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Abstract: Today world is marching towards high degree of industry automation along with intelligence integration. Many industries 

uplifting their traditional machine work to smart robotic operating system (ROS-1) based mobile robotic automation. This paper discuss 

the autonomous robotic navigation which is the most important part of robotic automation, it includes simultaneous-localization-and-

mapping (SLAM) implemented through robotic operating system to understand the necessary workspace along with exploration of shortest 

low coast path within workspace. Multiple algorithms now a day available which explores collision free navigation path to reach the goal 

position without disturbing in-path obstacles. This paper elaborate the method combining ROS based SLAM along with vision sensory 

based AMCL and the DWA path planning technique which continuously capture the workspace and localize all moving and static obstacles 

along with robot. The experimented result shows the explored path is safe and collision free which is feed to a controller program to 

continuously govern autonomous mobile robots by utilizing prior knowledge of workspace and robots mechanism.  

Keywords: ROS, ROS based Mobile Robot Navigation; Optimal Path Planning Algorithm; Adaptive Monte Carlo Localization (AMCL) 

algorithm and the Dynamic Window Approach (DWA) planner. 

1. Introduction 

The high degree intelligence based industrial automation 

enhancing the industries processes by improving the 

traditional machine work in to smart automation. This paper 

discusses the autonomous robotic navigation which is the 

most important part of industrial robotic atomization. The 

robot autonomous navigation is a crucial aspect of robotics, 

enabling robots to operate in dynamic environments with or 

without human intervention [1]..  Many researchers 

experimenting variety of SLAM methods for indoor 

autonomous mobile robot navigation which continuously 

updates the information of the workspace and localize all 

moving and static obstacles along with robot [2].Mobile 

robots moreover shares a similar mechanism and overall 

architecture e.g. in industrial robotic arm has multiple joints 

with specific degree of freedom, turn tables and 

measurement tables for accurately measuring each 

dimension of auto parts, moving autonomous indoor mobile 

robot or cart transporting material between different 

stations[3,4]. The autonomous mobile robot navigation field 

is continuously upgrading, as many mature algorithm are 

develop and deployed in mobile robot assisting human 

application [5, 6]. 

There are three major parts in mobile robot navigation: 

1. Robot self-localization and workspace mapping. 

2. Exploring realistic and true optimal path. 

3. Navigating mobile robot on planned path. 

Robot Simultaneous localization and Workspace 

Mapping 

Localization of static as well as moving objects is major and 

important task in robotic navigation. From last few decades 

various SLAM algorithms introduces great number of robot 

and obstacle localization methods e.g Hector SLAM-based 

Navigation[7, 8]. Thus the localization information of the 

current workspace helps mobile robot for effective safe 

navigation [9]. There are different methods used to acquire 

surrounding environmental information such as mobile 

robots are equipped with distance laser (LiDAR), ultrasonic 

or Infrared light (IR) based distance sensors, image 

processing based or some contactive type of sensor for 

exploring and understanding the current workspace[10]. 

Workspace exploring with distance sensor is an exhaustive 

process, mobile robot has to move and explore every corner 

of the workspace [11]. This method become prolongs as 

working space dimensions of mobile robot increases. The 

major hurdle in such navigation system is need of calibrated 

sensor with appropriate fixing on the autonomous mobile 

robot; moreover these robots might be trapped in local loop 

this leads to keep self-track of mobile robot. The contact 

type based sensor robot continuously touches obstacle to 
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localize them thus these both methods are unsuitable for 

real-world applications [12]. 

