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Abstract: Adversarial evasions represent contemporary challenges for applications relying on Machine Learning (ML). The 

susceptibility of traditional ML inference systems introduces vulnerabilities that make botnet detectors susceptible to attacks through 

adversarial examples. Complex AI models and sophisticated attack techniques can be used to generate the evasions. One of the potential 

sources of evasion assaults is generative AI models. The lack of data, which causes ML classifiers to train with a bias toward samples 

from the majority of classes, is a serious concern as well. This paper proposed a novel “Deep Reinforcement Learning based Evasion 

Generative Adversarial Network” (DRLEVGAN) to protect evasion attacks and retain semantics of the attack sample. The proposed 

model also tackles the issues of data imbalance, evasion awareness, and maintaining functionality in the context of synthetic botnet 

traffic generation. This model does not need adversarial training for the machine learning classifiers since it can act as an adversarial-

aware botnet detection model. DRLEVGAN demonstrates superior performance when compared to similar models such as “Auxiliary 

Classifier GAN (ACGAN) and Evasion Generative Adversarial Network (EVGAN)”. 
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1. Introduction 

The growth of adversarial risks in today's more connected and 

data-driven world has ushered in a new era of difficulties for 

systems that rely on machine learning (ML). Particularly in the 

area of botnet detection, the dependability of conventional ML 

inference systems has been questioned due to their susceptibility 

to adversarial attacks. Adversarial evasions, a modern and 

formidable adversary that poses a danger to the security of 

systems across numerous sectors, have arisen and are defined by 

their capacity to exploit flaws in ML models [1]. 

This paper delves into the realm of Adversarial Evasion-Aware 

Botnet Detection using Deep Reinforcement Learning, addressing 

the critical need to fortify ML-based botnet detectors against 

increasingly sophisticated adversarial threats. It is imperative to 

understand that botnets, which are networks of compromised 

devices orchestrated to perform malicious activities, have become 

a pervasive threat in cyberspace [2]. Consequently, the 

development of effective and resilient botnet detection systems is 

of paramount importance in safeguarding digital ecosystems. 

Adversarial evasions are manipulative techniques devised to 

exploit vulnerabilities in ML models, particularly those used in 

botnet detection [3]. Traditional ML systems, although highly 

effective in many scenarios, have proven to be susceptible to 

these attacks, rendering botnet detectors prone to manipulation 

and evasion [19]. Adversaries armed with complex AI models 

and sophisticated techniques can generate evasive traffic that can 

circumvent conventional detection mechanisms. 

One notable source of these evasion assaults is generative AI 

models, which are proficient at crafting traffic that mimics 

legitimate communication while concealing malicious intent [4]. 

This characteristic makes them particularly challenging 

adversaries for botnet detectors. Moreover, the scarcity of 

relevant training data exacerbates the problem. The lack of 

diverse and representative data leads ML classifiers to train with 

a bias toward the majority class, causing them to struggle when 

identifying rare or minority-class events, such as specific types of 

botnet activity. 

In response to these pressing challenges, this paper introduces a 

novel and innovative solution: the Deep Reinforcement Learning-

based Evasion Generative Adversarial Network (DRLEVGAN). 

This model is specifically designed to fortify botnet detectors 

against evasion attacks while simultaneously preserving the 

semantics of attack samples. It is noteworthy that DRLEVGAN 

operates without necessitating adversarial training for the 

machine learning classifiers, marking a significant departure from 

conventional approaches. Instead, it serves as an adversarial-

aware botnet detection model, detecting and thwarting evasion 

attempts in real time. 
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The core innovation of DRLEVGAN lies in its foundation of 

Deep Reinforcement Learning, a subfield of ML renowned for its 

prowess in handling complex decision-making tasks. By 

integrating this reinforcement learning paradigm with the 

principles of Generative Adversarial Networks (GANs), 

DRLEVGAN possesses the capability not only to generate 

synthetic botnet traffic but also to adapt and evolve its evasion 

tactics in response to emerging threats. This adaptability is of 

paramount importance in the dynamic landscape of cybersecurity, 

where adversaries perpetually devise new and sophisticated 

methods to evade detection. 

