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Abstract: Software Effort Estimation (SEE) is getting more concerned owing to the software industry’s development. An increase in the 

deadline along with the budget of the project was led by an incorrect estimation. This may fail the project in turn. Using the Fisher and 

Mish Gaussian Kernel Function based Deep Elman Neural Network (FMGKF-DENN) algorithm, a novel Pearson and Mahalanobis- 

centered Farthest First Clustering (PMFFC)-centered SEE was proposed in this study. Primarily, through determining specific factors 

like scope, objectives, Infrastructure, and characteristics, the details regarding the provided historical projects are obtained. For efficient 

task completion, the projects are grouped utilizing the PMFFC algorithm grounded on the details gathered.  Next, the classes split the 

code for those specific types of projects. After that, the input data is pre-processed. Certain features are retrieved as of the pre-processed 

data and the Controlled Sea Turtle Foraging Optimization (CSTFO) approach chooses the crucial features. The deviation value is deemed 

as a target for efficient SEE in the FMGKF-DENN, where the selected features are fed. The experiential outcomes illustrated that the 

SEE process was executed more accurately by the proposed framework along with outperforming various top-notch models.  

Keywords: Software, Effort estimation, project management, feature extraction, Sea Turtle Foraging Optimization (STFO), Neural 

Network (NN), Deviation. 

1. Introduction 

Recently, conventional software development methods 

were replaced by the software development process, 

which has become more prominent in industries. Since 

software includes various applications in the business, 

banking, medical field, aerospace, defense, and science 

and technology, it is one amongst the significant 

inventions that affect human society [1]. It also contains 

an array of industrial utilities along with several security 

systems. One of the top ten vital success elements in 

software projects is Reliable estimation, as per the 

Standish Group [2]. To estimate the amount of labor or 

the number of hours needed for project completion, SEE 

approaches are employed. SEE is often described as 

man-hours or man-months [3, 4]. 

Generalizing as of a few old projects is requisite while 

performing Effort Estimation (EE). Generalization from 

these types of limited knowledge occurs naturally in 

open circumstances [5]. Underestimating the SEE can 

result in budget and schedule overruns while 

overestimating it can cause project loss [6]. 

Diverse SEE variants were presented by researchers. 

However, for precise estimation, the best method could 

not be developed yet. Machine learning, algorithmic 

models, and expert judgment are the most recent SEE 

approaches. An effort was requisite for conventional 

expert judgment approaches to document activities. Thus 

the estimation is made more complicated and time-

consuming [7, 8]. Grounded on analogy and deduction, 

the software estimation is processed by the utilization of 

algorithmic techniques grounded on mathematical 

equations and machine learning [9, 10]. Using the 

FMGKF-DENN algorithm, a novel PMFFC - based SEE 

is developed in this paper to tackle these limitations in 

prevailing models. 

1.1 Problem Definition 

Certain limitation exists even though many approaches 

were utilized for efficient SEE. The limitations are 

enlisted as follows; 

• The main issue with SEE is the lack of project data, 

incorporating the utilized element’s size and 

quantitative counts, the number of analysis classes, 

the number of relationship sorts, the number of 

connected attributes, along with the use-case points 

• Centered on Line of Code (LoC), prevailing research 

approaches categorized the programs. The grouping 

was incorrect if the LoC is identical for a diverse type 

of code 

• During the SEE, deviation may occur. 

• The major issue in SEE is the size and inefficiency. 

Hence, a novel SEE algorithm is proposed here to 

alleviate the issues mentioned above. 
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This paper’s remaining part is structured as follows: 

Section 2 shows the literature survey, Section 3 explains 

the proposed methodology, Section 4 illustrates the 

results and discussion, and finally, Section 5 concludes 

the paper with future work. 

2. Literature Survey 

Passakorn Phannachitta [11] exaggerated an analogy-

centered SEE scheme to determine the effort requisite for 

a new software project grounded on the entire effort 

utilized in the earlier similar project’s completion. 

Regarding accuracy and reliability, the presented 

approach’s superiority was revealed by the experiential 

outcomes.  However, the presented approach’s major 

downside was the hyper-parameter optimization needs. 

Tirimula Raoet al. [12] suggested a Differential 

evolution algorithm for Analogy-centered software 

development effort Estimation (DABE). Complicated 

multimodal optimization issues were efficiently solved 

by the presented approach. Nevertheless, the major 

criterion to be pondered was the control parameter.  

Tianpei Xia et al. [13] framed Rapid Optimizing 

Methods for Estimation (ROME) where Sequential 

Model-centered Optimization (SMO) was employed for 

EE. However, for both classic waterfall and 

contemporary projects, better performance was attained. 

