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Abstract: Anticipating pedestrian behavior is critical for traffic management, developing Advanced Driver Assistance Systems 

(ADAS), and creating autonomous vehicles. However, the unpredictability of pedestrians at zebra crossings poses a significant challenge 

in designing systems that can aid drivers or enable self-driving. Existing studies often overlook pedestrian behavior and intentions when 

predicting motion, and there is no integrated system that connects perception and decision-making tasks. To address these challenges, we 

propose a new bottom-up pedestrian Pose Estimation model based on a CNN network that is trained with the deep learning VGG-19 

Pretrained model. This model allows for the analysis of videos captured at zebra crossings and enables the detection and classification of 

pedestrian poses and movements such as walking, standing, hand signals, crossing, and not crossing. We train and evaluate our models 

on the pedestrian intention estimation (PIE) dataset using the COCO-18 key point model. Our approach provides a comprehensive 

solution for predicting pedestrian behavior at zebra crossings. Machine learning-based classifiers are used to compare classification 

performance across different prediction horizon values, resulting in improved accuracy and efficiency. Our proposed solution has 

significant implications for traffic management, ADAS, and autonomous vehicles, as it enables them to better anticipate and respond to 

pedestrian actions. Overall, this study highlights the importance of integrating perception and decision-making tasks in predicting 

pedestrian behavior and provides a promising solution for addressing this critical problem. 

Keywords: Pedestrians’ pose estimation, behavioral analysis, Advanced Driver Assistance Systems, autonomous vehicles, Pedestrian 

Behavior classification.. 

1. Introduction 

According to the World Health Organization, 

road traffic accidents cause 1.35 million deaths each year, 

with vulnerable road users, including pedestrians [1], 

accounting for more than half of those killed. With the 

increasing prevalence of connected autonomous vehicles 

(CAVs) [2], protecting pedestrians has become even more 

critical. Predicting the behavior of pedestrians in zebra 

crossing zones is essential for autonomous vehicle 

navigation, but it is challenging because pedestrians do 

not always follow the rules, and their behavior is 

influenced by other road users. Therefore, accurately 

categorizing pedestrian behavior is essential for the safety 

of all road users. 

This paper proposes a method for accurately 

categorizing pedestrian behavior at zebra crossings using 

computer vision and machine learning techniques. Human 

activity recognition has various uses in artificial 

intelligence, including robotics, autonomous cars, 

surveillance, and help systems [3]. However, to be useful, 

computers must understand what people are doing. In this 

context, accuracy is crucial for computer vision systems 

meant to recognize pedestrians since this will help lower the 

number of times people are overlooked. Pedestrian 

detection is an essential function of driver-aid systems, and 

developing the ability to recognize pedestrian activities is 

equally crucial. 

To address this challenge, the study uses the PIE 

dataset videos and posture estimation method to identify 

important landmarks on the bodies of pedestrians. The study 

[4] uses four machine learning models, namely Support 

Vector Machine (SVM), Random Forest (RF), Gradient 

Boosting (GBM), and Extreme Gradient Boosting (XGB), 

to analyze the data. The study categorizes pedestrian 

actions, including walking, standing, hand signal, crossing, 

and not crossing, using improved sparse optical flow to 

identify moving objects. The optimal model has an AUC of 

0.922, and multiple timescales are used to make predictions 

[5]. 

Autonomous vehicles are built with safety as an 

integral design principle to ensure the safety of all road 

users, including pedestrians and drivers of other cars. The 

proposed technique can be implemented in autonomous 

driving systems to recognize pedestrian crossings and 

categorize pedestrian actions. By giving drivers more 

information about how pedestrians act at zebra crossings, 

this study aims to help them avoid accidents. Improved 
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pedestrian activity recognition systems can significantly 

reduce the risk of accidents involving pedestrians and 

other road users. 

The primary contribution of this research paper 

can be summarized as follows: 

1. A method for detecting and tracking pedestrians in a 

video surveillance system using a bounding box approach. 

2. A deep learning-based bottom-up approach is employed 

to detect pedestrian poses, utilizing Skeleton key point 

extraction. 

3. To enhance behavioral analysis, a combination of 

OpenPose pose estimation model, CNN architecture, and 

pre-trained VGG-19 model is utilized. 

4. Machine learning-based classifiers are utilized to compare 

the effectiveness of classification by varying prediction 

horizon values. 

The rest of the paper is organized as follows: Section 2 

presents the related work. Section 3 discusses the 

methodology and dataset, while Section 4 describes the 

proposed research work in terms of functional blocks. 

Section 5 presents the findings and analyses. Section 6 

describes the work's outcomes and future scope. 

2. Related Work 

2.1Identification of pedestrian at crossing 

Detecting pedestrian crossing intent is crucial for 

the successful implementation of fully autonomous cars in 

urban areas. The research in this field mainly focuses on 

detecting pedestrian intentions through detection and 

tracking techniques. In one study [6], the authors 

developed a pedestrian crossing intention model and 

compared it with the standard SVM approach. Both 

models showed good identification accuracy, but the AT-

LSTM model outperformed with an accuracy of over 

96.15% in predicting pedestrian intentions at crosswalks. 

Another research article [7] proposed a real-time 

pedestrian identification system that included a deep 

learning classifier, methods to recognize zebra crossings, 

and a dual camera mechanism, which worked effectively. 

The HOG+SVM method suggested in reference [8] is 

widely recognized as a powerful characteristic for 

pedestrian detection due to its ability to accurately 

identify the human-specific, stable head-shoulder and 

inconsistent lower body look. Another approach [9] 

proposed a fast object detector that relied on boosted 

cascades of basic features. These two approaches have 

laid the foundation for future advancements in pedestrian 

detection methods that can achieve "real-time" detection. 

However, recent studies have shown that deep learning-

based algorithms can identify pedestrians, but with lower 

accuracy. 

 

2.2 Pedestrian Pose Estimation  

The recognition of human postures is possible through 

2D and 3D pose estimation, as discussed in previous 

research [10]. 2D posture estimation involves calculating 

the X and Y coordinates of body joints in 2D space based 

on input data, such as an image or video frame. On the other 

hand, 3D pose estimation adds a Z dimension to the 2D 

image, allowing for the prediction of an object's exact 

spatial location. While deep neural networks (DNNs) are 

effective at predicting single-person poses, they struggle 

with multiple-person poses, which can significantly increase 

computational complexity and real-time inference time. To 

address this issue, the researchers proposed two techniques: 

top-down and bottom-up. Traditional 2D human pose 

estimation methods rely on hand-crafted feature extraction 

methods for each body component. In contrast, early 

computer vision methods used a stick figure description of 

the human body to derive global pose structures. However, 

recent deep learning-based methods, such as OpenPose [11], 

Cascaded Pyramid Networks (CPN) [12], AlphaPose [13], 

and HRNet [14], have made substantial progress in solving 

this problem, leading to significant improvements in 

performance for both single- and group-based pose 

estimation. In the field of behavior analysis, observing and 

understanding a scenario are crucial for predicting the 

actions of pedestrians in traffic incidents. Traditionally, 

predicting a behavior's trajectory, velocity, or other 

characteristics, and learning its underlying mechanics, such 

as how individuals walk, run, stand, etc., have dominated 

this field. 

2.2.1 Pose estimation with Deep learning 

In recent times, deep learning has been proven to 

be more effective than traditional computer vision methods 

for various tasks, such as object detection and image 

segmentation. The use of deep learning techniques has 

significantly enhanced posture estimation performance. One 

popular approach to posture estimation is the regional multi-

person pose estimate (AlphaPose), which predicts human 

postures from bounding boxes. This approach can be 

applied to both still images and videos and is especially 

useful when bounding boxes are inaccurate. 