The shortcoming of above method overcomes by image 

processing method where either camera is placed over the 

robot head or attached to a fixed position inside the 

workspace. In the former case camera moves according to 

robot motion, this will help mobile robot to avoid local 

obstacle, but cannot have knowledge of hidden area and 

obstacles behind the visible objects. The fixed position 

placement of camera covers most of the part of workspace 

at the same time all the obstacles can be localization 

globally. Thus image processing (Vision based) systems 

have more beneficial than the other system such as lighter 

in weight as it require very few components, the new 

generation sensor and communication module make the 

system compact along with more power saving and 

durability. These systems are also ubiquitous, thus making 

the cameras ideal for capturing devices to be implanted 

inside mobile robots. Vision based workspace exploration 

used in variety of important functions in robotics application 

such as specific obstacle detection, colour object or people 

detection and tracking object following through visual 

servoing [13].Many algorithms are designed for computer 

games are equally used in mobile robots path planning such 

as A*, D*, D* lite, Basic Theta, Theta* and Phi*, Sub Goal 

Graph, ANYA, JPS and JPS plus goal bounding are the few 

most famous path planning algorithm [14]. The fundamental 

task in path planning is to search and finds the best suitable 

path by avoiding obstacles and robot collision. The process 

of dividing the continuous path into optimal sub-path edges 

which makes navigation safer and faster. The path planning 

algorithms are categories under two broad categories 

namely Indoor application and Outdoor application, in 

former case the dimensions and workspace complexity of 

arena or workspace is priory known whereas in later case 

the dimensions and complexity is uncertain. The 

environmental exploring sensors are the important 

components inside the mobile robot, as they represent the 

complete environment correctively and efficiently [15].  

This paper elaborate differential drive robot equipped with 

a LiDAR sensor that utilizes the Adaptive Monte Carlo 

Localization (AMCL) algorithm and the Dynamic Window 

Approach (DWA) planner to achieve robust and efficient 

navigation [16]. It also investigates the performance of 

AMCL and the DWA planner in real-world scenarios, 

particularly in the presence of dynamic obstacles. The 

integration of AMCL and the DWA planner within the 

Robot Operating System (ROS) Noetic provides a 

comprehensive framework for localization and path 

planning [17]. AMCL is a probabilistic algorithm that 

utilizes particle filtering to estimate the robot's position and 

orientation relative to a known map. It allows the robot to 

adapt to environmental changes and effectively localize 

itself even in the presence of uncertainty. The DWA 

planner, on the other hand, is a real-time path planning 

algorithm that takes into account the robot's kinematics and 

dynamically computes a feasible trajectory by considering 

its dynamic constraints and the environment. This approach 

ensures that the robot can navigate smoothly while avoiding 

obstacles and achieving its desired goal.Experimentation 

and its result of the evaluation of the performance of AMCL 

and the DWA planner. It also provides a detailed analysis of 

the robot's path planning capabilities by initially plotting its 

trajectory without any obstacles and subsequently 

introducing a new obstacle to observe how the robot 

recalculates its path in response. The comparison between 

the initial and recalculated paths will provide insights into 

the effectiveness of AMCL and the DWA planner in 

adapting to dynamic environments.The findings of this 

study have significant implications for the field of 

autonomous navigation. By understanding the strengths and 

limitations of AMCL and the DWA planner, thus one can 

enhance the development of navigation systems for robots 

operating in real-world scenarios. The ability to accurately 

localize and plan paths in dynamic environments is crucial 

for the successful deployment of autonomous robots in 

various domains, including exploration, surveillance, and 

transportation. In the subsequent sections, this paper 

explains a comprehensive overview of AMCL and the 

DWA planner, describe the experimental setup, present the 

results of experimentation, and discuss the implications and 

potential areas for further research [18]. 

1.1. Adaptive Monte Carlo Localization (AMCL) 

The Adaptive Monte Carlo Localization (AMCL) algorithm 

is a powerful technique used for probabilistic localization in 

robotics. It allows a robot to estimate its position and 

orientation within a known map by utilizing a particle filter-

based approach. AMCL is particularly well-suited for robots 

operating in dynamic environments where the surroundings 

may change over time. In this experimentation integration 

of AMCL algorithm into the ROS framework to enable 

accurate localization of the differential drive robot. The 

AMCL algorithm maintains a set of particles, each 

representing a possible pose of the robot. These particles are 

updated and resampled based on sensor measurements and 

motion data, allowing the algorithm to converge towards the 

most likely robot pose [19].The key advantage of AMCL 

lies in its adaptability to environmental changes. As the 

robot navigates through the environment, the particles are 

adjusted to reflect the changes in sensor readings and robot 

motion. This adaptability ensures that the robot's estimate of 

its pose remains accurate even in the presence of uncertainty 

and dynamic obstacles.To evaluate the performance of 

AMCL, a real-world environment experimentation 

conducted. Initially, user goal position provided to the robot 

and observed how AMCL converged towards the true pose 

estimate. By comparing the estimated pose with ground 

truth data, then the accuracy and reliability of AMCL is 
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assessed under normal operating conditions. Furthermore, a 

new obstacle along the robot's path to simulate a dynamic 

environment. This allowed evaluating AMCL's ability to 

adapt and recalibrate its pose estimate in the presence of a 

changing environment. Thus the analysis of the impact of 

the obstacle on the estimated poses and assessed the 

convergence speed and accuracy of the algorithm in 

dynamically evolving scenarios. The subsequent section 

will discuss the implementation details of the DWA planner, 

which complements AMCL by providing real-time path 

planning capabilities based on the robot's estimated pose 

and the environment map. 