The wastage was elevated by resources that were 

allocated without appropriate estimation.  

Leandro L. Minku [14] investigated an online 

supervised hyperparameter tuning process grounded on 

SEE. A poor Cross Company (CC) split was successfully 

avoided by the presented clustering models. Contrarily, 

the estimation performance was affected by the CC 

split’s random selection. 

Jose Thiago H et al. [15] propounded the Heterogeneous 

and Dynamic Ensemble Selection (HDES) model made 

of a set of regressors chosen dynamically by classifiers 

for SEE. The adapted regression algorithms avoided the 

overfitting issue. However, non-functional characteristics 

along with quality factors of that project were not 

estimated by this technique.  

Frank Vijay [16] developed a fuzzy-centered hybrid 

technique for SEE. The fuzzy logic and defuzzification 

via the weighted average model controlled the 

uncertainty in the software size. Regarding Median Mean 

Relative Error (MMRE) and Variance Account For 

(VAF), better performance was acquired. Nevertheless, 

the incorporation of both the functional and non-

functional characteristics in a single framework affected 

the feasibility. 

Resmi et al. [17] introduced a fuzzy analogy with 

optimal firefly algorithm-grounded SEE. The ‘3’ stages 

included here were Fuzzification, rule-centered fuzzy 

system, and defuzzification. Hence, the parameter’s 

maximal likelihoods utilized in the presented approach 

were more precisely obtained. However, this mode didn’t 

handle the missing and noisy data.  

Anfal A. Fadhil et al. [18] established the SEE 

technique centered on the hybrid Dolphin and bat 

(Dolbat) algorithm. Better outcomes for EE were given 

by the measurement’s outcomes. However, only fewer 

individuals were optimized by the presented dolphin 

algorithm.  

Saurabh Bilgaiyan et al. [19] projected Chaos –centered 

morphological genetic algorithm for the SEE process. 

Mathematical morphology (MM) comprising of a 

hybrid-artificial neuron (Dilation Erosion Perceptron 

(DEP) extended as of the complete lattice theory (CLT) 

concept was the basis for this work. Thus, the method’s 

worthiness was proved by the outcomes. Conversely, 

data overhead issues affected this model. 

Saurabh Bilgaiyan et al. [20] presented Artificial 

Neural Network (ANN)-feed-forward back-propagation 

neural network and Elman neural network method for 

SEE. Eventually, better prediction accuracy was obtained 

by the presented model than the prevailing algorithms. 

However, the presented model’s limitation was that 

better performance was not executed on the data 

obtained as of heterogeneous software development 

methods.  

3. Proposed Novel Software Effort Estimation 

Technique 

To deliver the product on time and within budget, EE is 

an extremely significant activity for planning and 

scheduling software project life cycle. So, using the 

FMGKF-DENN algorithm, a novel PMFFC-based SEE 

framework is proposed in this research. Figure 1 

illustrates the proposed model's structural layout.
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Fig 1: Structural design of the proposed model. 

3.1 Factor Determination 

The input pondered to start the SEE process in this work 

is the project’s (hospitals, schools, restaurants, etc.) 

historical data. Only when a project is completed on 

schedule, within budget, and meets its objective, it is 

considered successful. It is preferable to determine these 

factors to make the SEE process more quick and reliable 

as the scopes, objectives, infrastructures, and other 

elements of each project may vary. The factors to be 

determined are detailed as follows. 

❖ Scope: The project's intent in identifying and 

documenting a list of objectives, as well as its prompt 

delivery and deadlines are referred to as "scope".  

Hence, ( )fS signifies the scope factor determined. 

❖ Objectives: The information regarding the project’s 

outcome was provided by objectives, which are 

notated as ( )fO . 

❖ Infrastructure: It is the project’s basic framework. 

Regarding the project undertaken, the infrastructure 

is indicated as ( )fI . 

❖ Characteristics: Via project characteristics ( )fC , the 

project’s distinguishing feature or quality was 

understood.  

For the effective SEE, equation (1) gives the 

mathematical formulation of the factors determined 

( )df  and is given as, 

 nd fffff ,...,,, 321=    (1) 

Where, the factors determined for −n number of 

projects are interpreted as nd ,...,3,2,1= . 

 

3.2 Analogy based projects grouping using PMFFC 

Using PMFFC grounded on distance (analogy), the 

projects are classified after the determination of specific 

factors in this phase. The centroid points are selected 

randomly along with assigned to the projects in the 

cluster grounded on the maximum (Euclidean) distance 

as of the set of already-picked centers in the Farthest 

First Clustering (FFC) algorithm. Pearson correlation

( )  is generated into a conventional FFC by adding a 

Mahalanobis distance estimation named PM owing to the 

unreliability of this random selection criterion along with 

the sensitivity of Euclidean distance to noise or outliers. 