The regional multi-person pose estimation (RMPE) 

framework was developed by the author of to estimate 

postures using imprecise bounding boxes [15]. The 

suggested architecture includes symmetric spatial 

transformer network (SSTN) [16], parametric poses non-

maximum suppression (NMS) [17], and pose-guided 

proposal generator (PGPG), which handle incorrect 

bounding boxes and duplicate detections, resulting in a 17% 

improvement over the MPII dataset. Another model uses 

balanced Gaussian process dynamical models (B-GPDM) 

and Naive Bayes classifiers to predict pedestrian location 

and poses [18]. A hidden Markov model recognizes 
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intentions based on the 3D positions and displacements of 

11 joints along the pedestrian's body [19]. 

In reference the author employs convolutional 

neural networks for estimating multi-person human 

positions from videos with high precision and low 

background [20]. Similarly, in reference the author 

demonstrates how monocular vision-based human 

position estimation with deep CNNs can be used to 

identify vulnerable road users (VRUs) by their intentions 

[21]. 

Pose estimation can have a positive impact on pedestrian 

wellbeing, as it can be used to identify vital anatomical 

landmarks [22]. Convolutional neural networks can also 

be used to identify important frames from videos, 

recognize activity, and identify distracted driving through 

the detection of hand, face, and upper-body poses [23-25]. 

Pose estimation has also been successful in predicting 

pedestrians' crossing intentions. 

2.2.2 Pedestrians’ Crossing Intention Prediction 

Traditionally, predicting a pedestrian's desire to cross 

a street has been considered as part of "trajectory 

prediction." For interior localization, Wi-Fi and Bluetooth 

have been commonly used, while cameras and LiDAR are 

frequently used on the road [26]. Table I summarizes the 

different research comparisons. Various studies have 

employed cameras to predict pedestrians' crossing 

intentions or trajectories. Machine learning models such 

as Support Vector Machines (SVMs) and deep learning 

models like Long Short-Term Memory (LSTM) are 

widely used in addition to the Kalman Filter (KF) and 

Gaussian Process Dynamical Models (GPDMs) [27-29]. 

According to LSTM was utilized to predict when 

pedestrians and cyclists would cross the street [30]. In the 

authors proposed a different approach to detecting 

pedestrian intent by forecasting pedestrian behavior at a 

crosswalk using single-view photos [31]. They utilized a 

convolutional neural network (CNN) for identification, 

tracking, and position estimation. Authors also utilized 

the angle between joints to determine the horizontal 

direction, similar to how posture estimation is performed. 

In contrast, deep neural networks were utilized for both 

independent and joint behavior analysis, forecasting five 

patterns of conduct using a Bayesian inference system 

(crossing, stopping, starting, etc.) [32]. The authors 

determined the dimensions of their joints using their 

postures to determine their lengths, angles, rotational 

speeds, and linear velocities. The kinematic variables of 

pedestrians were found to be more accurate and reliable 

than inertial measuring units (IMU). 

The Theory of Behavior (TPB) model and other 

behavioral and statistical models were used to examine 

pedestrian crossing intentions [33]. Demographics such as 

age and gender, as well as socioeconomic characteristics 

like foot traffic and pedestrians' understanding of the risks 

they face, are critical aspects of pedestrians' lives. It is 

important to consider pedestrians' unique characteristics in 

the evaluation. Furthermore, the final few seconds before 

crossing the road are when pedestrians are most likely to 

change their minds and alter their crossing intention [34]. 

2.3 Pedestrian Behavior Classification at crossing  

The behavior of pedestrians is influenced by a 

multitude of variables, making it highly variable. To 

investigate the impact of demographics, mobile phone 

usage, and walking speed on pedestrian behavior, it is 

necessary to classify it. By doing so, we gain insights into 

how people react in various situations, enabling us to 

comprehend their movements better. This approach 

provides us with a more intricate and nuanced perspective 

of pedestrian behavior, allowing us to develop a deeper 

understanding of the factors that influence it. 

 

Fig 1 Understanding Outline of the Proposed Model 

3. Methodology 

In order to detect pedestrian activity at Zebra 

crossings, a series of steps are required. Initially, the input 

video is divided into individual frames, which are then 

processed by a pedestrian detection module. This module 

utilizes bounding box detection techniques to isolate 

pedestrians in each frame. The resulting output from the 

pedestrian detection module is then forwarded to a posture 

estimation module. This module employs a deep learning-

based model known as OpenPose to estimate the positions 

of pedestrians' bodies. Finally, machine learning classifiers 

are utilized to determine whether a pedestrian intend to 

walk, stands, or signal using hand gestures. 
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Fig 2  Block diagram of the Proposed Work 

3.1 Data Collection  

Pedestrian Intention Estimation (PIE) It's a brand 

new dataset focused on pedestrian traffic that can actually 

estimate intent and predict trajectory. PIE consists of over 

6 hours of onboard camera traffic footage, along with 

synchronized OBD vehicle data such as speed, heading 

direction, and GPS coordinates. The dataset provides rich 

spatial and behavioral annotations, including traffic lights, 

signs, and zebra crossings, to characterize interactions 

between pedestrians and vehicles. With over 300,000 

labeled video frames of pedestrians, PIE is one of the 

largest datasets available for studying pedestrian 

behavior. In Table 1, the dataset reveals that out of 894 

people, 519 pedestrians and 429 pedestrians have no 

intention of crossing the street, respectively. 

Table 1. Quantitative analysis of PIE behavioral 

annotations 

Compilation of all frames 909,480 

Sum of all frames with annotations 293,437 

Number of persons whose actions have been 

annotated 

1842 

Bounding-box count for pedestrians 738,970 

Average length of pedestrian track 401 

frames 

Pedestrian counts 

Number of pedestrians who intend to but do not 

cross 

894 

Number of pedestrians with no crossing intention 429 

Number of pedestrians to cross who eventually 

cross in front of the vehicle 

519 

 

 

Fig 3 Pedestrian into their relevant classes for each frame 

In this research paper, the methodology involved 

assigning each cropped pedestrian to a corresponding frame 

class. This process was demonstrated in Fig. 3, where the 

start and end frames were identified for each behavior. 

Some behaviors shared the same class, and in such cases, 

instead of attempting to determine the class, multiple copies 

of the image were created. This approach was used for 

behaviors such as walking, standing, displaying a hand 

signal, crossing, and not crossing. 

3.2 Annotations 

The methodology of this work involves the 

analysis of pedestrian intention estimation at zebra 

crossings. Table 2 is used to present spatial annotations that 

denote the behavioral classes and associated annotations. 

These annotations are used to estimate pedestrian intentions 

accurately. 

Table 2. PIE dataset features with class labels 

Type of 

Object 

Spatial 

Annotati

ons 

 

Annota

tions 

Behavioral Class 

(“0”) or (“1”) 

Pedestria

n 

zebra 

crossings 

Action Walking (‘0”) 

Standing (“1”) 

Gesture Hand signal (“0”) 

No hand Signal 

(“1”) 

Look Looking (‘0”) 

Not Looking (“1”) 

Cross Crossing (‘0”) 

Not Crossing (“1”) 
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Table 3. Observed Behaviour classes upon Pedestrian 

Count 

Behavioral Class Pedestrian Count 

Walking 150 

Standing 279 

Hand signal 60 

Crossing 519 

Not Crossing 834 

 

3.3 Extraction of Bounding Box Information 

Let each provided example be denoted by 𝑒𝑖, 

where 𝑖 is the index of the example. Each example 𝑒𝑖 

contains a top-left bounding box coordinate (𝑥1𝑖 , 𝑦1𝑖) and 

a bottom-right bounding box coordinate (𝑥2𝑖 , 𝑦2𝑖). These 

coordinates can be represented as a 4-dimensional vector 

𝑏𝑖 = [𝑥1𝑖 , 𝑦1𝑖 , 𝑥2𝑖 , 𝑦2𝑖]. 