1.2. Dynamic Window Approach (DWA) Planner 

The Dynamic Window Approach (DWA) planner is a key 

component of autonomous mobile robot navigation system, 

designed to provide real-time path planning for differential 

drive robot. The DWA planner operates based on the 

estimated pose of the robot obtained from the AMCL 

algorithm and the environment map. At its core, the DWA 

planner uses a local window of robot velocities, 

incorporating both translational and rotational velocities. By 

sampling different velocity combinations within this 

window, the planner evaluates their feasibility and selects 

the best velocity that optimizes the robot's motion towards 

the goal while considering dynamic constraints and 

avoiding obstacles [20].The DWA planner relies on a cost 

function that takes into account various factors such as 

proximity to obstacles, distance to the goal, and robot 

dynamics. This cost function allows the planner to evaluate 

different trajectories and prioritize those that lead to 

collision-free paths while minimizing deviation from the 

desired trajectory. Intergradation of DWA planner into the 

ROS framework, leveraging its flexibility and compatibility 

with the said robot's differential drive system. By coupling 

the DWA planner with the AMCL algorithm, a result shows 

good achievement with comprehensive and robust 

navigation system capable of adaptive localization and 

dynamic path planning.  Thus the experimentation in control 

environment is conducted to evaluate the performance of the 

DWA planner. Therefore the robot with goal positions are 

provided to observed how the planner generated smooth and 

obstacle-free trajectories to reach the desired 

destinations[21]. In this way one can measured the planner's 

ability to navigate complex environments efficiently, 

considering factors such as path length, execution time, and 

proximity to obstacles. In addition to above experimentation 

addition case are introduced with new obstacle in the robot's 

path to analysed how the DWA planner reacted to this 

dynamic change, recalculating the path to avoid the obstacle 

while maintaining the desired trajectory. This highlighted 

the planner's adaptability and its capability to dynamically 

adjust the robot's motion plan based on real-time sensor 

feedback. In summary, the DWA planner plays a crucial role 

in autonomous mobile robot navigation system by enabling 

real-time path planning based on the robot's estimated pose 

and environment map. Its dynamic nature and ability to 

consider various constraints and obstacles make it a 

valuable tool for navigating complex and changing 

environments. Next section discusses the integration of the 

LiDAR sensor and the SLAM (Simultaneous Localization 

and Mapping) toolbox, which enables the mobile robot to 

build a map of its surroundings while simultaneously 

localizing itself using the AMCL algorithm and executing 

path plans generated by the DWA planner. 

1.3. The ROS Ecosystem 

Robot Operating System (ROS) is a popular open-source 

framework widely used in robotics research and 

development. It provides a collection of tools, libraries, and 

conventions that facilitate the development of robot 

software. ROS offers a flexible and modular architecture, 

making it ideal for building complex robotic systems with 

various sensors and actuators. 

1.3.1. SLAM Toolbox 

One of the key functionalities provided by ROS is 

Simultaneous Localization and Mapping (SLAM), which 

allows a robot to construct a map of its environment while 

simultaneously estimating its own pose within that map. 

SLAM is essential for autonomous navigation as it enables 

the robot to understand and navigate unknown or dynamic 

environments. SLAM Toolbox in ROS package specifically 

designed for SLAM applications. The SLAM Toolbox 

offers a range of SLAM algorithms and tools, providing a 

comprehensive solution for building and updating maps in 

real-time. It offers flexibility in choosing different SLAM 

approaches based on the specific requirements of the robot 

and the environment. The implementation of the online 

async SLAM approach using the SLAM Toolbox, which 

combines mapping and localization in an asynchronous 

manner. This approach enables the robot to continuously 

update the map while performing localization, allowing for 

real-time adjustments to the map as the robot explores its 

surroundings. Thus the online async SLAM algorithm 

utilizes sensor measurements, such as the laser scan data 

from the LiDAR sensor, to estimate the robot's pose and 

incrementally build the map [22]. It leverages advanced 

techniques like scan matching, loop closure detection, and 

pose graph optimization to improve map accuracy and 

robustness. Utilizing the SLAM Toolbox's online async 

SLAM approach, the robot was able to generate accurate 

maps of its environment while autonomously navigating 

through it. The robot's ability to simultaneously update its 

map and estimate its pose in real-time provided a reliable 

foundation for path planning and obstacle avoidance. To 

evaluate and validate the performance of the autonomous 

mobile robot navigation system, two powerful simulation 

tools, Rviz and Gazebo are utilized, which provided a 

realistic and dynamic virtual environment for testing and 
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visualization. 

