used a full-text search strategy to include 62 studies [Table 7] which performed both segmentation and classification, and the characteristics of the studies and their participants are shown in Table 4. The literature comprised of different DLAs and distinct categories of CNNs [(Anand et al., 2023), (ZainEldin et al., 2023), (Khan et al., 2022), (Balamurugan & Gnanamanoharan, 2023), (Athisayamani et al., 2023),(Svm & Maqsood, 2022)] and support vector machine [(Arif, Ajesh, et al., 2022), (Svm & Maqsood, 2022), (W. Wu et al., 2020),(Haq et al., 2022)], multiple classifier system [(Vankdothu et al., 2022), (M. I. Sharif et al., 2020), (Arif, Jims, et al., 2022)], and an auto encoder model [(Saeedi et al., 2023), (Kader et al., 2021)]. In addition, one experiment, employed a fully adversarial neural network [(Raja & Vijavachitra, 2023)], and one study used a Nakagami imaging method [(Alpar, 2023)]. Only 13 studies used external validation techniques for proving their correctness. Some studies omitted information about the MRI sequences they employed [(Shanthi et al., 2022), (Balamurugan & Gnanamanoharan, 2023), (Habib et al., 2022),(Srividya et al., 2023)]. Some studies used other than BraTs dataset [(Younis et al., 2022), (Rasool Reddy & Dhuli, 2022), (Tandel et al., 2022), (Reddy & Dhuli, 2023), (Srividya et al., 2023),]. The BraTS dataset has been used as the gold standard (i.e., the segmentations) in 27 separate researches. Four of these investigations [(Raja & Vijayachitra, 2023), (Srividya et al., 2023), (Shanthi et al., 2022), (Habib et al., 2022)] included the incorporation of original data segmentations. In ten of the researches, Figshare named dataset was used for segmentation purpose.

All analyses relied on previously acquired information. Five of the eleven studies in Table 4 dealt only with the separation of HGGs and LGGs. There were six more papers that talked about glioma segmentation, but they didn't break it down into LGG and HGG. Cross-validation was performed on the DLAs in 19 of the 74 papers that were included. The average DSC score among the included studies was 0.78, while the average sensitivity of the DLA tests was between 87 and 92%. Studies with a validated DSC score between 0.68 and 0.85 were selected. Sensitivity was(Haq et al., 2022) 89% (n = 2), whereas specificity was 98% (n = 1).

6.4 Meta- analysis of the involved research studies

Twenty DLAs were pooled from eleven trials for this metaanalysis, and their combined DSC was 0.93 (95% CI: 0.88 - 0.98) (Fig. 7). The results showed a heterogeneity of 90.4%, showing significant differences between the studies (p < 0.001) (Fig. 8).

Fig. 7 Forests Plot showing the results of meta-analysis

Results							
Meta-A	Analysis						
Random-Eff	ects Model (k	= 20)					
	Estimate	se	Z	р	CI Lower Bound	CI Upper I	Bound
Intercept	0.929	0.0242	38.5	< .001	0.882	0.977	
			1		-		8
Note. Tau ²	Estimator: Rest	ricted Maxin	num-Likelih	ood			[3]
Heterogene	ity Statistics						
Heterogene Tau	ity Statistics Tau ²	²	H²	F	R ² df	Q	р

Fig. 8 Results of Heterogenity

6.5 Publication Bias

The publication bias is also occurring this segmentation approach. Hence, a funnel plot (Fig. 9) is also plotted for further analysis.

6.6 Review of Included Studies

Analysis of the complete text reveals, 85 studies of brain tumor diagnosis were shortlisted. These collected studies used DL mechanism and performed the tasks of either segmentation or classification or both. All of them were shortlisted as systematic review participants, wherein Table 5 illustrates the demographics of the participants and the features of the study.

Study	Dataset Name	Purpose	MR Imaging	Algorithm Used	Training Images	Performance Motiving	Pre-	External
ID/Year/Reference			Modalities		(1)	Metrics	processing/rea	vandation
							Extracted	
Tiwari et. al(P. Tiwari et al., 2022) (2022)	Figshare (public dataset)	Classification	T1-w CE	CNN	2870	Accuracy, Precision, Recall	None	NO
Younis et. al(Younis et al., 2022) (2022)	MRI (public dataset)	Classification	Not Defined	CNN, VGG-16, Ensemble model	202	Accuracy, Recall, F1-Score	Preprocessing	No
Gamel et. al(ZainEldin et al., 2023) (2023)	BraTS 2021	Classification	T1, T1 CE, T2, FLAIR	Inception ResNet V2	1251 cases with 4 modalities	Accuracy, Sensitivity, Specificity, Precision, NPV, F1-Score	Both Preprocessing and Feature Extraction	NO
Rasool et. al(Rasool et al., 2022) (2022)	Public dataset	Classification	T1-w CE	Google-Net	2451	Accuracy	Fine Tuning	NO
Arkapravoetal.(Chattopadhyay&Maitra, 2022) (2022)	BraTS 2020	Classification	T1, T2, and FLAIR	CNN	2602	Accuracy	None	NO
Monirujjaman et. al(Khan et al., 2022) (2022)	Public Dataset from Kaggle	Classification	Not Defined	MobileNetV2 & VGG-19	3220	F1-score, Accuracy	Pre-processing & Post- processing	NO
Rahmanet.al(Rahman & Islam,2023) (2023)	Public Dataset + Figshare dataset+ Dataset from Kaggle	Classification	T1-w CE	PDCNN	Varied	Accuracy, Error Time, Kappa values	Preprocessing	NO
Shanthi et. al.(Shanthi et al., 2022) (2022)	Public dataset from clinics of Karnataka	Classification	Not Defined	Optimized Hybrid CNN + LSTM	600	Accuracy	Pre-processing	NO
Tandel et. al.(Tandel et al., 2023) (2023)	Molecular brain tumor data (REMBRANDT)	Classification	FLAIR, T1 (w), T2 (w)	5 different transfer learning models are tested	13,472 data points	Accuracy, Sensitivity, Specificity, AUC, PPV, NPV	Pre-processing & Feature Extraction	Yes (5-fold)
Suganyaet.al.(Athisayamanietal., 2023) (2023)	Figshare + BraTS 2019 + BraTS 2021	Segmentation + Classification	FLAIR, T1 (w), T2 (w), T1-CE	ResNet-152 based DCNN	_	Accuracy, Precision, Recall	Pre-processing & Feature Extraction	NO