Furthermore, each bounding box 𝑏𝑖 is associated 

with an occlusion tag 𝑜𝑖 , which can take on one of three 

values: 0 (no occlusion), 1 (occlusion of at least 25%), or 

2 (complete occlusion of at least 75%). Therefore, the 

occlusion tag for example 𝑒_𝑖 can be represented as a 

scalar value 𝑜𝑖 . To extract meaningful information from 

the data, we consider the context of the video, including 

the day, time, and place denoted by 𝑐𝑖. Additionally, we 

consider the pedestrian's activities 𝑎𝑖 (e.g., walking, 

looking) and physical characteristics 𝑝𝑖  (e.g., posture, 

clothing, and accessories). Each example 𝑒𝑖 has a single 

label annotation that includes these attributes: 

𝑙𝑖 =  (𝑐𝑖 , 𝑏𝑖 , 𝑜𝑖 , 𝑎𝑖 , 𝑝𝑖)                        (1) 

The dataset also includes frame-specific traffic data, such 

as road signs and light timings. These annotations are 

single-frame annotations that capture the movements and 

accelerations of vehicles as seen in each individual frame. 

𝑡𝑖 =  (𝑑𝑖 , 𝑠𝑖 , 𝑟𝑖 , 𝑙𝑖)                            (2) 

where 𝑑𝑖 represents the time and date of the frame, 𝑠𝑖 

represents the speed of the vehicles in the frame, 𝑟𝑖 

represents the road conditions, and 𝑙𝑖 represents the label 

annotation for the pedestrians in the frame. 

Algorithm -1 Extracting bounding box information 

Input: Examples 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑛} containing top-left 

and bottom-right bounding box coordinates and occlusion 

tags. 

Output: Extracted bounding box information B = 

{𝑏1, 𝑏2, … , 𝑏𝑛}. 

1. Initialize an empty list 𝐵. 

2. For each example 𝑒𝑖in 𝐸:  

2.1 Extract the top-left bounding box coordinate 

(𝑥1𝑖 , 𝑦1𝑖)and the bottom-right bounding box 

coordinate(𝑥2𝑖 , 𝑦2𝑖).  

2.2 Store the coordinates as a 4-dimensional vector 𝑏𝑖 =

 [𝑥1𝑖 , 𝑦1𝑖 , 𝑥2𝑖 , 𝑦2𝑖].  

2.3 Extract the occlusion tag 𝑜𝑖for the bounding box.  

2.4 Store the bounding box 𝑏𝑖and its associated occlusion 

tag 𝑜𝑖as a tuple (𝑏𝑖 , 𝑜𝑖).  

2.5 Append the tuple to the list 𝐵. 

3. Return the extracted bounding box information 𝐵. 

3.3.1 Pedestrian Detection and Tracking using Bounding 

Box Approach  

The method involves using computer vision 

algorithms to detect and track pedestrians in a video 

surveillance system. The approach is based on creating 

bounding boxes around the pedestrians and then tracking 

those boxes over time. 

Mathematical Model: 

Let us assume that we have a video sequence 

consisting of 𝑁 frames, where each frame is represented as 

𝐼(𝑛), where 𝑛 is the frame index. Each frame 𝐼(𝑛) has a set 

of bounding boxes 𝐵(𝑛) =  {𝐵1(𝑛), 𝐵2(𝑛), … , 𝐵𝑀(𝑛)} 

where 𝑀 is the number of pedestrians detected in the frame. 

Each bounding box is defined by its top-left corner (𝑥, 𝑦), 

its width w and its height h. 

Each bounding box 𝐵(𝑛) is represented by a 4-

dimensional vector 𝑏(𝑛, 𝑚) =  [𝑥, 𝑦, 𝑤, ℎ]𝑇, where 𝑇 

denotes the transpose of the vector. The tracking algorithm 

attempts to find the correspondence between the bounding 

boxes in adjacent frames, so that we can track the same 

pedestrians over time. 

Let us define the correspondence matrix 𝐶, where 

𝐶(𝑖, 𝑗) =  1 if the bounding box 𝐵𝑖(𝑛) in frame 𝑛 

corresponds to bounding box 𝐵𝑗(𝑛 + 1) in frame 𝑛 + 1, and 

𝐶(𝑖, 𝑗)  =  0 otherwise. We want to find the optimal 

correspondence matrix 𝐶 that minimizes the total cost of 

tracking over all frames. 

The cost of tracking is defined as the sum of the 

localization cost and the temporal cost. The localization cost 

is the distance between the predicted location of a bounding 

box in the next frame and the actual location of the 

bounding box. The temporal cost penalizes large changes in 

the bounding box size or location over time. 

The total cost of tracking is defined as: 

𝐸(𝐶) =  𝛼 ∗  𝐸𝑙𝑜𝑐(𝐶) +  𝛽 ∗  𝐸𝑡𝑒𝑚𝑝(𝐶)                           (3) 

where 𝛼 and 𝛽 are weighting factors that control the relative 

importance of the localization and temporal costs, 

respectively. 
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The localization cost 𝐸𝑙𝑜𝑐(𝐶) is defined as: 

𝐸𝑙𝑜𝑐(𝐶) =  ∑𝑖, 𝑗 𝑐(𝑖, 𝑗) ∗  𝐷(𝐵𝑖(𝑛), 𝐵𝑗(𝑛 + 1))           (4) 

where 𝐷(𝐵𝑖(𝑛), 𝐵𝑗(𝑛 + 1)) is the Euclidean distance 

between the center of the bounding box 𝐵𝑖(𝑛) in frame 𝑛 

and the predicted location of the bounding box 𝐵𝑗(𝑛 + 1) 

in frame 𝑛 + 1. 

The temporal cost 𝐸𝑡𝑒𝑚𝑝(𝐶) is defined as: 

𝐸𝑡𝑒𝑚𝑝(𝐶) =  ∑𝑖, 𝑗 (1 −  𝑐(𝑖, 𝑗)) ∗  𝑆(𝐵𝑖(𝑛), 𝐵𝑗(𝑛 + 1))  

(5) 

where 𝑆(𝐵𝑖(𝑛), 𝐵𝑗(𝑛 + 1)) is a similarity function that 

measures how similar the bounding boxes 𝐵𝑖(𝑛) and 

𝐵𝑗(𝑛 + 1) are in terms of their size and location. 

The optimization problem can be solved using 

the Hungarian algorithm, which finds the optimal 

assignment of the bounding boxes in adjacent frames that 

minimizes the total cost of tracking. In summary, the 

method for detecting and tracking pedestrians in a video 

surveillance system using a bounding box approach 

involves creating bounding boxes around pedestrians in 

each frame, and then using a tracking algorithm to find 

the optimal correspondence between the bounding boxes 

in adjacent frames. The correspondence is found by 

minimizing the total cost of tracking, which is a 

combination of the localization and temporal costs. The 

optimization problem can be solved using the Hungarian 

algorithm. 

3.4 A Deep Learning-based bottom-up approach: 

Skeleton key point extraction and pedestrian poses 

detection  

3.4.1 Skeleton Data Extraction and Pose Detection 

In this study, we utilized OpenPose to estimate 

the poses of pedestrians in sequences. OpenPose is 

capable of simultaneously estimating 15-18, or 25 key 

points in the body and feet in real-time. The 18-key point 

skeleton model consists of actual human body joints as 

shown in figure 4, including a nose (0), a neck (1), right 

and left shoulders (2,5), right and left elbows (3,6), right 

and left wrists (4,7), right and left hips (8,11), right and 

left knees (9,12), right and left ankles (10,13), and both 

eyes (14,15). Although variations in foot, ear, and eye 

movement can impact the evaluation of action quality, we 

limited our analysis to only 14 different joint movements. 