In addition to its evasion-aware capabilities, DRLEVGAN 

addresses the persistent issue of data imbalance that plagues 

many ML classifiers. By strategically sampling and generating 

synthetic minority-class samples, DRLEVGAN mitigates bias 

during training, thereby enhancing the model's proficiency in 

detecting rare or minority-class events, which are often indicative 

of botnet activity [5,6]. The pursuit of Adversarial Evasion-

Aware Botnet Detection using Deep Reinforcement Learning is a 

testament to the ever-evolving landscape of cybersecurity. 

Adversarial threats continually push the boundaries of ML-based 

systems, necessitating innovative and resilient approaches like 

DRLEVGAN.  

Fig 1. Threat Scenario Framework 

 

Figure 1 demonstrates the framework of threat scenarios on the 

internet. Adversarial botnet traffic occurs between the internet 

attacker and the network bot. This research not only reinforces 

the critical importance of robust botnet detection but also 

highlights the potential of cutting-edge technologies, such as deep 

reinforcement learning and generative adversarial networks, in 

fortifying the security and reliability of ML-based systems. The 

adoption of our suggested methodology results in the creation of 

a system capable of both challenging cutting-edge botnet 

detectors and safeguarding them against both familiar and 

innovative evasion tactics. In contrast to previous efforts, our 

system ensures the security of these detectors even when 

confronted with unexpected evasion techniques, all while 

maintaining a high detection rate in the absence of adversarial 

attacks. 

2. Literature Review 

In [7], an innovative approach utilizing deep reinforcement 

learning (DRL) was introduced for the purpose of bypassing 

detection mechanisms designed to identify malicious PDF files. 

This novel framework takes inspiration from the concept of 

rewards, empowering a reinforcement learning agent to create 

adversarial samples by iteratively altering malicious PDF files. 

Ultimately, this iterative process is geared towards automating 

the evasion of detection within predefined constraints. What sets 

this approach apart from the conventional adversarial learning 

methods typically employed in similar studies is the proposal of a 

DRL-based defense strategy aimed at countering this attack. 

[8] Introduced MalRNN, an innovative deep learning approach 

that offers the capability to automatically create evasive variants 

of malware without being constrained by any of the 

aforementioned limitations. This approach employs an 

adversarial example generation procedure, in which a language 

model is trained through a generative sequence-to-sequence 

recurrent neural network to enhance malware binaries. MalRNN 

excels at bypassing three recent deep learning-based malware 

detection systems and surpasses the current benchmark method in 

terms of performance. 

An innovative approach is presented in this study [9], introduced 

a novel method for generating hierarchical adversarial attacks 

(HAA). This method is specifically designed to implement a 

“level-aware black-box adversarial attack strategy aimed at graph 

neural network (GNN)-based intrusion detection within resource-

constrained IoT systems”. The strategy involves the creation of a 

shadow GNN model, incorporating an intelligent mechanism 

utilizing a saliency map technique to craft adversarial examples. 

These examples are generated with a focus on identifying and 
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modifying critical feature elements while minimizing 

perturbations. 

To enhance the effectiveness of the attack, a hierarchical node 

selection algorithm is developed. This algorithm is grounded in a 

random walk with restart (RWR) approach and is responsible for 

identifying a set of nodes within the IoT network that are more 

susceptible to attacks due to their structural characteristics. 

In [10], AppCon was introduced to counteract the impact of 

subtle alterations to malicious samples, serving as an innovative 

strategy for bolstering intrusion detectors against adversarial 

evasion attacks. This approach harnesses ensemble learning 

within real-world network environments, combining layers of 

specialized detectors for monitoring application behavior. 

Extensive experiments in diverse network scenarios, simulating 

botnet detection, involving detectors based on various machine 

and deep learning algorithms validate AppCon's effectiveness. It 

successfully thwarts over 75% of evasion attempts, without the 

drawbacks seen in existing countermeasures, such as 

performance degradation in non-adversarial contexts.  

Numerous smart intrusion detection systems have been suggested 

in [11] for IoT settings, aiming to achieve both superior detection 

accuracy and meet high-level prerequisites. These objectives are 

intertwined with the optimization of computational resources, 

minimizing power consumption at the edge, and safeguarding the 

privacy of sensitive data. Their goal is not solely centered on 

presenting a comprehensive classification of design choices made 

by DRL experts in the realm of intrusion detection. We also aim 

to delve into the benefits and practical implementation of each 

configuration within real IoT environments. 