PMFFC is defined as the combination of PM and FFC. 

The steps involved in PMFFC are revealed further down, 

1. Let the factors determined ( )df be the input. 

Initially, the Pearson correlation ( )  betwixt ( )df for 

each input project is determined as follows. 

( )( ) ( )( )

( )( ) ( )( ) 



−−

−−
=

222211

2211

ffff

ffff




  

   (2) 

In the above equations, the mean value of 
1f and 

2f  

are denoted as ( )1f  and ( )2f , and factors 

determined for projects 1 and 2 are determined as 
1f and 

2f . The strongest correlation is determined as of the 

output obtained. 

2. Now, the first centroid considered here is the 

strongest correlation. The next points are chosen 

grounded on the first centroid. 
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3. Since a large number of project data was employed 

here, 
dM is used for distance calculation in PMFFC 

Mahalanobis distance. It is defined as, 

( ) ( )( )21121 ffffM
Td −−= −   (3) 

4. Grounded on their farthest distance, the steps are 

repeated by computing the cluster centroids along 

with rearranging the data points grounded on the new 

cluster centroids. When every cluster centroid tends 

to converge, the procedure comes to an end. Hence, 

cV  represents the clustered projects. Here, 

kc ,,2,1 = , that represents the number of clusters 

formed. 

3.3 Split the code based on the class 

Grounded on class, the codes are divided here for the 

grouped projects. To diminish the size and error that 

occurs during SEE, one of the defense strategies utilized 

is code splitting. Application's certain portions 

potentially dangerous are removed by this model of 

protection and transferred to a secure server, where they 

can operate in a trusted and secure environment. Thus, 

the splitted code ( )s  for each project is modeled as, 

Ks = ,....,, 21     (4) 

Where, the K -number of splitted codes is represented as

Ks ,...,2,1= . 

3.4 Pre-processing 

Later, pre-processing is undergone by the splitted codes. 

A large number of repetitive data are contained since the 

historical data is pondered here. Therefore, to eliminate 

redundant or repeated data, Pre-processing is executed. 

Additionally, utilizing the numerical conversion process, 

the input data's string values are transformed into their 

corresponding number values, making it useful for 

further processing. The pre-processed data ( )p  

expression is denoted as 

 np = ,...,, 21
    (5) 

Here, the n number of pre-processed splitted codes is 

referred to as np ,...,2,1= . 

3.5 Feature Extraction 

From the pre-processed outcome, diverse sorts of 

features are extracted in this phase. The features 

extracted for effective estimation are the actual effort, the 

database system used, the development team’s size, the 

application’s experience level, the programming 

language used, the analyst's ability, the execution time 

constraints, the main storage constraints, the 

programmer's ability, etc. The extracted features ( )fE  

are expressed as, 

 Nf EEEE ,,, 21 =   (6) 

Where, the number of features extracted as of the pre-

processed splitted codes is determined as N . After that, 

for feature selection, these features are fed into the 

CSTFO. 

3.6 Feature Selection using CSTFO 

This stage involves using CSTFO to identify the optimal 

features needed for the SEE. A nature-inspired 

metaheuristic algorithm called Sea Turtle Feeding 

Optimisation (STFO) is grounded on the foraging habits 

of sea turtles for food. Typically, migration in sea turtles 

occurs in a straight line from one location to another. 

However, their capacity for exploration is constrained 

along with encountering local optimal issues when they 

go over the open sea. Therefore, the exploration control 

parameter is introduced into the traditional STFO method 

to alleviate the aforementioned problems and is known 

as CSTFO. The process is detailed as follows, 

Step:1  Firstly, initialize the sea turtles population in the 

ocean as
Nf EEEE ,...,, 21= (extracted features) in 

d-dimensional search space. Let the food source be 

notated as. Also, the N -number of sea turtle’s 

position is initialized as 

dl STSTSTST ,...,, 21=    (7) 

Where, the −d number of the position for −n number of 

sea turtles is indicated as dl ,...,3,2,1= . Similarly, the 

food source’s position ( )p is also initialized that is 

formulated as, 

zp = ,....,, 21
    (8) 

Here, the −z number of food sources for sea turtles is 

signified as zp ,...,2,1= . 