The absence of analysis-related senses (N = 0) was also 

noted. To isolate the target performer's skeleton data from 

background noise, we employed scale computation and a 

key point confidence comparison after OpenPose 

provided multi-person skeleton identification findings. If 

the body failed to move due to occlusion or self-

occlusion, joint coordinates were reset to zero, and linear 

interpolation was applied to fill in the gaps between 

frames to capture absent skeletal data. We found that deep 

learning improved pedestrian posture detection and was a 

promising option for understanding pedestrian behavior. 

OpenPose was selected as the preferred posture estimator 

due to its fast and accurate multi-person posture estimation 

capability, providing confidence scores for each key point. 

We trained our model on a dataset of 1,842 pedestrian 

samples, divided into training, test, and validation sets with 

50%, 40%, and 10% respectively. 

 

Fig 4 Pedestrian Key point detection and Transformation 

Algorithm 2: Estimated poses of pedestrians in the video 

sequences 

Input: Video sequences of pedestrians in motion 

Output: Estimated poses of pedestrians in the video 

sequences 

1. Initialize OpenPose for simultaneous estimation of K 

key points in the body and feet of pedestrians in real-

time. 

2. For each frame in the video sequences:  

a. Apply OpenPose to obtain multi-person skeleton 

identification findings, resulting in an array of size (N x 

K x 3), where N is the number of detected individuals, K 

is the number of key points, and 3 represents the (x, y, 

confidence) values for each key point.  

b. For each individual in the array, employ scale 

computation and key point confidence comparison to 

isolate the target performer's skeleton data from 

background noise, resulting in an array of size (1 x K x 

3).  
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c. If a key point is missing, reset the corresponding (x, y) 

values to (0, 0), and apply linear interpolation to fill in 

the gaps between frames, resulting in an array of size 

(1 x K x 3).  

d. Use the resulting skeletal data to estimate the poses of 

pedestrians in the video sequences, resulting in an 

array of size (N x 14), where 14 represents the selected 

joint movements used for analysis. 

3. Train a deep learning model using the dataset of 1,842 

pedestrian samples, divided into training, test, and 

validation sets. 

4. For each new video sequence:  

a. Apply the trained model to estimate the poses of 

pedestrians in the video sequence, resulting in an array of 

size (N x 14).  

b. Analyze the estimated poses to understand pedestrian 

behavior. 

The bottom-up approach used in pedestrian pose detection 

involves detecting body parts in an image and then 

grouping them together to form full-body poses. Let's 

denote an input image as 𝐼 with dimensions𝑊 𝑥 𝐻, where 

𝑊 is the width of the image and 𝐻 is the height of the 

image. The goal is to detect the locations of body parts, 

which include the head, shoulders, elbows, wrists, hips, 

knees, and ankles, in the image. 

The bottom-up approach starts by detecting these 

individual body parts using convolutional neural network 

(CNN) architecture. Let's denote the set of detected body 

parts as 𝐵. Each body part 𝑏 in 𝐵 is represented as a 2𝐷 

coordinate (𝑥𝑏 , 𝑦𝑏), where 𝑥𝑏 and 𝑦𝑏  are the pixel 

coordinates of the body part in the image. Thus, the set of 

detected body parts 𝐵 can be represented as: 

𝐵 =  {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛 , 𝑦𝑛)}                                  

(6) 

where 𝑛 is the number of detected body parts. 

Once the body parts are detected, the next step is to group 

them together to form full-body poses. This is done using 

a "part affinity field" (PAF) network, which predicts the 

likelihood that two body parts belong to the same limb. 

Let's denote the set of detected limbs as 𝐿. Each limb 𝑙 in 

𝐿 is represented as a pair of body part indices (𝑖, 𝑗), where 

i and j are indices of the two body parts that form the 

limb. Thus, the set of detected limbs L can be represented 

as: 

𝐿 =  {(𝑖1, 𝑗1), (𝑖2, 𝑗2), … , (𝑖𝑚, 𝑗𝑚)}                 (7) 

where 𝑚 is the number of detected limbs. 

The PAF network predicts two maps for each limb: an x-

direction PAF and a y-direction PAF. Let's denote the set 

of x-direction PAFs as 𝑋 and the set of y-direction PAFs 

as 𝑌. Each PAF map 𝑝 in 𝑋 or 𝑌 is represented as a 2D 

vector field, where each vector indicates the direction and 

magnitude of the limb at each pixel in the image. Thus, the 

sets of x-direction and y-direction PAFs can be represented 

as: 

𝑋 =  {𝑝1, 𝑝2 , … , 𝑝𝑚}𝑌 =  {𝑞1, 𝑞2, … , 𝑞𝑚}               (8) 

where each 𝑝𝑖  and 𝑞𝑖 is a 𝑊 𝑥 𝐻 vector field. 

To group the body parts together to form full-body poses, 

the PAF maps are used to create a "confidence map" for 

each body part, which indicates the likelihood that the body 

part is part of a limb. Let's denote the set of confidence 

maps as C. Each confidence map c in C is represented as a 

2D heat map, where each pixel indicates the likelihood that 

the body part is part of a limb. Thus, the set of confidence 

maps C can be represented as: 

𝐶 =  {𝑐1, 𝑐2, … , 𝑐𝑛}                               (9) 

where each 𝑐𝑖 is a 𝑊 𝑥 𝐻 heat map. 

Finally, the body parts are grouped together to form full-

body poses using a greedy algorithm that iteratively adds 

body parts to the pose based on the highest confidence 

score. The resulting set of poses can be denoted as 𝑃: 

𝑃 =

 {(𝑥1, 𝑦1 , … , 𝑥𝑘 , 𝑦𝑘), (𝑥1
′ , 𝑦1

′ , … , 𝑥𝑘
′ , 𝑦𝑘

′ ), … , (𝑥𝑝, 𝑦𝑝, … , 𝑥𝑘
𝑝

, 𝑦𝑘
𝑝

)}   

(10) 

where each pose is a set of body parts 

3.5 Understanding the Pedestrian Behaviour  

Let 𝑉 be the video data and 𝑃 be the set of 

pedestrian behavior tracks in 𝑉. We classify each behavior 

track 𝑝 in 𝑃 into one of the following categories: walking, 

standing, hand signaling, crossing, and not crossing. We use 

OpenPose to extract a set of key points for each pedestrian 

behavior track 𝑝. Let 𝐾 be the set of key points extracted 

from 𝑃. 

We obtain a set of joint trajectories for each 

pedestrian behavior track 𝑝 by applying video skeleton 

detection to 𝐾. Let 𝐽(𝑝) be the set of joint trajectories 

obtained for 𝑝. Each joint trajectory 𝑗 in 𝐽(𝑝) is represented 

as a set of joint positions in a discrete 3D space, denoted by 

𝑗 =  {𝑗𝑡| 𝑡 = 1, … , 𝑇}, where 𝑇 is the number of frames in 

the video 𝑉 and 𝑗𝑡represents the joint position at time 𝑡. 

To capture the spatial context of joints, we take a 

localized 3𝐷 patch at the location of each joint. Let 𝑉𝑗
𝑘be 

the joint motion volume for joint 𝑘 in trajectory 𝑗 of 

pedestrian behavior track 𝑝. 𝑉𝑗
𝑘is created by combining the 

key point corresponding to joint 𝑘 and the time parts of the 

video in which it appears. We apply 2𝐷 Gaussian 

smoothing to 𝑉𝑗
𝑘to remove noise data caused by joint 
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position failure or false detection, resulting in a smoothed 

joint motion volume 𝑣𝑗
𝑘. 

We calculate the central moment features for 

each super pixel in the smoothed joint motion volume 𝑣𝑗
𝑘 . 