[12] Introduced a Reinforcement Learning (RL) based solution 

designed to uncover malicious payloads capable of circumventing 

Web Application Firewalls (WAFs). We present an RL 

framework conforming to the OpenAI Gym toolset standards, 

creating an environment for training agents in WAF 

circumvention tasks. These payloads, adept at bypassing WAFs, 

reveal rule deficiencies that can subsequently inform rule-based 

WAF tuning. Furthermore, they contribute to enriching datasets 

for retraining machine learning-based WAFs. Leveraging Q-

Learning, Advantage Actor-Critic (A2C), and Proximal Policy 

Optimization (PPO) algorithms in conjunction with deep neural 

networks, our solution effectively evades both signature-based 

and machine learning-based WAFs. 

3. Methodology 
The effectiveness of the DRL attacker has a positive impact on 

EVAGAN’s performance. The generation of samples using 

GANs adheres to the probability distribution of the input data, 

with the GAN itself adjusting based on feedback from Ď. η, in its 

pursuit to explore unfamiliar sample spaces that can deceive Ď, 

occasionally produces samples that do not accurately reflect the 

genuine malicious patterns. To overcome this challenge, the 

utilization of DRL samples can be instrumental in enabling η to 

discern the boundaries of authentic samples. Consequently, a 

“DRL agent” [20] can be employed to explore samples within a 

well-defined observation space. Through training Ď on these 

newly developed samples, feedback is looped back into the GAN 

training process.  

In order to align with the parameters established by the DRL 

agent, progressively modifies and fine-tunes its sample creation, 

ultimately improving the fidelity of the samples created. This 

procedure can expedite the convergence of η's training while 

simultaneously attaining a high level of accuracy in a reduced 

number of epochs. While it is true that enhancing semantic 

awareness incurs extra training expenses for the DRL component, 

this justification serves as the driving force behind the 

advancement represented by DRLEVGAN towards a more 

intelligent GAN design that prioritizes the preservation of 

functionality.

 

 
Fig 2. Architecture of DRLEVGAN 
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Figure 2 illustrates the intricate architecture of DRLEVGAN, 

which is comprised of two key components: EVGAN and a DRL 

model [7]. Similar to other DRL-based attackers designed for 

evading detection in “black-box” attack scenarios [8-10], 

DRLEVGAN's DRL agent targets Ď within EVGAN, serving as a 

“black-box classifier”. Ď's output, specifically its estimation of 

the minority class, is harnessed as a reward signal to guide the 

agent in fine-tuning its weights and generating a novel action 

denoted as 𝐴𝑡+𝑥 based on a predefined policy ρ.  

This freshly generated action is then introduced into the 

environment, where the state generator leverages another seed 

sample sourced from the authentic dataset to craft a new state. In 

light of receiving a optimistic reward, the evasion samples are 

systematically fed into Ď of EVGAN, facilitating its adversarial 

training. Through this iterative process, Ď becomes actively 

attuned to potential future evasion attempts, thereby enhancing its 

ability to provide more informative feedback to η, the core 

element responsible for constraining the evasion generation 

boundaries. This systematic approach results in the early 

convergence of η's training, contributing to the overall 

effectiveness of DRLEVGAN in evading detection while 

concurrently strengthening the model's proactive defense against 

future evasion attempts. 

State space and action space are the two main parts of the 

environment in DRLEVGAN [11]. The raw bytes of the botnet 

flow sample are present within the environment. To better and 

more efficiently represent the state of these samples, it becomes 

essential to express them in the form of a feature vector. Given 

the extended length and intricate nature of each flow, we employ 

autoencoders (AE) to transform these flows into concise binary 

codes. An autoencoder is a specific type of feedforward neural 

network employed for unsupervised learning, primarily utilized 

for tasks like dimensionality reduction and feature extraction. 

Its role is to capture essential information from the input data and 

encode it into a more compact representation, which is 

particularly useful in scenarios where simplifying the data is 

advantageous. In our case, this process aids in creating shorter 

binary codes that efficiently encapsulate the state of the botnet 

flow sample, making it more manageable and suitable for 

subsequent analysis and processing. 