1.3.2. Rviz: Visualization and Analysis Tool 

Rviz, an essential component of the ROS ecosystem, served 

as the primary visualization and analysis tool. With its 

intuitive interface and comprehensive set of features, Rviz 

allowed to visualize and monitor critical components of the 

autonomous mobile robot system in real-time. By 

subscribing to relevant ROS topics able to display sensor 

data such as laser scans, odometry information, and 

transformed coordinate frames. This enabled to gain 

insights into the robot's perception of its surroundings, 

evaluate the accuracy of the localization algorithm, and 

assess the effectiveness of the DWA planner in generating 

feasible paths. Rviz also provided visualization of the 

robot's pose estimate, the costmap representation of the 

environment, and the execution of planned trajectories. 

Through Rviz's interactive interface, one can analyse the 

robot's behaviour, identify potential issues, and fine-tune the 

mobile robot system parameters accordingly. Its 

visualization capabilities played a crucial role in 

comprehending the robot's decision-making process and 

understanding the impact of various factors on its navigation 

performance. 

1.3.3. Gazebo: Dynamic Simulation Environment 

Gazebo, a powerful physics-based robot simulator, provided 

a dynamic virtual environment to simulate and test the 

autonomous navigation system. Gazebo's capabilities can 

leverage to create a realistic 3D representation of mobile 

robot and its surroundings, including the presence of static 

and dynamic obstacles. By defining the physical 

properties of the underline robot and incorporating accurate 

models of LiDAR sensor and odometry system, Gazebo 

simulated the robot's motion and the sensor data it would 

perceive in real-world scenarios. This enabled to evaluate 

and fine-tune the robotic navigation stack in a controlled 

environment before deploying it on the physical robot. One 

of the significant advantages of Gazebo was its ability to 

introduce dynamic obstacles, mimicking real-world 

scenarios where the robot must adapt and navigate around 

moving objects. Thus user can observed the robot's response 

to these dynamic obstacles within the simulated 

environment, along with valuable insights into the system's 

robustness, obstacle avoidance capabilities, and path 

planning efficiency. 

1.3.4. Integration of Rviz and Gazebo 

The integration of Rviz and Gazebo played a pivotal role in 

robotic system development and evaluation process. The 

seamlessly connection of Rviz to Gazebo, allows to 

visualize using simulated environment while monitoring the 

robot's perception, planning, and control in real-time. This 

integration facilitated quick iterations to validate the 

system's behaviour and performance within the simulated 

environment, identify potential issues or discrepancies, and 

make necessary adjustments to the navigation stack or 

system parameters. The ability to analyse and visualize the 

robot's behaviour in tandem with its simulated environment 

enhanced understanding of the system's strengths and 

limitations. The next section elaborate the integration of the 

LiDAR sensor and it contribution to the SLAM process, 

enabling robot to perceive its surroundings and generate 

laser scans for mapping and localization. 

2. Experimental Set-up and Procedure 

This section, describe the experimental setup and procedure 

employed to evaluate the performance of autonomous 

mobile robot navigation system utilizing AMCL and the 

DWA planner. The goal of the experiment was to assess the 

system's ability to adapt to dynamic environments by 

recalculating the path when encountering new obstacles. 

2.1. Robot Hardware and Software Configuration 

The autonomous mobile robot platform consisted of a 

differential drive robot equipped with a LiDAR sensor for 

perception and mapping. The robot's hardware included 

motor controllers, encoders for wheel odometry, and a 

computing unit running ROS Noetic. The software 

configuration involved integrating ROS packages such as 

the slam toolbox, AMCL, and the DWA planner into the 

ROS workspace. The robot LiDAR sensor must be 

configured for the parameters, such as range limits and 

angular resolution, to ensure accurate perception of the 

environment. 