 Table 5 Final table for all the included studies

Gomez et. al.(Gómez-	Figshare	Classification	FLAIR,	Generic CNN,	6397	Accuracy,	Pre-processing	NO
Guzmán et al., 2023)	+SARTAJ+ Br-35		T1(w), T2-	ResNet50,		Specificity,		
(2023)			(w), T1-(w)	InceptionV3,		precision, Recall,		
			CE	InceptionResNetV		AUC		
				2, Xception,				
				MobileNetV2, and				
				EfficientNetB0				
Vatsala et. al.(Anand	The Cancer	Classification	Not Defined	Weighted Avg.	3536	Accuracy,	Feature -	NO
et al., 2023) (2023)	Genome Atlas			Ensemble Model		Sensitivity,	Extraction	
	(TCGA)					Precision, F1-		
						Score		
Ramdas et.	Kaggle dataset	Detection +	Not Defined	CNN + LSTM	2870	Accuracy,	Feature	NO
al.(Vankdothu et al.,	(32/harvard64	Classification				Precision, Recall	extraction &	
2022) (2022)	images)						Pre-processing	
Ghazanfar Latif	BraTS 2015 +	Segmentation	T1, T1(c),	Deep CNN for	1,69,880	Accuracy,	Feature	Yes
(Latif, 2022) (2022)	PIMS -MRI	+	T2 and	classification +		Recall, Precision,	extraction	
	dataset	Classification	FLAIR +	FCM for		F1- Score		
			T1, T2	segmentation				
Muhammad Arif et.	From	Segmentation	Axial,	BWT for	66 brain MRI	Accuracy, error,	Pre-processing	NO
al. (Arif, Ajesh, et al.,	AANLIB/Harvard	+	T2(W)	segmentation +		sensitivity,	& Feature	
2022) (2022)		Classification		SVM classifier		specificity	extraction	
Maqsood et. al. (Svm	BraTS-2018 +	Classification	T1w, T2w,	17-layered CNN,	285 from BraTs +	Accuracy,	Contrast	Yes
& Maqsood, 2022)	Figshare	+	T1w CE,	MobileNetV2 &	2451 from	Sensitivity,	Enhancement +	
(2022)		Segmentation	and FLAIR	M-SVM	figshare	specificity, Dice	Feature	
			image + T1-			coefficient index	Extraction	
			w CE					
Rasool Reddy et. al.	BraTs 2015	Classification	T1, T1c, T2	Bi-dimensional	274 training	ACC, Recall,	Median	Yes
(Rasool Reddy &		+	and FLAIR	empirical mode	gliomas	Precision, Spec,	Filtering +	
Dhuli, 2022) (2022)		Segmentation		decomposition		AUC, F-Measure	Feature	
		in 2 Phases		(BEMD) +			Extraction	
				Modified Quasi-				
				Bivariate				
				variational mode				
				decomposition				
				(MQBVMD)				
Balamurugan et. al.	253 images dataset	Segmentation	Not Defined	DCNN + LuNet	173: 64 tumor	Acc, Sen, Spec,	Preprocessing +	NO
(Balamurugan &		+			and 109 non-	Precision, F-Score,	feature	
Gnanamanoharan,		Classification			tumor data	Dice-Similarity	extraction	
2023) (2023)						Index		

RamPrasad et. al.	BraTS 2020	Segmentation	T1-w, T1ce-	HFCMIK for	369 images	Acc, Sen, Spec,	Pre-processing	NO
(Ramprasad et al.,		+	w,	segmentation +		Recall, F-measure,	+ Feature	
2022) (2022)		Classification	T2-w and	DLPNN for		NPV, MCC	Extraction	
			Flair	classification				
			sequences					
Tandel et. al. (Tandel	3- datasets from	Segmentation	T1-w, T2-	Major Voting	80% of WBM,	Acc, Sen, Spec,	Feature	Yes
et al., 2022) (2022)	TCIA-	+	w, FLAIR,	Algorithm	RSM, SSM	AUC, PPV, NPV,	Extraction	
	REMEMBRAND	Classification	diffusion-			ITR, TIME		
	Т		weighted					
			imaging					
			(DWI)					
Saeedi et. al. (Saeedi	Public dataset of	Segmentation	T1-w (CE)	2-D CNN + Auto-	After	Acc, Sen, Spec, F-	Pre-processing	Yes
et al., 2023) (2023)	3264 images	+	MRI	encoder CNN	augmentation	measure	+ Feature	
		Classification			8812 images		Extraction	
Raja et. al.(Raja &	Dataset from	Segmentation	Not Defined	Generative	52 images	Acc, Sen, Spec,		NO
Vijayachitra, 2023)	hospitals of USA	+		Adversarial		Computation time,		
(2023)	(65 images)	Classification		Network		Dice score, PSNR,		
						SSIM, NMSE		
Liu et. al. (Y. Liu et	BraTS-2019 +	Segmentation	FLAIR, T1	PIF-Net, the MSFF	335 + 369 MR	Dice score,		NO
al., n.d.) (2023)	BraTS-2020		(w), T2 (w),	module and	Images	Hausdroff distance		
			T1-CE	the V-Net				
Liang et. al.(Liang et	BraTS 2018 +	Segmentation	T1-w, T1	BT Swin-Unet	285 + 335	Dice score,		NO
al., 2022) (2022)	BraTS 2019		(CE), T2-w		training subjects	Hausdroff distance		
			and					
			(FLAIR)					
Elhamzi et.	BraTS 2017 +	Segmentation	T1, T2, T1	CNN architecture	285 + 285 + 369	Dice Score, Sen,	None	NO
al.(Elhamzi et al.,	BraTS 2018 +		CE, and		training subjects	Spec, Hausdorff		
2022) (2022)	BraTS 2020		FLAIR			distance, Avg.		
						Time		
Nyo et. al.(Nyo et al.,	BraTS 2015	Segmentation	Not defined	OTSU thresholding	_	Accuracy, Jaccard	Pre-processing	NO
2022) (2022)				method				
Mahesh et.	BraTS-2019	Segmentation	T1-w, T1-	Enhanced U-Net	Not defined	Acc, Dice Coeff,	Pre-processing	NO
al.(Mahesh Kumar &			(CE),			Jaccard Coeff,		
Parthasarathy, 2023)			FLAIR and			Precision, Sen,		
(2023)			T2- w			Spec		
Srividya et.	CPTAC-GBM	Segmentation	Not-defined	Histo-quartic graph	Not discussed	PSNR, RMSE,	Pre-processing	NO
al.(Srividya et al.,	from National			+ Stack entropy		Accuracy, Loss		
2023) (2023)	Cancer institute			based DNN				