To prepare the flows for encoding, they are first trimmed to 1024 

bytes, effectively rendering them as grayscale images sized 

32x32. If a flow falls short of this length, '0x00' bytes are 

appended to the end. Typically, the initial bytes of a flow contain 

vital connection information and a limited amount of content 

exchange data, making them more reflective of the flow's 

characteristics. Subsequently, we employ a convolutional auto-

encoder, utilizing CNNs both as the encoder and decoder, to 

convert this "image" into a concise 32-dimensional feature 

vector. This resultant vector offers a comprehensive 

representation of the botnet flow sample and serves as the state 

within the Markov Decision Process (MDP). 

In order to maintain the integrity of functionality, any alteration 

to the feature value is constrained to 𝛿, defined as the smallest 

value among the specific feature values within the dataset, as 

outlined in Equation 1. 

 

δ𝑥 = min
𝐹𝑥∋∆𝑙

𝑥(𝑙)                       (1) 

Where, 𝐹𝑥 represents the smallest value observed among all rows 

(denoted as 'l') corresponding to a specific feature 'F.' In this 

context, 'x' denotes the action index originating from the agent 

and signifies a particular feature number extracted from the 

action table. 

The agent in RELEVAGAN is a deep neural network that takes 

the size of the observation space as its input and generates the 

number of actions as its output. In the context of DRLEVGAN, 

the observation space represents a comprehensive botnet sample 

represented as a feature vector. The primary role of the agent is to 

decide by selecting an action index 'x' from the available features.  

DRLEVGAN Training Algorithm 

Step 1: Loop over batches from 1 to the total number of sets  

Step 2: Train Discriminator (Ď) using real data  

Step 3: Train Discriminator (Ď) using generated data 

Step 4: Utilize the DRL Agent (A) to generate evasions for the 

current batch size  

Step 5: Train Discriminator (Ď) using the evasions generated by 

the DRL Agent (A)  

Step 6: Train Generator (η)  

Step 7: End of loop 

DRLEVGAN closely resembles EVGAN, but it incorporates a 

series of additional steps involving a Deep Reinforcement 

Learning (DRL) agent. These extra stages, specifically Step 4 and 

Step 5, distinguish the training process of EVGAN from 

DRLEVGAN within the algorithm. The precise sequence of these 

steps is paramount in comprehending the underlying logic of 

DRLEVGAN's operation. 

In the described algorithm, Step 4 and Step 5 play a pivotal role 

in shaping the divergence between EVGAN and DRLEVGAN, 

and this distinction persists for a predetermined number of 

batches during training. These steps establish a dynamic interplay 

between the generative model, the discriminator, and the DRL 

agent, infusing DRLEVGAN with unique learning dynamics. 

It's noteworthy that the training of η, a crucial component of the 

system, occurs after the evasion training of Ď. This sequential 

arrangement is instrumental in fine-tuning the performance of Ď. 

As Ď's weights are continually adjusted based on the evasions 

developed by the DRL attacker in Step 5, it acquires a heightened 

awareness of evasion strategies. Consequently, when Ď provides 

feedback in the form of η_loss to η, this feedback is informed and 

strategic, substantially enhancing the training process compared 

to the conventional training of EVGAN. 

To emphasize, the DRL attack is executed after each training 

batch, consistently infusing adversarial elements into the training 

process, and facilitating the evolution of DRLEVGAN's evasion 

capabilities over time. This dynamic interplay between DRL and 

generative adversarial techniques renders DRLEVGAN a 

formidable tool for evasion generation and defense. 

In a conventional model for generating botnet evasions using a 

DRL black-box attack, the reward is typically determined by the 
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outcome of the botnet detector [12], which is typically a actual 

number within [0, 1] range. In the scenario presented here, when 

assessing a botnet sample, the expected reward value is “0”, and 

ideally, for a standard traffic sample, the reward should be “1”. 

Consequently, to classify a botnet sample as an effective evasion 

accomplished by a DRL assailant, a threshold is established 

where the reward must surpass 0.6. This threshold serves as a 

crucial benchmark for distinguishing between effective botnet 

sample evasions and other instances in the evaluation process. 