Let 𝐹(𝑣𝑗
𝑘)be the set of central moment features obtained 

for 𝑣𝑗
𝑘 . 

We combine the features of all super pixels in 

the smoothed joint motion volume 𝑣𝑗
𝑘to create the motion 

feature for joint 𝑘 in trajectory 𝑗 of pedestrian behavior 

track 𝑝, denoted by 𝐹𝑘
𝑚, 𝑗(𝑝). We then combine the 

motion features for all joints in 𝐽(𝑝) to create the 

spatiotemporal feature description of the action instance 

in the video 𝑉, denoted by 𝐹𝑠(𝑝). 

We divide the sequences into different lengths, 

with most experiments focusing on three-frame 

sequences. Arm and leg bones are described by segments 

between key points 5-17, and angles formed by these lines 

and the horizontal are used as input features. The angles 

between the bones and the horizontal line are also 

included. Two more angles are calculated between 

keypoints 11, 13, and 15, and keypoints 12, 14, and 16 to 

account for the right and left angles at the knee. 

The above mathematical model represents the 

methodology used to extract and process pedestrian 

behavior data from video sequences, with a focus on 

posture estimation and joint trajectory analysis using 

OpenPose and video skeleton detection techniques. The 

resulting spatiotemporal feature descriptions of pedestrian 

actions can be used for machine learning applications in 

the field of computer vision. 

3.6 Behavioral Analysis with OpenPose, CNN, and 

VGG-19 

Pedestrian behavioral analysis at zebra crossings 

is a challenging task due to the unpredictability of 

pedestrians. To address this, we can use a combination of 

computer vision and deep learning techniques to detect 

and classify pedestrian poses and movements as shown in 

Figure 5. 

 

 

Fig 5 Flow model of Behavioral Analysis with OpenPose, 

CNN, and VGG-19 

3.6.1 OpenPose 

OpenPose is a popular computer vision technique 

for human pose estimation that can be used to detect and 

locate the body parts of pedestrians in video data. The 

output of OpenPose is a set of confidence maps and Part 

Affinity Fields (PAFs) that represent the location of each 

body part and the association between them. These 

confidence maps and PAFs can be used as inputs to CNN 

architecture for pedestrian behavior classification. 

Let 𝐼 be an input image or frame of size𝑊 𝑥 𝐻 𝑥 3, 

where 𝑊 and 𝐻 are the width and height of the image, and 3 

represents the three color channels (𝑅, 𝐺, 𝐵). 

The VGG-19 convolutional network is used to 

extract features from the input image 𝐼, and its output is 

passed to two branches: 

1. Confidence Maps: The first branch predicts a set of 

confidence maps C of size 𝑊 𝑥 𝐻 𝑥 𝑁, where 𝑁 is the 

number of body parts to be detected. Each confidence map 

𝑐𝑖, for 𝑖 =  1 to 𝑁, represents the probability of finding the 

𝑖 − 𝑡ℎ body part at each pixel location (𝑥, 𝑦) in the image. 

2. Part Affinity Fields: The second branch predicts a set of 

Part Affinity Fields 𝑃 of size  𝑥 𝐻 𝑥 2𝑀, where 𝑀 is the 

number of pairs of body parts to be associated. Each Part 

Affinity Field𝑝𝑗, for 𝑗 =  1 to 2𝑀, represents the likelihood 

of two body parts being connected. Specifically, for each 

pixel location (𝑥, 𝑦), the Part Affinity Field 𝑝𝑗(𝑥,𝑦) is a two-

dimensional vector that indicates the direction and strength 

of the connection between the two body parts. 
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Fig 6 OpenPose network Architecture 

The OpenPose network as shown in figure 6 is designed 

to estimate the location of body parts in an image by 

creating a set of detection confidence maps and a set of 

part affinity fields. The network consists of multiple 

stages, with each stage refining the results of the previous 

stage. The confidence maps correspond to each joint and 

have the same size as the input image. The authors of the 

paper use two loss functions to train the network, one for 

each branch. They employ a regular L2 loss to compare 

the estimated predictions to the ground truth maps and 

fields. OpenPose has 19 body parts and 19 "limbs" or 

body-to-body connections. The weight function W(p) 

represents the mask that protects true positive predictions 

during training. Finally, the overall objective is obtained 

by combining the two loss functions. 

Mathematical model for applying OpenPose to each 

frame of the video data: 

1. Define the OpenPose model architecture as a CNN with 

input tensor X and output tensors C and F, representing 

the confidence maps and PAFs, respectively: 𝐶, 𝐹 =

 𝑂𝑝𝑒𝑛𝑃𝑜𝑠𝑒(𝑋) 

2. Load the pre-trained OpenPose model into memory. 

3. For each frame of the video data, read in the frame and 

convert it to a tensor X suitable for the OpenPose model. 

4. Pass the tensor 𝑋 through the OpenPose model to obtain 

the confidence maps C and 𝑃𝐴𝐹𝑠 𝐹: 𝐶, 𝐹 =

 𝑂𝑝𝑒𝑛𝑃𝑜𝑠𝑒(𝑋) 

5. Use the confidence maps 𝐶 and PAFs F to estimate the 

location of body parts in the image or video frame. 

6. Repeat steps 3-5 for each frame of the video data. 

3.6.2 CNN Architecture with VGG-19 

The CNN architecture can be trained to classify 

different pedestrian poses and movements, such as 

walking, standing, hand signals, crossing, and not 

crossing. The VGG-19 pre-trained model can be used as a 

feature extractor to extract high-level features from the 

input image or frame. The output of the VGG-19 model 

can be concatenated with the confidence maps and PAFs 

from OpenPose to form a comprehensive feature vector 

for pedestrian behavior classification. 

The CNN architecture consists of several layers, 

including the convolutional layer that generates a feature 

map by filtering the image several pixels at a time, the 

pooling layer that minimizes the size of the data produced 

by the convolutional layer for efficient storage, and fully 

connected input, layer, fully connected layer, and fully 

connected output layer, which incorporate scores into the 

feature analysis's outputs and yield conclusive probabilities 

for labeling the image's category. To ensure robust and 

accurate predictions, a network uses a combination of 

forward and backward propagation to iteratively examine all 

of the training samples in the network and determine the 

optimal weights. 

 

Fig7: CNN Architecture 

To ensure that only the most robust and accurate neurons 

are activated when making a prediction, a network uses a 

combination of forward and backward propagation to 

iteratively examine all of the training samples in the 

network and determine the optimal weights. 

The CNN architecture can be represented as a set 

of layers, including convolutional layers, pooling layers, 

and fully connected layers. Let 𝑊 be the set of weights and 

b be the set of biases for each layer in the CNN architecture. 

The output of the CNN architecture for an input feature 

vector 𝑋 can be represented as  

𝑌 =  𝐶𝑁𝑁(𝑋;  𝑊, 𝑏).                               (11) 

The overall pedestrian behavior classification 

model can be represented as a function 𝑓(𝐼) that takes an 

input image or video frame I and outputs a set of predicted 

pedestrian behaviors 𝐵 =  {𝑏1, 𝑏2, … , 𝑏𝑛}. The predicted 

pedestrian behaviors can be represented as binary labels or 

probabilities for each behavior class. 

To train the pedestrian behavior classification 

model, we can use a labeled dataset of human behaviors. 

Let 𝐷 =  {(𝐼1, 𝐵1), (𝐼2, 𝐵2), … , (𝐼𝑁, 𝐵𝑁)} be a labeled 

dataset of N image or video frame samples, where each 

sample has an associated set of ground-truth pedestrian 

behaviors. 