Step:2 Each sea turtle’s velocity ( )S in the population is 

determined after initializing the sea turtle position in this 

step. Thus, the sea turtle velocity is expressed as, 

maxmin

21 ,.... LSUSSSS V +++=    

 (9) 

Where, the sea turtle population’s velocity is proffered as

V,...,2,1= , the upper and lower bound limit range of 

sea turtle velocity is notated as
maxU and

maxL . 
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Step:3  Each sea turtle’s fitness (deviation and estimation 

accuracy) ( )ST  in the population is evaluated in this 

step. The fittest sea turtle in the population is identified 

as the strongest turtle
ST . The fitness evaluation is 

modeled as follows, 

( )f

STST E =  (10) 

Further, equation (11) gives the expression for the 

strongest turtle selection  

 ST

f

ST  maxarg=  (11) 

Step:4 Utilizing the expression (12), the ocean current 

velocity of every sea turtle ( )( )lST is computed as the 

sea turtles travel in the open sea for searching food over 

long distances.  

( )  dl STSTSTST ,....,, 21 =  (12) 

Thus, using ocean current velocity ( )( )1+TS , the 

updated sea turtle velocity is given as, 

( ) ( )
( ) ( )( )( )

( )( )
( ) ( )( )1

1

1
)1( −−













−

−−
++=+ TETE

TE

TETE
STTSTS ff

f

ST

f

ST

f

ST

l






 (13) 

In the above expression, the sea turtle’s position at the 

timeT is denoted as )(TE f . The turtle’s position at the 

time 1−T is notated as ( )1−TE f   

Step:5 The sea turtles have seagrasses and phytoplankton 

as their food during their movement to long distances. 

DiMethyl Sulfide (DMS), which has a strong odour was 

released by the seagrasses, which in turn aids the sea 

turtle to identify their food readily. Grounded on the 

resemblance betwixt the sea turtle and the food source, 

the DMS odour’s ( )oDMS  strength is evaluated. The 

mathematical formulation for the odour measurement is 

provided as, 

( )

( )

( )
















=

=

= 













=









T

D

z

p

p

I
ST

ST

o

JEI

e

F

F
DMS

DMS

DMS 22

1

,

0,






 (14) 

Where, the strength of odour as of the food source is 

referred as
DMS ,  the 

thI food source fitness value is 

symbolized as ( )IF  , the parameter explaining the way 

the DMS spread is signified as ( )T2  and JI E
D


 

stands for the turtle 
JE and the food source 

I

distance. 

Step:6 By considering the maximum value of
oDMS , 

the best food source ( )pBest is now identified and is 

expressed as, 

( )  op DMSBest maxarg=  (15) 

Step:7  Thus, the sea turtle’s position is updated 

( )( )1+TE f using (16) 

( ) ( ) ( ) ( ) ( ) TEBestTSTETE f

pp

ff −+++=+ 11 

 

 (16) 

Where, the control parameter is represented as , which 

is obtained using the following equation, 

( ) 12 −+= HG  (17) 

Here, the constant diminishing linearly from 2 to 0 is 

denoted as G , and the random value ranging between 

 1,0  is denoted as H . 

Step:8 Until the optimal food source is recognized, the 

process is repeated. Thus, the number of features 

selected ( )sf via CSTFO is modeled as, 

qs ffff ,...,, 21=  (18) 

In the above equation, the number of optimal features 

selected is preferred as qs ,...,2,1= . The proposed 

CSTFO’s pseudo code is displayed below. 
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3.7 Effort estimation using FMGKF-DENN 

SEE occurs after the requisite optimal features have been 

chosen. A feed-forward network having an input layer, 

hidden layer, context layer, and output layer is called a 

"Deep Elmann Neural Network" (DENN). Here, the 

output is created by multiplying the incoming features by 

the activation function along with adding the bias values. 

The estimation error is maximized by the general 

activation function along with the utilization of random 

weight values and lengthens the task completion time. 

The traditional DENN is therefore modified to include 

the Fish and Mish Gaussian Kernel function, giving rise 

to the term FMGKF-DENN. 

The EE methodology is briefed below. 

➢ In the EE process, the target value ( )star  is pondered 

initially. Here, a target value is fixed for effective 

estimation as there exists a probability of deviating 

from the actual value and the estimation value. 