4. Results & Discussion 

The performance evaluation of DRLEVGAN aligns with that of 

EVGAN, especially when dealing with botnet datasets. Several 

key metrics were employed to gauge the effectiveness of the 

models, encompassing criteria such as the validity of generated 

samples (Gen_Val), the detection of false or generated botnet 

samples evasions (False_Bot_Ev), estimation accuracy of real 

“normal/majority” class (Real_Nor_Est), and the ability to detect 

evasions in real “botnet/minority” class samples (Real_Bot_Ev). 

These metrics are quantitatively represented through 

mathematical expressions denoted by Equations 2 to 5. 

Gen_Val =
Sum of |ή(q,xm)[0]|

n
                                                (2)  

In equation (2), ή(q, xm)[0] represents the prediction of whether 

the source is genuine or false. The closer this value approaches 

'1,' the stronger the inclination toward categorizing it as authentic. 

Where q is the noise sample, xm is the minority class label.  

FalseBotEv
=

Sum of |ή(q, xm)[1]|

n
                                 (3) 

In equation (3), ή(q, xm)[1] signifies the likelihood estimation 

for developed minority/botnet class samples. Given that the label 

for the “minority/botnet” class is designated as '0,' an optimal 

scenario would involve the model producing a value proximate to 

'0.' This estimation is indicative of the level of evasion observed 

in the generated samples. Therefore, the closer this value 

approaches '0,' the lower the degree of evasion detected. 

Real_Nor_Est =
Sum of |R𝑁𝑜𝑟𝑚𝑎𝑙.𝑡𝑒𝑠𝑡[2]|

n
                           (4) 

In equation (4), R𝑁𝑜𝑟𝑚𝑎𝑙.𝑡𝑒𝑠𝑡[2] denotes the probability 

assessment associated with “majority/normal” class samples. 

Given that the majority/normal class is identified by the label '1,' 

the model is ideally anticipated to generate a value in proximity 

to '1' for this estimation. Where R represents the real data 

distribution.  

RealBotEv
=

Sum of |R𝐵𝑜𝑡𝑛𝑒𝑡.𝑡𝑒𝑠𝑡[1]|

n
                                  (5) 

In equation (5), R𝐵𝑜𝑡𝑛𝑒𝑡.𝑡𝑒𝑠𝑡[1] signifies the probability 

estimation about actual minority/botnet class samples. 

4.1 Dataset Preparation 

For experimentation, two datasets are used in this paper. CIC-

IDS-2017 and CIC-IDS-2018 from the Canadian Institute of 

Cybersecurity (CIC). The CICIDS2017 research initiative made 

the deliberate choice to focus its attention on the Ares botnet. In 

pursuit of this objective, comprehensive network traffic data 

pertaining to the Ares botnet was meticulously collected within 

the confines of the CIC facility. This dataset is readily accessible 

for reference and analysis on the official CIC website.  

To facilitate a more streamlined and specific analysis, a distinct 

subset of this dataset was created. This subset exclusively 

encompasses all normal network flows, and it is thoughtfully 

combined with the selected botnets for a more refined 

examination. This approach enables researchers and analysts to 

delve deeper into the behavior and characteristics of Ares and its 

interaction with regular network traffic. 

In the pursuit of generating additional subsets from an inherently 

unbalanced dataset, CIC-IDS2018 dataset is considered. This 

particular dataset provided with samples representing two 

significant botnets, Ares and Zeus. This approach involved the 

careful curation of a new subset, comprised of not only the 

regular network traffic but also a carefully selected more than 

2000 traffic flows associated with the botnets.  

The deliberate inclusion of these botnet traffic flows further 

amplified the imbalance within this dataset. This new, 

unbalanced dataset serves as a valuable resource for in-depth 

analysis, enabling researchers to explore and understand the 

intricacies of Ares and Zeus botnet behavior within a broader 

network context. 

The generator η of EVGAN only takes noise q and the single 

class labels xm = 1 as the only binary classification is 

considered. The labels are embedded in the input layer of η. The 

objective function of η has two parts as shown in Equations (6) 

and (7).  

𝑋η(η) = ∑[𝑙𝑜𝑔 (Ď(η(q)))]                               (6) 

𝑌η(η) = ∑[𝑙𝑜𝑔𝑅(𝑋 = 𝑥𝑚|𝜎𝑚𝑓𝑎𝑙𝑠𝑒)]                          (7) 

 

Equation (6) is the objective function of η. The goal is to 

minimize the log-likelihood of the false samples being classified 

as false by Ď.  