The objective of training the model is to minimize 

the classification error between the predicted behaviors and 

the ground-truth behaviors. This can be achieved by 

minimizing the cross-entropy loss function: 
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𝐿 =  −
1

𝑁
∑(𝑏𝑖 𝑙𝑜𝑔 𝑙𝑜𝑔 (𝑓(𝐼𝑖))  + (1 −  𝑏𝑖)

𝑙𝑜𝑔 𝑙𝑜𝑔 (1 −  𝑓(𝐼𝑖)) )                   (12) 

where 𝑏𝑖 is the ground-truth label for the 𝑖 − 𝑡ℎ 

image or video frame sample, and 𝑓(𝐼𝑖) is the predicted 

probability or label for the i-th sample. 

The model can be trained using stochastic 

gradient descent (SGD) or a similar optimization 

algorithm to update the weights and biases of the CNN 

architecture. The performance of the model can be 

evaluated using metrics such as accuracy, precision, and 

recall on a separate validation set. In summary, 

integrating OpenPose, CNN architecture, and pre-trained 

VGG-19 model can enhance the pedestrian behavioral 

analysis 

Algorithm -3: Pedestrian Behavior Prediction Algorithm 

using OpenPose, VGG-19, and CNN. 

Input: Labeled dataset of human behaviors, video data  

Output: Predicted pedestrian behaviors for each frame of 

the video data 

1. Apply OpenPose to each frame of the video data to 

estimate the location of body parts:  

a. Let 𝐼 be an input image or video frame.  

b. Use OpenPose to generate confidence maps 𝐶 and Part 

Affinity Fields (PAFs) F for each body part in the image 

or frame.  

c. Output the set 𝑆 =  {𝐶, 𝐹} for each frame of the video 

data. 

2. Use a pre-trained VGG-19 model to extract high-level 

features from the input image or frame: 

a. Let I be an input image or video frame.  

b. Apply the pre-trained VGG-19 model to the input 

image or frame to extract high-level features VGG-19(𝐼).  

c. Output VGG-19(𝐼) for each frame of the video data. 

3. Train a CNN to classify pedestrian poses and movements:  

a. Collect a labeled dataset of human behaviors.  

b. Split the dataset into a training set and a validation set.  

c. Train the CNN on the training set using 

backpropagation and gradient descent, with the input 

features 𝑋 =  {𝑆, 𝑉𝐺𝐺 − 19(𝐼)} and the ground-truth 

pedestrian behaviors as the output labels 𝑌.  

d. Evaluate the performance of the trained CNN on the 

validation set. 

4. Use the trained CNN to predict pedestrian behaviors for 

each frame of the video data:  

a. For each frame of the video data, apply OpenPose to 

estimate the location of body parts and use the pre-trained 

VGG-19 model to extract high-level features.  

b. Use the trained CNN to predict the pedestrian behaviors 

for each frame of the video data. 

5. Evaluate the performance of the pedestrian behavior 

prediction algorithm:  

a. Apply the algorithm to the validation dataset to predict 

the pedestrian behaviors.  

b. Evaluate the accuracy and performance of the algorithm 

on the validation dataset. 

Note: The following notations are used in the algorithm: 

● 𝐼: input image or video frame 

● 𝐶: confidence maps generated by OpenPose 

● 𝐹: Part Affinity Fields generated by OpenPose 

● 𝑆: set of confidence maps and Part Affinity Fields, i.e., 𝑆 =

 {𝐶, 𝐹} 

● VGG-19(𝐼): high-level features extracted from the input 

image or frame using a pre-trained VGG-19 model 

● 𝑋: input features for the CNN, i.e., 𝑋 =  {𝑆, 𝑉𝐺𝐺 − 19(𝐼)} 

● 𝑌: ground-truth pedestrian behaviors 

● 𝐶𝑁𝑁: Convolutional Neural Network used for pedestrian 

behavior classification 

Pseudocode: Pedestrian Behavior Prediction Algorithm 

using OpenPose, VGG-19, and CNN. 

Input: Input image or video frame 

Output: Predicted behaviors: predicted pedestrian behaviors 

for each frame of the video data 

 

1. 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑂𝑝𝑒𝑛𝑃𝑜𝑠𝑒(𝐹𝑟𝑎𝑚𝑒): 

2. 𝐿𝑒𝑡 𝐶, 𝐹 𝑏𝑒 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑚𝑎𝑝𝑠 𝑎𝑛𝑑 𝑃𝑎𝑟𝑡 𝐴𝑓𝑓𝑖𝑛𝑖𝑡𝑦 𝐹𝑖𝑒𝑙𝑑𝑠 

 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑏𝑦 𝑂𝑝𝑒𝑛𝑃𝑜𝑠𝑒 𝑓𝑜𝑟 𝐹𝑟𝑎𝑚𝑒 

3. 𝑅𝑒𝑡𝑢𝑟𝑛 𝑆 =  {𝐶, 𝐹} 

4. 𝐸𝑛𝑑 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

5. 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑉𝐺𝐺19𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝐹𝑟𝑎𝑚𝑒): 

6. 𝐿𝑒𝑡 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑏𝑒 ℎ𝑖𝑔ℎ −

𝑙𝑒𝑣𝑒𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝐹𝑟𝑎𝑚𝑒 𝑢𝑠𝑖𝑛𝑔 𝑎 𝑝𝑟𝑒 −

𝑡𝑟𝑎𝑖𝑛𝑒𝑑 𝑉𝐺𝐺 − 19 𝑚𝑜𝑑𝑒𝑙 

7. 𝑅𝑒𝑡𝑢𝑟𝑛 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 

8. 𝐸𝑛𝑑 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

9. 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑇𝑟𝑎𝑖𝑛𝐶𝑁𝑁(𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑒𝑡): 

10. 𝑆𝑝𝑙𝑖𝑡 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑒𝑡 𝑖𝑛𝑡𝑜 𝑎 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡 𝑎𝑛𝑑 𝑎 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑠𝑒𝑡 
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11. 𝐿𝑒𝑡 𝑋 =

 {𝑆, 𝑉𝐺𝐺19𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝐼)}𝑏𝑒 𝑡ℎ𝑒 𝑖𝑛𝑝𝑢𝑡 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒 𝐶𝑁𝑁 

12. 𝐿𝑒𝑡 𝑌 𝑏𝑒 𝑡ℎ𝑒 𝑔𝑟𝑜𝑢𝑛𝑑 − 𝑡𝑟𝑢𝑡ℎ 𝑝𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑠 

13. 𝑇𝑟𝑎𝑖𝑛 𝑡ℎ𝑒 𝐶𝑁𝑁 𝑜𝑛 𝑡ℎ𝑒 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡 𝑢𝑠𝑖𝑛𝑔 𝑏𝑎𝑐𝑘 

                   𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑  𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑑𝑒𝑠𝑐𝑒𝑛𝑡  

𝑤𝑖𝑡ℎ 𝑋 𝑎𝑛𝑑 𝑌 𝑎𝑠 𝑖𝑛𝑝𝑢𝑡 𝑎𝑛𝑑 𝑜𝑢𝑡𝑝𝑢𝑡, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 

14. 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑡ℎ𝑒 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑟𝑎𝑖𝑛𝑒𝑑 𝐶𝑁𝑁 𝑜𝑛 𝑡ℎ𝑒  

𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑠𝑒𝑡 

15. 𝐸𝑛𝑑 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

16. 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑠(𝑉𝑖𝑑𝑒𝑜𝐷𝑎𝑡𝑎): 

17. 𝐿𝑒𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑠 𝑏𝑒 𝑎𝑛 𝑒𝑚𝑝𝑡𝑦 𝑙𝑖𝑠𝑡 

18. 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑓𝑟𝑎𝑚𝑒 𝑜𝑓 𝑉𝑖𝑑𝑒𝑜𝐷𝑎𝑡𝑎 𝑑𝑜 

19. 𝐿𝑒𝑡 𝑆 =  𝑂𝑝𝑒𝑛𝑃𝑜𝑠𝑒(𝐹𝑟𝑎𝑚𝑒) 