Alpar (Alpar, 2023)	BraTS 2012	Segmentation	T1, T1 (C),	Nakagami Imaging	Not discussed	DSc, TPR, TNR,	Preprocessing	NO
(2023)			T2, FLAIR	+ Fuzzy Fusion		Avg. IOU		
Wentao et. al.(W. Wu	BraTS 2018	Classification	T1w, T2w,	DCNN-F-SVM	285 training set	DSc, Sensitivity,	Both	Yes
et al., 2020) (2020)		+	T1w c+, and	model		Specificity		
		Segmentation	FLAIR					
			images					
Kader et. al. (Kader et	MRIs from BraTS	Classification+	T1w, T2w,	Deep Wavelet	2500 Images	Acc, Sen, Spec	Pre-processing	NO
al., 2021) (2021)	2012,	Segmentation	T1w c+, and	Auto Encoder	combined	Precision, DSc,		
	BraTS2013,		FLAIR	Model		FPR, FNR, JSI		
	BraTS2014,		images					
	BraTS2015,							
	ISLES							
Irfan et. al. (M. I.	BraTS 2013,	Classification	T1w, T2w,	Saliency-based	588 HGG + 198	Error + Accuracy	Feature	NO
Sharif et al., 2020)	BraTS 2015,	&	T1w c+, and	Segmentation +	LGG	+ Time	Extraction	
(2019)	BraTS 2017,	Segmentation	FLAIR	Softmax classifier				
	BraTS 2018		images					
Archana et. al. (Ingle	Nanfeng hospital	Classification	T1-w	Modified UNet	2479 images	mIOU + DSc	Pre-processing	NO
et al., 2022) (2022)		+						
		Segmentation						
Dang et. al. (Dang et	BraTS 2019	Classification	T1, T1 (CE)	UNet + VGG +		Dice Score +	Pre-processing	Yes
al., 2022) (2022)		+	+ T2-w,	GoogleNet		Precision + Recall		
		Segmentation	FLAIR			+ Housdorff		
						distance +		
						Accuracy		
Arif et. al.(Arif, Jims,	REMBRANDT	Classification	Not Defined	Genetic Algorithm		Acc, Sen, Spec,	Pre-processing	NO
et al., 2022) (2022)		+		& U-Net		Precision, recall,	+ Feature	
		Segmentation				Detection rate,	extraction	
						FPR + TPR		
Ejaz et. al. (Haq et al.,	Two distinct	Classification	T1-w	Deep CNN +		Acc, PSNR, MSE,	Pre-processing	NO
2022) (2022)	public datasets	+		SVM-RBF		FPR, DSc		
		Segmentation						
Samee et. al. (Samee	BraTS2015	Classification	T1, T1 (CE)	U-Net and CNN	736 HGG + LGG	DSc,	Pre-processing	Yes
et al., 2022) (2022)		+	+ T2-w,	Cascaded	MRIs	Sensitivity and	& Feature	
		Segmentation	FLAIR	framework		Acc, Specificity	extraction	
Pranjal et.	BraTS2020	Classification	T1, T1	3D-UNet + CNN		DSc, Accuracy,	Feature	NO
al.(Agrawal et al.,		+	(CE), T2-w,			Precision, recall,	Extraction	
2022) (2022)		Segmentation	FLAIR			F1-score		

Neelima et.	BraTS2018 +	Classification	T1, T1	Deep MRSeg +	Variational	DSc, Sens, Spec,	Pre-processing	NO
al.(Neelima et al.,	Figshare Dataset	+	(CE), T2-w,	GAN		Accuracy	+ Feature	
2022) (2022)		Segmentation	FLAIR				Extraction	
KishanRao et. al.	BraTS2015,	Segmentation	T1, T1	Hybrid DCNN	90% of	DSc, Sen, Spec,	Pre-processing	NO
(Kishanrao &	BraTS 2017 and	+	(CE), T2-w,	with deer hunting	combination of	Acc, FPR, FNR,	+ Feature	
Jondhale, 2023)	BraTS 2019	Classification	FLAIR		datasets	PPV, Precision	Extraction	
(2023)								
Deepa et. al.	BraTS2018 +	Segmentation	T1, T1	Deep MRSeg +	285 training sets	Acc, Specificity,	Pre-processing	NO
(Deepa et al., 2023)	Figshare	+	(CE), T2-w,	DRN	+ 2758 from	Sensitivity	+ Feature	
(2023)		Classification	FLAIR +		figshare		Extraction	
			T1-w					
Kamireddy et. al.	Dataset from	Segmentation	T2-w	CNN + FL-MSCM	185 training	TPR, TNR, PPV,	Pre-processing	Yes
(Reddy & Dhuli,	Harvard medical	+			MRIs	F-Score, AUC,	+ Feature	
2023) (2023)	school	Classification				Accuracy, DSc	Extraction	
Nacer et.	BraTS2020	Segmentation	T1, T1	CNNs + UNet	369 MR Images	Accuracy,	Preprocessing +	Yes
al.(Farajzadeh et al.,		+	(CE), T2-w,			Precision, Recall,	Feature	
2023) (2023)		Classification	FLAIR +			F1-Score	Extraction	
			T1-w					
Nirmala et. al.	BraTS2015	Segmentation	T1, T1	VGG-16 + kPCA		PSNR, SSIM,	Preprocessing +	NO
(Ramesh et al., 2021)		+	(CE), T2-w,			MSE, Accuracy,	Feature	
(2021)		Classification	FLAIR +			Sen, Spec,	Extraction	
			T1-w			Precision, F-		
						measure		
Srinath et.	Figshare dataset	Classification	T1-w (CE)	Deep Dense	2298 MR Images	Accuracy,	None	NO
al.(Kokkalla et al.,				Inception ResNet		Precision, Recall,		
2021) (2021)						F1-Score		
Polat Ozlem (Polat &	Figshare dataset	Classification	T1-w (CE)	VGG-16 +	2145 MR Images	AUC, Accuracy	None	NO
Güngen, 2021) (2021)				VGG-19 +				
				ResNet50 +				
				DenseNet-121				
Habib hassan et. al	A private dataset	Classification		Segmentation	1161 (80% of	Accuracy.	Pre-processing	NO
(Habib et al., 2022)	of 512 images	+		methods + ML-	total images) MR	Precision,	+ Feature	
(2021)	gathered from	Segmentation		based Classifiers	Images	Specificity, TPR,	Extraction	
	Nishtar Hospital,					TNR		
	Pakistan, and the							
	second one is a							
	slice dataset of							
	940 images							