In equation (7), 𝑌η(η) is the objective function of η for 

improving the log-likelihood of minority class samples coming 

from η into Ď, where 𝑅 is the output probability from Ď. Since η 

only needs to generate 𝑥𝑚 samples so it should only receive the 

loss of Ď on the estimation of minority class and the sources, i.e. 

the samples being real or false. The objective function of η is to 

maximize the Ď loss on the false source.  

At the same time, it will assist in minimizing Ď loss on 𝑥𝑚 

samples. Equation (8) shows the objective function of  η. 

𝐿η(η) = 𝑌η(η) − 𝑋η(η)                  (8) 

The objective function of Ď has three parts as given by Equations 

(9), (10), and (11). For the minority class, “m” was used in the 

following equations, 

𝐿𝑀 = ∑[logR(𝑋 = 𝑋𝑚|𝜎𝑚𝑟𝑒𝑎𝑙)]                   (9) 

 

𝐿𝜎𝑀
= ∑[𝑙𝑜𝑔 𝑅(𝜀 = 𝑟𝑒𝑎𝑙|𝜎𝑚𝑟𝑒𝑎𝑙)] +  ∑[𝑙𝑜𝑔 𝑅(𝜀

= 𝑟𝑒𝑎𝑙|𝜎𝑚𝑓𝑎𝑙𝑠𝑒)]                                   (10) 

 

𝐿𝑚

= ∑[𝑙𝑜𝑔 𝑅(𝑋 = 𝑋𝑚|𝜎𝑚𝑟𝑒𝑎𝑙)]

+ ∑[𝑙𝑜𝑔 𝑅(𝑋 = 𝑋𝑚|𝜎𝑚𝑟𝑓𝑎𝑙𝑠𝑒)]                     (11)                       

 

At its inception, the primary objective of 'Ď' is to accurately 

gauge the distribution of the majority class by relying solely on 
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the real samples. This is particularly crucial because 'η' is not 

responsible for generating any of the majority class samples. In 

this context, Equation (9) plays a pivotal role, portraying the 

source log-likelihood associated with both genuine and fabricated 

minority class samples. Equation (10) then succinctly 

consolidates the log-likelihoods for both real and fabricated 

instances from 'Ď,' specifically pertaining to the minority class. 

As a result, the overarching aim of 'Ď' is to optimize its objective 

function, and this can be aptly depicted as the collective 

maximization of three distinct log-likelihoods. These log-

likelihoods are detailed in Equation (11) and encompass the 

genuine and counterfeit minority class samples' log-likelihoods 

and the real instances from the majority class. This 

comprehensive approach ensures that 'Ď' is well-equipped to 

effectively estimate the majority class distribution while 

navigating the intricacies of class-specific log-likelihoods. 

 

 

Fig 3. Training loss Scenario (ACGAN) 

 

To provide a visual representation of the evaluation process, 

Figures 3, 4, and 5 depict the loss profiles of Ď for both real and 

false minority classes, as well as “majority/normal” classes, and 

the loss profiles of η for models including ACGAN, EVGAN, 

and DRLEVGAN. These figures offer an insightful perspective 

into the performance characteristics of the models under 

consideration, aiding in the comprehensive analysis of their 

capabilities and effectiveness in addressing botnet detection and 

evasion challenges. Figure 3 demonstrates Ď and η losses for 

ACGAN. 

The EVGAN serves as the fundamental model in this context, 

offering the distinct advantage of not necessitating the adversarial 

training of dedicated machine learning classifiers. This is 

primarily due to the inherent capability of EVGAN, where the 'Ď' 

component inherently functions as an evasion-aware botnet 

detector. Consequently, the DRLEVGAN, as an extension of 

EVGAN, likewise avoids the need for adversarial training. 

Nevertheless, the evasion tactics generated by the DRL attacker 

must be integrated into the 'Ď' component. This step essentially 

replicates the back-propagation process commonly seen in 

generative adversarial network training, thus ensuring that the 

system remains robust and well-prepared to identify and 

counteract evasion techniques effectively. 