20. 𝐿𝑒𝑡 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 =  𝑉𝐺𝐺19𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝐹𝑟𝑎𝑚𝑒) 

21. 𝐿𝑒𝑡 𝐼𝑛𝑝𝑢𝑡𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 =  {𝑆, 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠} 

22. 𝐿𝑒𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 =  𝐶𝑁𝑁(𝐼𝑛𝑝𝑢𝑡𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠) 

23. 𝐴𝑑𝑑 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑡𝑜 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑠 

24. 𝐸𝑛𝑑 𝐹𝑜𝑟 

25. 𝑅𝑒𝑡𝑢𝑟𝑛 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑠 

26. 𝐸𝑛𝑑 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

27. 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 (
𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚,

 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝑆𝑒𝑡
): 

28. 𝐿𝑒𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑠 =

 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚(𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝑆𝑒𝑡) 

29. 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑡ℎ𝑒 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑎𝑛𝑑 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑜𝑓  

𝑡ℎ𝑒 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑜𝑛 𝑡ℎ𝑒  𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 

30. 𝐸𝑛𝑑 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

Mathematical Model for above algorithm: 3 

Step 1: Mathematical model for applying OpenPose to 

each frame of the video data  

1. Define the OpenPose model architecture as a CNN with 

input tensor X and output tensors C and F, representing 

the confidence maps and PAFs, respectively: C, F = 

OpenPose(X) 

2. Load the pre-trained OpenPose model into memory. 

3. For each frame of the video data, read in the frame and 

convert it to a tensor X suitable for the OpenPose model. 

4. Pass the tensor X through the OpenPose model to obtain 

the confidence maps C and PAFs F: C, F = OpenPose(X) 

5. Use the confidence maps C and PAFs F to estimate the 

location of body parts in the image or video frame. 

6. Repeat steps 3-5 for each frame of the video data. 

Step 2: Use a pre-trained VGG-19 model to extract high-

level features from the input image or frame 

1. Let I be the input image or frame from the pedestrian 

intention estimation dataset. 

2. Download and load the pre-trained VGG-19 model into 

memory. 

3. Convert the input image or frame to a suitable input format 

for the VGG-19 model, represented as a tensor 𝑋. 

4. Pass the tensor 𝑋 through the VGG-19 model to obtain the 

output tensor 𝑌: 𝑌 =  𝑉𝐺𝐺 − 19(𝑋) 

5. Extract the high-level features from the output tensor Y. 

Step 3: Train a CNN to classify pedestrian poses and 

movements 

1. Define the CNN model architecture as a function 𝑓 with 

input 𝑋 and output 𝑌′: 𝑌′ =  𝑓(𝑋) 

2. Define the loss function as 𝐿(𝑌′, 𝑌) =  − 𝑠𝑢𝑚(𝑌 ∗

𝑙𝑜𝑔 𝑙𝑜𝑔 (𝑌′) ). 

3. Define the optimization algorithm as stochastic gradient 

descent (SGD) with learning rate alpha and weight update 

rule 𝑤 =  𝑤 –  𝑎𝑙𝑝ℎ𝑎 ∗  𝑑𝑤. 

4. Split the dataset into a training set 𝐷𝑡𝑟𝑎𝑖𝑛and a validation set 

𝐷𝑣𝑎𝑙 . 

5. Initialize the model parameters with random values. 

6. For each epoch in a fixed number of epochs or until 

convergence: 

a. Iterate over the training set 𝐷𝑡𝑟𝑎𝑖𝑛and compute the output 

𝑌′ of the CNN model for each input 𝑋: 𝑌′ =  𝑓(𝑋) 

b. Compute the loss L(Y′, Y)between the predicted output 

Y′ and the ground-truth output Y. 

c. Compute the gradient of the loss function with respect to 

the model parameters using backpropagation: dw =
dL(Y′,Y)

dw
 

d. Update the model parameters using SGD: w =

 w –  alpha ∗  dw 

e. Evaluate the performance of the CNN model on the 

validation set Dval. 

7. Select the CNN model with the best performance on the 

validation set as the final model. 

4. Results And Analysis 

4.1 Experimental Setup 

The experiment was conducted to understand 

pedestrian behavior at zebra crossings using a Pedestrian 

Pose Estimation model. The COCO-18 keypoint dataset was 

used, which contained 1842 samples of pedestrian data of 
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PIE dataset [35] as explain in section 3.1 . The data was 

split into train, test, and validation sets at the ratios of 

50%, 40%, and 10%, respectively. Only tracks longer 

than 2 seconds (observation + prediction) were kept for 

behavior prediction. The Pedestrian Pose Estimation 

model was trained using CNN architecture with a VGG-

19 Pretrained model to train the system accurately with 

low training loss and high training accuracy. The Python 

3.6.7, Anaconda distribution 2018.12, and Spyder 3.3.2 

environments were used for loading and training the 

chosen network architectures. The PyTorch 1.0.1, 

CudaToolKit 9.0, Torch vision 0.2.2, Numpy 1.16.2, and 

Pandas 0.24.2 software packages were used in this 

process. 

The training of the intent model was done for 

300 iterations at a batch size of 128 with L2 regularization 

set to 0.001. The trajectory model was trained using 50 

iterations with a batch size of 64 and an L2 regularization 

of 0.0001. The evaluating metrics used in the study 

included precision, recall, F1 score, accuracy, and AUC. 

SVM, RF, GBM, and XGBoost models were used to 

predict pedestrian crossing intentions, and the model 

performance was improved by fine-tuning 

hyperparameters. The classification results were 

presented, and the Random Forest Classifier was found to 

perform better in classification, with a recall value of 

0.949 in the walking class and an AUC value of 0.922. 

4.2 Evaluating Metrics 

The evaluation measures are listed below, including 

precision, recall, F1 score, accuracy, and AUC. 

Precision =
 TP

(TP + FN)
                                    (13) 

Recall =  
TP

(TP + FN)
                                      (14) 

F1 score =  2 ∗  (
(Precision ∗ Recall)

(Precision + Recall)
)           (15) 

Accuracy =
(TP + TN)

TP
                           (16) 

AUC: AUC stands for Area Under the ROC Curve, which 

is a plot of the true positive rate (TPR) against the false 

positive rate (FPR) at various threshold settings. It 

represents the ability of the model to distinguish between 

positive and negative classes. 

The formulas for calculating TPR and FPR are as follows: 

TPR =  
TP

(TP + FN)
                         (17) 

FPR =  
FP

(FP + TN)
                         (18) 

The AUC represents the area under the ROC curve, and its 

value ranges from 0 to 1, where a value of 0.5 indicates a 

random classifier, and a value of 1 indicates a perfect 

classifier  

In an experiment, SVM, RF, GBM, and XGBoost are used 

to predict pedestrian crossing intentions. Model 

performance is improved by fine-tuning hyper parameters. 

4.3 Experiment Results 

4.3.1 Classification: The Classification results in the paper 

are presented in Table 4 and Table 7. These tables show the 

precision, recall, F1 score, accuracy, and AUC values for 

different models used in the study to predict pedestrian 

crossing intentions [36]. 

 

Table 4. Shows the classification results for four models with a forecast horizon of one second (Test Data) 

Model Class Precision (%) Recall (%) F1Score (%) Accuracy (%) AUC 
SVM Walking 

 

Macro Average 

73.15 

 

72.32 

92.29 

 

91.11 

80.51 

 

77.56 

82.23 0.8 

 

34 

RF Walking 

 

 

Macro Average 

89.28 

 

 

 

88.98 

94.93 

 

 

 

88.12 

87.51 

 

 

 

84.92 

88.57 0.9 

 

 

 

10 

GBM Walking 

 

Macro Average 

69.10 

 

72.93 

75.58 

 

88.44 

86.80 

 

81.21 

80.98 0.8 

 

21 

XGBT Walking 

 

Macro Average 

88.13 

 

79.11 

82.57 

 

87.48 

80.12 

 

76.60 

85.35 0.8 

 

93 

* Bold indicates the best metric-based model. 