2.2. Experimental Environment and Goal Definition 

The experimentation environment over the gazebo with a 

controlled indoor environment includes known landmarks 

and predefined pathways. Fig. 1 represents the environment 

included static obstacles and open spaces to facilitate robot 

navigation and path planning derived in Gazebo whereas in 

Fig. 2 represents the same environment is mapped through 

SLAM technique. The experiment involved defining a goal 

position within the environment for the robot to navigate 

towards the goal position was specified using coordinates in 

the map frame. Thus it allows the robot to autonomously 

plan and follow a path to reach the desired location. 

 
Fig. 1: Simulated world in Gazebo 
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Fig. 2 Mapped by SLAM_toolbox 

2.3. Path Planning and Navigation Procedure 

To initiate the experiment, the robot provided with the goal 

position, triggering the navigation stack to generate a path 

using the DWA planner. The DWA planner utilizes the 

robot's odometry information and the costmap, which 

represents the environment's static and dynamic obstacles, 

to compute a collision-free trajectory. As the robot started 

navigating towards the goal position, the trajectory is 

monitored and traced over the map and logged relevant data, 

such as the robot's pose, sensor readings, and path trajectory. 

This data used to analyze further robot's behavior and 

evaluate the performance of the navigation stack. During the 

experiment, the robot are instructed to navigate within user 

given start and goal position as shown in Fig. 3 static 

environment for goal position 1 and Fig. 7 static 

environment for goal position 2. Once they successfully 

reached to those static points through autonomous 

navigation as show in Fig. 5 for goal position 1 and Fig. 9 

for goal position 2, dynamic obstacles are introduced into its 

new path so as to observe the navigation in dynamic 

environment as show in Fig. 4 dynamic environment for 

goal position 1 and Fig. 8 dynamic environment for goal 

position 2. The dynamic obstacle could be a human or pet 

animal or an object moving across the robot's planned 

trajectory. Upon encountering the dynamic obstacle, the 

robot's perception system detected it using the LiDAR 

sensor and fed the information to the costmap. The AMCL 

module, which performs localization based on sensor data, 

was then triggered to estimate the robot's updated pose as 

shown in Fig. 4 dynamic environment for goal position 1 

and Fig. 8 dynamic environment for goal position 2. Based 

on the updated pose estimate and the presence of the 

dynamic obstacle in the costmap, the DWA planner 

recalculated the path, ensuring that the robot could navigate 

around the obstacle to reach the goal position through 

autonomous navigation to goal position 1 as shown in Fig. 

6 and goal position 2 as shown in Fig. 10 while avoiding 

collision with the newly added obstacle. 

 
Fig. 3 Static Environment for goal position 1 

 
Fig. 4 Dynamic Environment for goal position 1 

 
Fig. 5 Autonomous Navigation to goal 1 in static environment 

 
Fig. 6 Autonomous Navigation to goal 1 in dynamic environment 

 
Fig. 7 Static Environment for goal position 2 
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Fig. 8 Dynamic Environment for goal position 2 

 
Fig. 9 Autonomous Navigation to the goal 2 in static environment 

 
Fig. 10 Autonomous Navigation to the goal 2 in dynamic 

environment 

2.4. Path Comparison and Evaluation 

The navigation system performance is assessed by 

comparing the robot's original path, generated before the 

introduction of the dynamic obstacle, with the recalculated 

path after encountering the obstacle. Thus plotted the paths 

on a map to visualize the changes and deviations caused by 

the dynamic obstacle. In addition to this the analysis of the 

path comparison provides more insights into the system's 

ability to adapt and plan alternative trajectories in response 

to dynamic changes in the environment. This helps to 

improve the metrics such as path length, clearance from 

obstacles, and the efficiency of the robot's navigation.  The 

results and findings obtained from experimental evaluation, 

discussing the effectiveness and limitations of the 

autonomous navigation system utilizing AMCL and the 

DWA planner is discussed in the subsequent section. 

3. Result Analysis 

This section discussed the various experiment recordings, 

results and analysis of the experimental evaluation 

conducted over autonomous navigation system utilizing 

AMCL and the DWA planner, focusing over the 

experiential deviation in the robot’s path when encountering 

a dynamic obstacle and provides insights into the system's 

adaptability and response. 

3.1. Path Deviation Analysis 

Upon analyzing the plotted paths, it can be observed a clear 

and significant deviation in the robot's trajectory after the 

introduction of the dynamic obstacle. Initially, the robot 

followed a relatively straight path towards the goal position, 

avoiding any static obstacles present in the environment as 

show as graph in Fig. 11 for static environment goal position 

1 and Fig. 13 for static environment goal position 2. 