	selected for							
Badzaet.al.(Autoencoder&Badža, 2021) (2021)	Figshare Dataset	Segmentation	T1-w(CE)	Convolutional neural auto encoder	1838 MR scans	Acc, Sen, Spec, Precision, DSc	Pre-processing	Yes
Saeed Usman et. al.(Saeed et al., 2021) (2021)	BraTS2018, BraTS2019, BraTS2020	Segmentation	T1-w, T1- w(T1ce), T2-w, and Flair	RMU-Net	285 + 335+ 369 both HGG and LGG cases	Dice Score, Jaccard Score	Pre-processing	NO
Huang et. al.(Huang et al., 2021) (2021)	BraTS2018, BraTS2019, BraTS2020	Segmentation	T1-w, T1- w(T1ce), T2-w, and Flair	Multitask deep Framework	285 + 335+ 369 both HGG and LGG cases	Dice Score, Hausdorff distance, Sensitivity and specificity	Pre-processing	NO
Kalpanaet.al.(Kalpanaetal.)2022) (2022)	BraTS2016, BraTS2017, BraTS2018	Segmentation	T1-w, T1- w(T1ce), T2-w, and Flair	PLA + DenseNet- 169	274 + 285+ 285 Training images for all datasets respectively	Acc, Sen, Spec	Both	Yes
Neelima et. al. (Neelima et al., 2022) (2022)	BraTS 2018, Figshare	Segmentation	T1, T1- w+T1 (CE), T2, FLAIR	CAViaR-SPO	3064 slices for figshare + 130- 176 slices for BraTs2018	Seg acc, Sensitivity, Specificity	Both; feature extraction done using DeepMRSeg	No
Kishanrao et. al. (Kishanrao & Jondhale, 2023) (2023)	BraTs 2015, BraTS 2017, BraTS 2019	Segmentation + Classification	T1-w, T1c), T2-w, and T2 - Flair	Hybrid Deep CNN + Deer Hunting Optimization with SFO	2446.23 M voxels of BraTs 2015 + 2544.33 M voxels of BraTs 2017 + 2972.91 M voxels of BraTs 2019	Accuracy, Sensitivity, Specificity, Dice Score, Jaccard Indexes, Balanced Error rate	Both	NO
Yaping et. al. (Y. Wu et al., 2019)(2019)	BraTS 2017	Segmentation	T1, T2, FLAIR and CET1	Otsu Algorithm + SVM	228 training + 57 testing cases	Dice Score, Housdorff distance, specificity and Sensitivity	Both	Yes (5-fold cross validation)
Soltaninejad et. al.(Soltaninejad et al., 2018) (2018)	Private dataset :11 Multimodal Images + BraTS 2013 : 30	Classification + Segmentation	Single modal FLAIR, multi-modal	Random Forest + Multimodal Supervoxel	11multimodalfromprivatedatasetand30(20HGG+	Dice Score, Precision, Sesitivity and	Both	Yes (4-fold cross validation)

	multimodal		cMRI		LGG from BraTS	Balanced Error		
	Images		(FLAIR,		2013)	Rate (BER)		
			T1, T2 and					
			T1 +					
			contrast)					
Li et. al.(H. Li et al.,	BraTS 2015 +	Segmentation	T1-w, T1-	Inception based U-	220 HGGs and	Dice, Sensitivity,	Pre-processing	Yes (5-fold
2019)(2019)	BraTS 2016		CE, T2-w	Net + Up-skip	54 LGGs from	PPV and Jaccard		cross validation)
	+BraTS 2017		and FLAIR	connection +	training in BraTS	Index		
				cascaded training	2015 + 110 x 620			
				strategy	images for			
					testing in BraTS			
					2015 + 210			
					HGGs and 75			
					LGGs (BraTS			
					2017)			
Elhamzi et.	BraTS 2017,	Segmentation	FLAIR, T1,	CNN with seven	BraTS 2017 and	Sensitivity,	Post-processing	NO
al.((Elhamzi et al.,	BraTS 2018,		T1c, T2	convolution, four	BraTS 2018 have	Specificity,		
2022)(2022)	BraTS 2020			Batch	285 training	Housdorff distance		
				Normalization,	images and			
				and four pooling	BraTS 2020 have			
				layers	369 images			
Shidong et. al. (S. Li	BraTS 2015	Segmentation	FLAIR, T1,	2D U-Net for	220 HGG and 54	Dice Similarity	Slice Extraction	Yes (10-fold
et al., 2022)(2022)			T1c, T2	localization $+$ 3D	LGG	Coefficient, Mean	+ Pre-	cross validation)
				U-Net for		surface distance,	processing(crop	
				segmentation		Housdorff distance	ping)	
Ahmet et. al.(Ilhan et	BraTS 2012,	Segmentation	T1, T2, T1	Tumor localization	5633 FLAIR	Dice score,	Filtration for	Yes (5-fold
al., 2022) (2022)	BraTS 2019,		c, FLAIR	and enhancement +	images from	Matthew's	noise removal	cross-
	BraTS 2020			U-Net	2012, 51,925	correlation		validation)
					FLAIR images	coefficient,		
					from BraTS	Jaccard,		
					2019 + 57,195	Sensitivity,		
					FLAIR images	specificity,		
					from BraTS	precision		
	D 0010	a st			2020	D ' d b ' b		N
Ajay et. al.(Ladkat et	BraTS 2019	Segmentation	FLAIR,	Mathematical	335 cases (259	Dice, Sensitivity,	Feature	No
al., 2022)(2022)			Tice, TI,	model embedded	HGG + 76 LGG)	Specificity,	Extraction	
			12	with 3-D attention		Housdorff,		
				U-Net		accuracy, precision		

7. Future Directions

This study's findings highlight the superior accuracy and robustness of deep learning compared to traditional methods, making it a more efficient and precise diagnostic tool. Deep learning in medical imaging holds the potential to transform healthcare by enabling earlier disease detection and treatment, particularly in brain MRI image diagnosis.

However, it's important to acknowledge that training deep learning models demands substantial time, effort, data, and computing power. Despite this challenge, the benefits of applying deep learning to brain MRI image diagnosis are substantial. Several key points emerge

1. Access to large, high-quality real-world databases remains a significant hurdle, but data augmentation offers a potential solution.

2. Developing a pre-processing system for color-balancing textured MRI images to unlock new features is crucial, with an emphasis on tumor detection.

3. There's an urgent need for a versatile system capable of processing both 2D and 3D images, encouraging innovative approaches that merge shallow and deep systems.