Table 4 presents the classification results for four models 

- SVM, RF, GBM, and XGBoost, with a forecast horizon 

of one second on the test dataset. The table shows the 

precision, recall, F1 score, accuracy, and AUC values for 

each of the five categories - walking, standing, hand  

signaling, crossing, and not crossing. The table also shows 

the macro-average value, which is the average of the values 

from all five categories. The best performing model is 

marked in bold. In this case, the Random Forest Classifier is 

the best model, with an AUC value of 0.910. 
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Table 5. Confusion matrix from the RF model (test dataset) 

 Predicted Class 

 

 

 

 

 

Actual Class 

Class Walking Standing Hand Signal Crossing Not Crossing 

Walking 150 7 2 6 3 

Standing 0 111 11 7 7 

Hand Signal 6 5 180 0 15 

Crossing 0 2 3 110 3 

Not Crossing 2 0 4 1 100 

*Marked in Bold number of Correctly Classified Samples 

Table 5 shows the confusion matrix for the validation 

dataset used by the RF model. The confusion matrix 

shows the number of correctly and incorrectly classified 

samples for each of the five categories. 

Table   6. A classification report with different values of prediction 

Predict

ion 

Horizo

n 

Clas

s 

Precisi

on 

(%) 

Rec

all 

(%) 

F1Sc

ore 

(%) 

Accur

acy 

(%) 

AU

C 

1 sec Walki

ng 
 

Macr

o 
Avera

ge 

89.28 

 
 

 

88.98 

94.93 

 
 

 

88.12 

87.51 

 
 

 

84.92 

88.57 0.91 

 
 

 

0 

2 sec Walki

ng 

 

Macr
o 

Avera

ge 

73.10 

 

 

 
75.81 

85.32 

 

 

 
83.44 

81.81 

 

 

 
79.21 

87.98 0.88 

 

 

 
1 

3 sec Walki
ng 

 

Macr
o 

Avera

ge 

65.26 
 

 

 
76.12 

75.58 
 

 

 
82.23 

86.80 
 

 

 
87.12 

80.98 0.84 
 

 

 
8 

4 sec Walki

ng 

 
Macr

o 

Avera

ge 

84.21 

 

 
 

72.28 

82.57 

 

 
 

87.48 

80.12 

 

 
 

76.60 

85.35 0.79 

 

 
 

3 
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Table 6 shows the classification report for different 

prediction horizons - 1 sec, 2 sec, 3 sec, and 4 sec, on the 

test dataset. The table shows the precision, recall, F1 score, 

accuracy, and AUC values for each of the five categories. 

The macro-average value is also presented for each 

prediction horizon. The AUC value decreases steadily as 

the length of the prediction horizon is extended.  

Table 7. Classification report for General Case (Test 

Dataset) 

Mod

el 

Class Precisi

on (%) 

Reca

ll 

(%) 

F1Sco

re (%) 

Accura

cy (%) 

AU

C 

SVM Walki

ng 

 

 

 

Macro 

Avera

ge 

72.89 

 

 

 

69.33 

91.21 

 

 

 

89.22 

82.63 

 

 

 

77.56 

80.45 0.82

6 

RF Walki

ng 

 

Macro 

Avera

ge 

91.88 

 

 

 

86.11 

94.93 

 

 

 

89.37 

87.51 

 

 

 

82.89 

89.87 0.92

2 

GBM Walki

ng 

 

Macro 

Avera

ge 

72.67 

 

 

 

72.93 

72.12 

 

 

 

88.44 

82.22 

 

 

 

81.21 

81.31 0.83

1 

XGB

T 

Walki

ng 

 

Macro 

Avera

ge 

82.21 

 

 

 

73.66 

79.21 

 

 

 

85.21 

79.14 

 

 

 

77.20 

84.16 0.86

4 

 

Table 7 presents the classification report for the general 

case on the test dataset. The table shows the precision, 

recall, F1 score, accuracy, and AUC values for each of the 

four models - SVM, RF, GBM, and XGBoost. The table 

also shows the macro-average value, which is the average 

of the values from all five categories. The best performing 

model is marked in bold, which is the Random Forest 

Classifier, with an AUC value of 0.922. 

4.3.2 Comparison Study 

In this section a comparative study was 

conducted to evaluate the proposed method for 

understanding pedestrian behavior at zebra crossings. A 

reference model was created to use as a benchmark, and 

the results of experiments performed on the test dataset 

were compared for different models. 

Table 7 presents the classification report for the general 

case on the test dataset for four models - SVM, RF, GBM, 

and XGBoost. The table shows the precision, recall, F1 

score, accuracy, and AUC values for each of the models. 

The table also shows the macro-average value, which is 

the average of the values from all five categories. The best 

performing model is marked in bold, which is the Random 

Forest Classifier, with an AUC value of 0.922. 

 

 

Fig 8. Overall Classification performance report for 

General Case (Test Dataset) 

AUC curve 

 

Fig 9. AUC Curve for proposed work 

Figures 8 and 9 demonstrate the overall classification 

performance report and AUC curve, respectively, for the 

proposed work. The AUC curve shows the ability of the 

proposed method to distinguish between positive and 

negative classes. 

The comparative study shows that the proposed 

method using a Multi-Person Pose Estimation model is 

0

20

40

60

80

100

SVM RF
GBM XGBT

P
e

rf
ro

m
a

n
ce

 i
n

 (
%

)

ML Classifiers

Over all perfromance of the  ML Classifiers

Precision

Recall

F1Score

Accuracy

0.826

0.922

0.831
0.864

0.75

0.8

0.85

0.9

0.95

SVM RF GBM XGBT

AUC

AUC
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effective in understanding pedestrian behavior at zebra 

crossings, and the Random Forest Classifier is the best 

performing model. The study provides a baseline for future 

research and suggests that transfer learning with pre-

trained models and deep level pose estimation using a 

larger number of COCO key points can lead to more 

accurate training and improved results. 

Overall, the Random Forest Classifier is found to 

be the best performing model in the study, with the highest 

recall value of 0.949 in the walking class and an AUC 

value of 0.922. The classification results demonstrate that 

the proposed method is effective in predicting pedestrian 

crossing intentions at zebra crossings. 

5. Conclusion 

In conclusion, the proposed method of predicting 

pedestrian behavior at zebra crossings using bottom-up 

pose estimation and deep learning-based classifiers is 

effective and has significant implications for improving 

pedestrian safety. The proposed solution provides a 

comprehensive solution for detecting and classifying 

pedestrian poses and movements such as walking, 

standing, hand signals, crossing, and not crossing at zebra 

crossings. The research paper addresses the challenges of 

predicting pedestrian behavior and intentions, which are 

essential for traffic management, developing Advanced 

Driver Assistance Systems (ADAS), and creating 

autonomous vehicles. The proposed method allows for the 

analysis of videos captured at zebra crossings and enables 

better anticipation and response to pedestrian actions. The 

study highlights the importance of integrating perception 

and decision-making tasks in predicting pedestrian 

behavior and provides a promising solution for addressing 

this critical problem. The Random Forest Classifier 

performs the best among SVM, RF, GBM, and XGBoost 

in classifying pedestrian behavior, achieving a recall value 

of 0.949 in the walking class and an AUC value of 0.922. 

Future research can focus on improving the 

accuracy of the proposed method by using transfer 

learning with pre-trained models and deep level pose 

estimation using a larger number of COCO key points. The 

proposed method can also be extended to real-time 

applications, and the system can be integrated into existing 

traffic infrastructure to improve pedestrian safety. 
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