However, as the robot encountered the dynamic obstacle, It 

experience a notable shift in its planned path. The DWA 

planner, leveraging the updated pose estimate from AMCL 

and the information provided by the Costmap, recalculated 

the trajectory to navigate around the obstacle effectively. 

The global plan refers to the high-level path plan that spans 

the entire environment. It typically represents the path from 

the robot's current position to the goal position in a global 

coordinate frame. The global plan is generated by DWA 

Planner Algorithm and is often pre-computed before the 

robot starts moving. The global plan topic provides 

information about this planned path as show as graph in Fig. 

12 for dynamic environment goal position 1 and Fig. 14 for 

dynamic environment goal position 2. 

 
Fig. 11 Global Plan Plot with static environment for goal position 

1 

 
Fig. 12 Global Plan Plot with dynamic environment for goal 

position 1 

 
Fig. 13 Global Plan Plot with static environment for goal position 

2 
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Fig. 14 Global Plan Plot with dynamic environment for goal 

position 2 

3.2. Path Recalculation and Adaptability 

Fig. 15 and Fig. 17 depicts the odometry plan plot for user 

instructed goal 1 and goal 2 position respectively in static 

environment. The recalculation of the path demonstrated 

shown as graph in Fig. 16 and Figure 4.2.4  is the system's 

ability to adapt to dynamic changes in the environment. By 

incorporating the dynamic obstacle's presence into the 

costmap, the DWA planner considered the obstacle as a 

constraint while generating the new trajectory. 

The recalculated path exhibited a clear deviation from the 

original planned path. It strategically guided the robot to 

navigate around the obstacle, ensuring collision avoidance 

while still aiming to reach the goal position. This adaptive 

behavior showcases the effectiveness of the navigation stack 

in dynamically adjusting the robot's path to handle 

unforeseen obstacles. 

 
Fig. 15 Odometry Plot with static environment for goal 1 

 
Fig. 16 Odometry Plot with dynamic environment for goal 1 

 
Fig. 17 Odometry Plot with static environment for goal 2 

 
Fig. 18 Odometry Plot with dynamic environment for goal 2 

3.3. Quantitative Evaluation of Deviation 

To quantify the observed path deviation various metrics are 

analyzed such as path length, clearance from obstacles, and 

the efficiency of the robot's navigation. Comparing these 

metrics between the original path and the recalculated path 

provided valuable insights into the system's performance. 

Thus it can be clearly observed that the recalculated path 

exhibited a longer trajectory compared to the original path 

due to the detour necessary to avoid the obstacle. However, 

the increased path length was accompanied by a noticeable 

increase in the clearance between the robot and the dynamic 

obstacle, ensuring a safe and collision-free navigation. 

Table 1 shows Quantitative evaluation of deviation. 

Table 1 Quantitative evaluation of deviation. 

Goal Calculated trajectory   

Position Static Environment 
Dynamic 

Environment 
Difference 

1 3.3982952 4.0076955 0.6094 

2 1.7550746 3.3982952 1.643221 

 

4. System Limitations and Future Improvements 

While the system demonstrated impressive adaptability and 

path recalculation capabilities, It also encountered a few 

limitations during the experiment. In some instances, the 

robot exhibited slight deviations from the optimal trajectory, 

which could be attributed to factors such as sensor noise, 

localization inaccuracies, or limitations in the DWA 

planner's optimization algorithm. To further enhance the 

system's performance, future improvements could focus on 

refining the obstacle detection and mapping process, 

optimizing the path planning algorithm to consider dynamic 

obstacles more effectively, and fine-tuning the parameters 

of the navigation stack to minimize path deviations. 

5. Conclusion 

In conclusion, the experimental evaluation of the 

autonomous mobile robot navigation system utilizing 

AMCL and the DWA planner showcased its ability to 

dynamically adapt and recalculate paths upon encountering 

dynamic obstacles. The observed deviation in the robot's 

trajectory, along with the associated metrics, demonstrated 

the system's effectiveness in ensuring significant collision 

avoidance while pursuing the goal position with marginally 

increase of path by approximately 16% for the restricted 
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environment. These findings highlight the potential of the 

navigation stack for real-world applications where robots 

need to operate in dynamic and changing environments. By 

leveraging AMCL for accurate localization and the DWA 

planner for adaptive path planning, autonomous mobile 

differential drive robot system lays the foundation for 

reliable and safe autonomous navigation. 
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