4. Incorporating optimization strategies for deep learning models is a potential avenue for improvement.

5. To Create an integrated framework encompassing multiple tasks, from pre-processing to tumor type identification, is required for aiding neurosurgeons with automated tumor segmentation. In conclusion, deep learning holds great promise for brain tumor research, with a focus on translating these experiments from the lab to clinical settings with strategic direction and effort.

8. Conclusion

This report includes a comprehensive literature analysis covering the years 2018–2023 on the topic of utilizing Deep Learning to Separate Brain Tumors from Normal Tissue in MRI Images. There are a plethora of practical and efficient algorithms available today, yet there is still room for improvement due to a lack of uniformity. In-depth benefits and cons of every previously-mentioned method are discussed here. DL has been applied to several problems, including brain tumor prediction, diagnostics, detection, segmentation and classification. When compared to other methods, there is no denying the efficacy of Deep Learning methods and algorithms and can process big datasets with ease. Unfortunately, their usefulness in the investigation of brain tumors is still not fully utilized. Despite the promising outcomes, successfully applying DL methods to advance diseased clinical images will require significant additional time, effort, and a secure partnership between various official higher authorities, industries, and academic groups. Hence, it is clear from the above extensive

review that a single, fully-automated system capable of identifying brain tumors and classifying them effectively with a minimum of complication is urgently needed.

References

- [1] Abd-Ellah, M. K., Awad, A. I., Khalaf, A. A. M., & Hamed, H. F. A. (2019). A review on brain tumor diagnosis from MRI images: Practical implications, key achievements, and lessons learned. Magnetic Resonance Imaging, 61, 300–318. https://doi.org/https://doi.org/10.1016/j.mri.2019.05. 028
- [2] Acharya, U. R., Fernandes, S. L., WeiKoh, J. E., Ciaccio, E. J., Fabell, M. K. M., Tanik, U. J., Rajinikanth, V., & Yeong, C. H. (2019). Automated Detection of Alzheimer's Disease Using Brain MRI Images- A Study with Various Feature Extraction Techniques. Journal of Medical Systems, 43(9), 302. https://doi.org/10.1007/s10916-019-1428-9
- [3] Agrawal, P., Katal, N., & Hooda, N. (2022). Segmentation and classification of brain tumor using 3D-UNet deep neural networks. International Journal of Cognitive Computing in Engineering, 3(November), 199–210. https://doi.org/10.1016/j.ijcce.2022.11.001
- [4] Ahmadi, M., Sharifi, A., Jafarian Fard, M., & Soleimani, N. (2023). Detection of brain lesion location in MRI images using convolutional neural network and robust PCA. International Journal of Neuroscience, 133(1), 55–66. https://doi.org/10.1080/00207454.2021.1883602
- [5] Alpar, O. (2023). A mathematical fuzzy fusion framework for whole tumor segmentation in multimodal MRI using Nakagami imaging. Expert Systems with Applications, 216(December 2022), 119462. https://doi.org/10.1016/j.eswa.2022.119462
- [6] Amin, J., Sharif, M., Yasmin, M., & Fernandes, S. L.
 (2020). A distinctive approach in brain tumor detection and classification using MRI. Pattern Recognition Letters, 139, 118–127. https://doi.org/https://doi.org/10.1016/j.patrec.2017. 10.036
- [7] Aminian, M., & Khotanlou, H. (2022). CapsNetbased brain tumor segmentation in multimodal MRI images using inhomogeneous voxels in Del vector domain. 17793–17815.
- [8] Amoroso, N., La Rocca, M., Monaco, A., Bellotti, R., & Tangaro, S. (2018). Complex networks reveal early MRI markers of Parkinson's disease. Medical Image Analysis, 48, 12–24. https://doi.org/10.1016/j.media.2018.05.004
- [9] Anand, V., Gupta, S., Gupta, D., Gulzar, Y., Xin, Q., Juneja, S., Shah, A., & Shaikh, A. (2023). Weighted Average Ensemble Deep Learning Model for

Stratification of Brain Tumor in MRI Images. Diagnostics, 13(7). https://doi.org/10.3390/diagnostics13071320

- [10] Anita Jasmine, R., Arockia Jansi Rani, P., & Ashley Dhas, J. (2022). Hyper Parameters Optimization for Effective Brain Tumor Segmentation with YOLO Deep Learning. Journal of Pharmaceutical Negative Results, 13(6), 2247–2257. https://doi.org/10.47750/pnr.2022.13.S06.292
- [11] Arif, M., Ajesh, F., Shamsudheen, S., Geman, O., Izdrui, D., & Vicoveanu, D. (2022). Brain Tumor Detection and Classification by MRI Using Biologically Inspired Orthogonal Wavelet Transform and Deep Learning Techniques. Journal of Healthcare Engineering, 2022. https://doi.org/10.1155/2022/2693621
- [12] Arif, M., Jims, A., Ajesh, A., Geman, O., Craciun, M.
 D., & Leuciuc, F. (2022). Application of Genetic Algorithm and U-Net in Brain Tumor Segmentation and Classification: A Deep Learning Approach. Computational Intelligence and Neuroscience, 2022. https://doi.org/10.1155/2022/5625757
- [13] Athisayamani, S., Antonyswamy, R. S., Sarveshwaran, V., Almeshari, M., Alzamil, Y., & Ravi, V. (2023). Feature Extraction Using a Residual Deep Convolutional Neural Network (ResNet-152) and Optimized Feature Dimension Reduction for MRI Brain Tumor Classification. Diagnostics, 13(4). https://doi.org/10.3390/diagnostics13040668
- [14] Autoencoder, C., & Badža, M. M. (2021). applied sciences Segmentation of Brain Tumors from MRI Images Using.
- [15] Balamurugan, T., & Gnanamanoharan, E. (2023). Brain tumor segmentation and classification using hybrid deep CNN with LuNetClassifier. Neural Computing and Applications, 35(6), 4739–4753. https://doi.org/10.1007/s00521-022-07934-7
- Bruun, M., Koikkalainen, J., Rhodius-Meester, H. F. M., Baroni, M., Gjerum, L., van Gils, M., Soininen, H., Remes, A. M., Hartikainen, P., Waldemar, G., Mecocci, P., Barkhof, F., Pijnenburg, Y., van der Flier, W. M., Hasselbalch, S. G., Lötjönen, J., & Frederiksen, K. S. (2019). Detecting frontotemporal dementia syndromes using MRI biomarkers. NeuroImage. Clinical, 22, 101711. https://doi.org/10.1016/j.nicl.2019.101711
- [17] Chattopadhyay, A., & Maitra, M. (2022). MRI-based brain tumour image detection using CNN based deep learning method. Neuroscience Informatics, 2(4), 100060. https://doi.org/10.1016/j.neuri.2022.100060
- [18] Dang, K., Vo, T., Ngo, L., & Ha, H. (2022). A deep learning framework integrating MRI image preprocessing methods for brain tumor segmentation and classification. IBRO Neuroscience Reports,