 

Fig 4. Training loss Scenario (EVGAN) 

Figure 4 demonstrates Ď and η losses for EVGAN. Figure 5 

demonstrates Ď and η losses for DRLEVGAN. It appears that the 

loss convergence pattern is consistent across all GANs. Notably, 

DRLEVGAN tends to reach its lowest point earlier than both 

EVGAN and ACGAN. It's worth mentioning that in the case of 

DRLEVGAN, the Ď_Loss_False values are relatively higher 
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compared to the other GANs. This discrepancy might be 

attributed to the challenge faced by the discriminator (Ď) in 

DRLEVGAN, which struggles to differentiate between evasions 

generated by the DRL agent and those from the generator (η). 

Since the evasion samples produced by the DRL agent are 

labeled as “REAL”, when similar samples reach from η, the 

misclassification leads to increased loss. 

 

Fig 5. Training loss Scenario (DRLEVGAN) 

 

However, it's important to note that the total detection 

performance enhances because η in RELEVAGAN tends to 

generate samples that adhere more closely to semantic 

constraints. While this phenomenon could be associated with 

mode collapse, it's essential to emphasize that the detection 

performance of RELEVAGAN surpasses that of EVAGAN, 

mitigating concerns related to mode collapse.  

The early convergence and distinct loss patterns in 

RELEVAGAN, despite higher D Loss False values, indicate an 

effective approach that enhances detection performance by 

constraining sample generation within semantic boundaries. 

 

 

Fig 6. Time Complexity 

 

Figure 6 displays the training time complexity comparison among 

ACGAN, EVGAN, and DRLEVGAN for the two datasets. The 

training time for RELEVAGAN over 100 epochs is slightly 

extended compared to EVGAN due to the additional 

computational overhead introduced by the DRL component.  

 

 

Nonetheless, it's noteworthy that achieving 100% performance is 

accomplished in significantly less time than required by 

EVAGAN, although this timeframe appears to be contingent on 

the specific dataset in use. 
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Fig 7. Performance Comparison 

DRLEVGAN is an enhanced version of EVGAN, so it is best to 

compare its performance with EVGAN and ACGAN. For both 

datasets, DRLEVGAN gives detection accuracy of 100% as 

compared to ACGAN and EVGAN. DRLEVGAN serves as both 

an oversampling tool for adversarial evasion models and an 

evasion-aware finding model tailored for botnets in scenarios 

characterized by limited data availability.  

A cutting-edge botnet finding model can leverage deep 

reinforcement learning to create adversarial evasion samples, 

thereby preserving the fundamental effectiveness of botnet and 

malware samples. When integrated with EVGAN's discriminator 

model, deep reinforcement learning aids the EVGAN generator in 

constraining the exploration space within semantic boundaries. 

The findings indicate that, in scenarios with limited data 

availability, DRLEVGAN, empowered by deep reinforcement 

learning, offers the advantage of achieving early convergence in 

botnet detection, outperforming EVGAN in this regard. 

5. Conclusion 

In the face of contemporary challenges posed by adversarial 

evasions in Machine Learning (ML) applications, this research 

offers a significant contribution. Traditional ML inference 

systems exhibit susceptibility, rendering botnet detectors 

vulnerable to adversarial attacks. These attacks, driven by 

intricate AI models and sophisticated techniques, underscore the 

pressing need for robust defense mechanisms. Among potential 

sources of evasion threats, generative AI models are noteworthy. 

This study introduces the innovative “Deep Reinforcement 

Learning based Evasion Generative Adversarial Network” 

(DRLEVGAN), designed to counter evasion attacks while 

preserving the semantic integrity of attack samples. Beyond this, 

DRLEVGAN addresses critical concerns related to data 

imbalance, evasion awareness, and the protection of functionality 

within synthetic botnet traffic generation. 

Notably, DRLEVGAN distinguishes itself by functioning as an 

adversarial-aware botnet finding model without the necessity for 

adversarial training of machine learning classifiers. Our 

experimental results affirm the model's superior performance in 

comparison to similar models, including “Auxiliary Classifier 

GAN (ACGAN)” and “Evasion Generative Adversarial Network 

(EVGAN)”. In summary, this research offers a timely and 

effective solution to the contemporary challenge of securing ML 

systems against adversarial evasions, especially in the realm of 

botnet detection. DRLEVGAN's exceptional performance and 

evasion awareness capabilities promise to fortify the defense 

against adversarial attacks, marking a significant step forward in 

safeguarding ML applications. 
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