13(October), 523–532. https://doi.org/10.1016/j.ibneur.2022.10.014

- [19] Deepa, S., Janet, J., Sumathi, S., & Ananth, J. P. (2023). Hybrid Optimization Algorithm Enabled Deep Learning Approach Brain Tumor Segmentation and Classification Using MRI. Journal of Digital Imaging, 0123456789. https://doi.org/10.1007/s10278-022-00752-2
- [20] Elhamzi, W., Ayadi, W., & Atri, M. (2022). A novel automatic approach for glioma segmentation. Neural Computing and Applications, 34(22), 20191–20201. https://doi.org/10.1007/s00521-022-07583-w
- [21] Farajzadeh, N., Sadeghzadeh, N., & Hashemzadeh, M. (2023). Brain tumor segmentation and classification on MRI via deep hybrid representation learning. Expert Systems with Applications, 224(March), 119963. https://doi.org/10.1016/j.eswa.2023.119963
- [22] Futrega, M., Milesi, A., Marcinkiewicz, M., & Ribalta, P. (2022). Optimized U-Net for Brain Tumor Segmentation. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12963 LNCS, 15–29. https://doi.org/10.1007/978-3-031-09002-8_2
- [23] Gómez-Guzmán, M. A., Jiménez-Beristaín, L., García-Guerrero, E. E., López-Bonilla, O. R., Tamayo-Perez, U. J., Esqueda-Elizondo, J. J., Palomino-Vizcaino, K., & Inzunza-González, E. (2023). Classifying Brain Tumors on Magnetic Resonance Imaging by Using Convolutional Neural Networks. Electronics (Switzerland), 12(4), 1–22. https://doi.org/10.3390/electronics12040955
- [24] Habib, H., Amin, R., Ahmed, B., & Hannan, A.
 (2022). Hybrid algorithms for brain tumor segmentation, classification and feature extraction. Journal of Ambient Intelligence and Humanized Computing, 13(5), 2763–2784. https://doi.org/10.1007/s12652-021-03544-8
- Haq, E. U., Jianjun, H., Huarong, X., Li, K., & Weng, L. (2022). A Hybrid Approach Based on Deep CNN and Machine Learning Classifiers for the Tumor Segmentation and Classification in Brain MRI. Computational and Mathematical Methods in Medicine, 2022. https://doi.org/10.1155/2022/6446680
- [26] Higgins, J. P. T., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. BMJ, 327(7414), 557 LP – 560. https://doi.org/10.1136/bmj.327.7414.557
- Huang, H., Yang, G., Zhang, W., Xu, X., Yang, W., Jiang, W., & Lai, X. (2021). A Deep Multi-Task Learning Framework for Brain Tumor Segmentation. Frontiers in Oncology, 11(June), 1–16.

https://doi.org/10.3389/fonc.2021.690244

- [28] Ilhan, A., Sekeroglu, B., & Abiyev, R. (2022). Brain tumor segmentation in MRI images using nonparametric localization and enhancement methods with U-net. International Journal of Computer Assisted Radiology and Surgery, 17(3), 589–600. https://doi.org/10.1007/s11548-022-02566-7
- [29] Ingle, A., Roja, M., Sankhe, M., & Patkar, D. (2022). Efficient segmentation and classification of the tumor using improved encoder-decoder architecture in brain MRI images. International Journal of Electrical and Computer Engineering Systems, 13(8), 643–651. https://doi.org/10.32985/ijeces.13.8.4
- [30] Kader, I. A. El, Xu, G., Shuai, Z., Saminu, S., Javaid, I., Ahmad, I. S., & Kamhi, S. (2021). Brain tumor detection and classification on mr images by a deep wavelet auto-encoder model. Diagnostics, 11(9). https://doi.org/10.3390/diagnostics11091589
- [31] Kalpana, R., Bennet, M. A., & Rahmani, A. W. (2022). Metaheuristic Optimization-Driven Novel Deep Learning Approach for Brain Tumor Segmentation. BioMed Research International, 2022. https://doi.org/10.1155/2022/2980691
- [32] Kaur, H., & Gill, A. K. (2017). Review of Brain Tumor Detection Using Various Techniques.
- [33] Kavitha, A. R., & Palaniappan, K. (2023). Brain tumor segmentation using a deep Shuffled-YOLO network. International Journal of Imaging Systems and Technology, 33(2), 511–522. https://doi.org/10.1002/ima.22832
- [34] Khan, M. M., Omee, A. S., Tazin, T., Almalki, F. A., Aljohani, M., & Algethami, H. (2022). A Novel Approach to Predict Brain Cancerous Tumor Using Transfer Learning. Computational and Mathematical Methods in Medicine, 2022, 2702328. https://doi.org/10.1155/2022/2702328
- [35] Kishanrao, S. A., & Jondhale, K. C. (2023). An improved grade based MRI brain tumor classification using hybrid DCNN-DH framework. Biomedical Signal Processing and Control, 85(April), 104973. https://doi.org/10.1016/j.bspc.2023.104973
- [36] Kokkalla, S., Kakarla, J., Venkateswarlu, I. B., & Singh, M. (2021). Three-class brain tumor classification using deep dense inception residual network. Soft Computing, 25(13), 8721–8729. https://doi.org/10.1007/s00500-021-05748-8
- [37] Kumari, N., & Saxena, S. (2018). Review of Brain Tumor Segmentation and Classification. 2018 International Conference on Current Trends towards Converging Technologies (ICCTCT), 1–6. https://doi.org/10.1109/ICCTCT.2018.8551004
- [38] Ladkat, A. S., Bangare, S. L., Jagota, V., Sanober, S., Beram, S. M., Rane, K., & Singh, B. K. (2022). Deep

Neural Network-Based Novel Mathematical Model for 3D Brain Tumor Segmentation. Computational Intelligence and Neuroscience, 2022. https://doi.org/10.1155/2022/4271711

- [39] Latif, G. (2022). DeepTumor: Framework for Brain MR Image Classification, Segmentation and Tumor Detection. Diagnostics, 12(11). https://doi.org/10.3390/diagnostics12112888
- [40] Li, H., Li, A., & Wang, M. (2019). A novel end-toend brain tumor segmentation method using improved fully convolutional networks. Computers in Biology and Medicine, 108(March), 150–160. https://doi.org/10.1016/j.compbiomed.2019.03.014
- [41] Li, S., Liu, J., & Song, Z. (2022). Brain tumor segmentation based on region of interest-aided localization and segmentation U-Net. International Journal of Machine Learning and Cybernetics, 13(9), 2435–2445. https://doi.org/10.1007/s13042-022-01536-4
- [42] Liang, J., Yang, C., Zhong, J., & Ye, X. (2022).
 BTSwin-Unet: 3D U-shaped Symmetrical Swin Transformer-based Network for Brain Tumor Segmentation with Self-supervised Pre-training. Neural Processing Letters, 696. https://doi.org/10.1007/s11063-022-10919-1
- [43] Liu, J., Li, M., Wang, J., Wu, F., Liu, T., & Pan, Y.
 (2014). A survey of MRI-based brain tumor segmentation methods. Tsinghua Science and Technology, 19(6), 578–595. https://doi.org/10.1109/TST.2014.6961028
- [44] Liu, Y., Mu, F., Shi, Y., Cheng, J., Li, C., & Chen, X.(n.d.). Brain tumor segmentation in multimodal MRI via pixel-level and feature-level image fusion.
- [45] Mahesh Kumar, G., & Parthasarathy, E. (2023). Development of an enhanced U-Net model for brain tumor segmentation with optimized architecture. Biomedical Signal Processing and Control, 81(November 2022), 104427. https://doi.org/10.1016/j.bspc.2022.104427
- [46] Meenakshi, K. S. K., Bindu, H., & Karuna, V. G. (2022). Segmentation and detection of brain tumor through optimal selection of integrated features using transfer learning. Multimedia Tools and Applications.
- [47] MRI t1 vs t2. (n.d.). https://helpary.wordpress.com/2019/02/26/mri-t1vs-t2/
- [48] Nazir, M., Shakil, S., & Khurshid, K. (2021). Role of deep learning in brain tumor detection and classification (2015 to 2020): A review. Computerized Medical Imaging and Graphics, 91(April), 101940. https://doi.org/10.1016/j.compmedimag.2021.10194 0

- [49] Neelima, G., Chigurukota, D. R., Maram, B., & Girirajan, B. (2022). Optimal DeepMRSeg based tumor segmentation with GAN for brain tumor classification. Biomedical Signal Processing and Control, 74(January), 103537. https://doi.org/10.1016/j.bspc.2022.103537
- [50] Nyo, M. T., Mebarek-Oudina, F., Hlaing, S. S., & Khan, N. A. (2022). Otsu's thresholding technique for MRI image brain tumor segmentation. Multimedia Tools and Applications, 81(30), 43837– 43849. https://doi.org/10.1007/s11042-022-13215-1
- [51] Polat, Ö., & Güngen, C. (2021). Classification of brain tumors from MR images using deep transfer learning. Journal of Supercomputing, 77(7), 7236– 7252. https://doi.org/10.1007/s11227-020-03572-9
- [52] Rahman, T., & Islam, M. S. (2023). MRI brain tumor detection and classification using parallel deep convolutional neural networks. Measurement: Sensors, 26(December 2022), 100694. https://doi.org/10.1016/j.measen.2023.100694
- [53] Raja, M., & Vijayachitra, S. (2023). A hybrid approach to segment and detect brain abnormalities from MRI scan. Expert Systems with Applications, 216(May 2022), 119435. https://doi.org/10.1016/j.eswa.2022.119435
- [54] Ramesh, S., Sasikala, S., & Paramanandham, N. (2021). Segmentation and classification of brain tumors using modified median noise filter and deep learning approaches. Multimedia Tools and Applications, 80(8), 11789–11813. https://doi.org/10.1007/s11042-020-10351-4
- [55] Ramprasad, M. V. S., Rahman, M. Z. U., & Bayleyegn, M. D. (2022). A Deep Probabilistic Sensing and Learning Model for Brain Tumor Classification with Fusion-Net and HFCMIK Segmentation. IEEE Open Journal of Engineering in Medicine and Biology, 3, 178–188. https://doi.org/10.1109/OJEMB.2022.3217186
- [56] Ranjbarzadeh, R., Bagherian Kasgari, A., Jafarzadeh Ghoushchi, S., Anari, S., Naseri, M., & Bendechache, M. (2021). Brain tumor segmentation based on deep learning and an attention mechanism using MRI multi-modalities brain images. Scientific Reports, 11(1), 1–17. https://doi.org/10.1038/s41598-021-90428-8
- [57] Rasool, M., Ismail, N., Boulila, W., Ammar, A., Samma, H., Yafooz, W. S., & Emara, A. H. (2022). A Hybrid Deep Learning Model for Brain Tumour Classification. Entropy, 24(6). https://doi.org/10.3390/e24060799
- [58] Rasool Reddy, K., & Dhuli, R. (2022). Segmentation and classification of brain tumors from MRI images based on adaptive mechanisms and ELDP feature descriptor. Biomedical Signal Processing and

Control, 76(April), 103704. https://doi.org/10.1016/j.bspc.2022.103704

- [59] Reddy, K. R., & Dhuli, R. (2023). A Novel Lightweight CNN Architecture for the Diagnosis of Brain Tumors Using MR Images. Diagnostics, 13(2). https://doi.org/10.3390/diagnostics13020312
- [60] Saeed, M. U., Ali, G., Bin, W., Almotiri, S. H., Alghamdi, M. A., Nagra, A. A., Masood, K., & Amin, R. U. (2021). Rmu-net: A novel residual mobile u-net model for brain tumor segmentation from MR images. Electronics (Switzerland), 10(16), 1–17. https://doi.org/10.3390/electronics10161962
- [61] Saeedi, S., Rezayi, S., Keshavarz, H., & R. Niakan Kalhori, S. (2023). MRI-based brain tumor detection using convolutional deep learning methods and chosen machine learning techniques. BMC Medical Informatics and Decision Making, 23(1), 1–17. https://doi.org/10.1186/s12911-023-02114-6
- [62] Samee, N. A., Ahmad, T., Mahmoud, N. F., Atteia, G., Abdallah, H. A., & Rizwan, A. (2022). Clinical Decision Support Framework for Segmentation and Classification of Brain Tumor MRIs Using a U-Net and DCNN Cascaded Learning Algorithm. Healthcare (Switzerland), 10(12). https://doi.org/10.3390/healthcare10122340
- [63] Shanthi, S., Saradha, S., Smitha, J. A., Prasath, N., & Anandakumar, H. (2022). An efficient automatic brain tumor classification using optimized hybrid deep neural network. International Journal of Intelligent Networks, 3(November), 188–196. https://doi.org/10.1016/j.ijin.2022.11.003
- [64] Sharif, M., Amin, J., Raza, M., Yasmin, M., & Satapathy, S. C. (2020). An integrated design of particle swarm optimization (PSO) with fusion of features for detection of brain tumor. Pattern Recognition Letters, 129, 150–157. https://doi.org/https://doi.org/10.1016/j.patrec.2019. 11.017
- [65] Sharif, M. I., Li, J. P., Khan, M. A., & Saleem, M. A. (2020). Active deep neural network features selection for segmentation and recognition of brain tumors using MRI images. Pattern Recognition Letters, 129, 181–189.

https://doi.org/10.1016/j.patrec.2019.11.019

- [66] Shinde, A., & Girish, V. (2020). Image Mining Methodology for Detection of Brain Tumor: A Review. 232–237. https://doi.org/10.1109/ICCMC48092.2020.ICCMC -00044
- [67] Soltaninejad, M., Yang, G., Lambrou, T., Allinson, N., Jones, T. L., Barrick, T. R., Howe, F. A., & Ye, X. (2018). Supervised learning based multimodal MRI brain tumour segmentation using texture features from supervoxels. Computer Methods and

Programs in Biomedicine, 157, 69–84. https://doi.org/10.1016/j.cmpb.2018.01.003

- [68] Srividya, K., Anilkumar, B., & Sowjanya, A. M. (2023). Histo-Quartic Graph and Stack Entropy-Based Deep Neural Network Method for Brain and Tumor Segmentation. Neural Processing Letters. https://doi.org/10.1007/s11063-023-11276-3
- [69] Svm, M., & Maqsood, S. (2022). Multi-Modal Brain Tumor Detection Using Deep Neural. Mdpi.
- [70] Tandel, G. S., Tiwari, A., & Kakde, O. G. (2022). Performance enhancement of MRI-based brain tumor classification using suitable segmentation method and deep learning-based ensemble algorithm. Biomedical Signal Processing and Control, 78(March), 104018. https://doi.org/10.1016/j.bspc.2022.104018
- [71] Tandel, G. S., Tiwari, A., Kakde, O. G., Gupta, N., Saba, L., & Suri, J. S. (2023). Role of Ensemble Deep Learning for Brain Tumor Classification in Multiple Magnetic Resonance Imaging Sequence Data. Diagnostics, 13(3). https://doi.org/10.3390/diagnostics13030481
- [72] Tiwari, A., Srivastava, S., & Pant, M. (2020). Brain tumor segmentation and classification from magnetic resonance images: Review of selected methods from 2014 to 2019. Pattern Recognition Letters, 131, 244– 260. https://doi.org/10.1016/j.patrec.2019.11.020
- [73] Tiwari, P., Pant, B., Elarabawy, M. M., Abd-Elnaby, M., Mohd, N., Dhiman, G., & Sharma, S. (2022). CNN Based Multiclass Brain Tumor Detection Using Medical Imaging. Computational Intelligence and Neuroscience, 2022. https://doi.org/10.1155/2022/1830010
- [74] van Kempen, E. J., Post, M., Mannil, M., Kusters, B., Ter Laan, M., Meijer, F. J. A., & Henssen, D. J. H. A. (2021). Accuracy of machine learning algorithms for the classification of molecular features of gliomas on mri: A systematic literature review and metaanalysis. Cancers, 13(11), 9638–9653. https://doi.org/10.3390/cancers13112606
- [75] Vankdothu, R., Hameed, M. A., & Fatima, H. (2022).
 A Brain Tumor Identification and Classification Using Deep Learning based on CNN-LSTM Method. Computers and Electrical Engineering, 101(March), 107960.

https://doi.org/10.1016/j.compeleceng.2022.107960

- [76] Viechtbauer, W. (2010). Conducting Meta-Analyses in R with The metafor Package. Journal of Statistical Software, 36. https://doi.org/10.18637/jss.v036.i03
- [77] Wu, W., Li, D., Du, J., Gao, X., Gu, W., Zhao, F., Feng, X., & Yan, H. (2020). An Intelligent Diagnosis Method of Brain MRI Tumor Segmentation Using Deep Convolutional Neural Network and SVM Algorithm. Computational and Mathematical

Methods in Medicine, 2020. https://doi.org/10.1155/2020/6789306

- [78] Wu, Y., Zhao, Z., Wu, W., Lin, Y., & Wang, M.
 (2019). Automatic glioma segmentation based on adaptive superpixel. BMC Medical Imaging, 19(1), 1–14. https://doi.org/10.1186/s12880-019-0369-6
- [79] Yeghiazaryan, V., & Voiculescu, I. (2018). Family of boundary overlap metrics for the evaluation of medical image segmentation. Journal of Medical Imaging (Bellingham, Wash.), 5(1), 15006. https://doi.org/10.1117/1.JMI.5.1.015006
- [80] Younis, A., Qiang, L., Nyatega, C. O., Adamu, M. J., & Kawuwa, H. B. (2022). Brain Tumor Analysis Using Deep Learning and VGG-16 Ensembling Learning Approaches. Applied Sciences (Switzerland), 12(14). https://doi.org/10.3390/app12147282
- [81] ZainEldin, H., Gamel, S. A., El-Kenawy, E. S. M., Alharbi, A. H., Khafaga, D. S., Ibrahim, A., & Talaat, F. M. (2023). Brain Tumor Detection and Classification Using Deep Learning and Sine-Cosine Fitness Grey Wolf Optimization. Bioengineering, 10(1), 1–19. https://doi.org/10.3390/bioengineering10010018
- [82] Zheng, P., Zhu, X., & Guo, W. (2022). Brain tumour segmentation based on an improved U-Net. BMC Medical Imaging, 22(1), 1–9. https://doi.org/10.1186/s12880-022-00931-1
- [83] Brian Moore, Peter Thomas, Giovanni Rossi, Anna Kowalska, Manuel López. Deep Reinforcement Learning for Dynamic Decision Making in Decision Science. Kuwait Journal of Machine Learning, 2(4). Retrieved from http://kuwaitjournals.com/index.php/kjml/article/vie w/219
- [84] Vijayalakshmi, S. ., Vishnupriya, S. ., Sarala, B. ., Karthik Ch., B. ., Dhanalakshmi, R. ., Hephzipah, J. J. ., & Pavaiyarkarasi, R. . (2023). Improved DASH Architecture for Quality Cloud Video Streaming in Automated Systems. International Journal on Recent and Innovation Trends in Computing and Communication, 11(2s), 32–42. https://doi.org/10.17762/ijritcc.v11i2s.6026