➢ With X number of input layers ( )XI  and s number 

of output layers ( )sO , the DENN is provided. The 

number of hidden layers ( )  and context layers ( )c  

ranges betwixt 22, YcXYX   . Thus, the 

input is multiplied by input-hidden weights at every 

node. The hidden layer output ( )o  is given by (19), 

( )( )s

ioo fcBcB 12 +=   (19) 

1−= ooc   (20) 

Where, the context layer output is modeled as
oc , the 

context layer’s input is signified as ( )s

i fc , Miss 

Gaussian Kernel activation function is proffered as  , 

and is illustrated in (19), the input-hidden layer weight 

value and context-hidden layer weight value was 

symbolized as 21, BB  

( )
mn

e 2
1

22
−−

=


  (21) 

Input: Extracted features ( )fE  

Output:Selected features ( )( )sf  

Begin 

Initialize sea turtle population ( )fE  

Initialize
dl STSTSTST ,...,, 21=

 

Initialize food source position ( )p  

Obtain ( )S  

Evaluate fitness value ( )f

STST E =  

Determine  ST

f

ST  maxarg=  

Estimate ocean current velocity 

Update ( )( )1+TS  

If ST  

then 0=DMS  

Else if ST  

Calculate
( )

( )

( )













=





 


=

T

D

z

p

p

I
JEI

e

F

F
DMS

22

1


 

End if 

Compute best food source ( )pBest  

Update sea turtle position ( )( )1+TE f  

Obtain ( )sf  

End 
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Here,  denotes the free space dimension and constant 

values were indicated by mn . 

➢ By taking the Fisher score value’s mean, the DENN’s 

weight initialization ( )iB  is done and is signified as  

 321 ,, BBBBi = x (22) 

( )( ) 1−
+= nm

i scscmeanB  (23) 

Here, the regularisation parameter is represented as  , 

the neural network’s class scatter matrix is symbolized as
msc , and the neural network’s total scatter matrix is 

indicated as
nsc . 

➢ The FMGKF-DENN’s output obtained is  

( )sY fBO 3=  (24) 

Where, the hidden-output layer weight values are 

denoted as 3B . 

➢ Utilizing equation (25), the effort values ( )  are 

computed after obtaining the output values. 

( )
2

1


=

−=
q

s

s

s Otar  (25) 

Thus, the effort values are more efficiently estimated by 

the proposed FMGKF-DENN approach. 

4. Result and Discussion 

In this section, the proposed PMFFC-centered SEE is 

implemented in the PYTHON platform along with the 

validation of its performance. 

4.1 Database Description 

COCOMO 81, COCOMOII-60, COCOMONASA-93, 

and Desharnais are utilized for the superiority 

measurement in the proposed methodology. Grounded on 

the effort and time requisite for such a project’s 

development, the cost of a software package was 

determined by the COCOCMO [13] (Constructive Cost 

Estimation Model), COCOMOII [18], and 

COCOMONASA [16]. The information regarding the 

software projects is contained in the Desharnais [12] 

dataset.  

4.2 Performance Analysis of proposed FMGKF-

DENN 

By analogizing the proposed FMGKF-DENN with the 

prevailing Deep Neural Network (DNN), Recurrent 

Neural Network (RNN), Convolutional Neural Network 

(CNN), and Deep Belief Network (DBN), the proposed 

scheme’s performance was analyzed regarding the 

accuracy, F-measure and deviation. 

 

Fig 2: Performance validation based on accuracy. 

Regarding accuracy, the result comparison of proposed 

and prevailing techniques were illustrated in figure 2. 

The system’s better performance was revealed by high 

accuracy. While the other methods have lower accuracy 

of 95.0324% (DNN), 93.752% (RNN), 91.0547% 

(CNN), and 89.0124% (DBN), the proposed model 

attained a higher accuracy of 98.4598% for the 

COCOMO dataset. Identically, the accuracy may vary 

for other datasets also. When analogized with the 

prevailing models, a higher accuracy measure was 

exhibited by the proposed one from these values.  
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Table1: Comparative measurement based on F-measure. 

Datasets Proposed 

FNGKF-DENN 

DNN RNN DBN CNN 

COCOMO [13] 97.3913 95.9187 93.0112 89.8812 87.1532 

COCOMOII [18] 96.9541 90.1485 88.7952 85.74221 83.0414 

COCOMONASA [16] 97.8752 92.1045 89.4019 86.0475 84.1032 

Desharnais [12] 98.0012 94.8510 91.8854 88.0907 86.9520 

 

The proposed technique’s f-measure is depicted in table 

1. When analogized with the prevailing models, the 

proposed model has a higher f-measure of 97.3913% in 

the COCOMO dataset. A lower f-measure of 83.0414% 

for the COCOMOII dataset was obtained by the 

prevailing techniques like CNN than the proposed one. 

Likewise, the other methods also obtained a lower f-

measure than the proposed one. The prevailing 

technique’s decreased performance was exhibited by the 

lower f-measure values. Hence it is evident that the 

proposed one tends to be more precise and accurate. 

 

 

Fig 3: Performance measurement based on the deviation. 

A lower deviation value of 5% was attained by the 

proposed model for the COCOMOII dataset, which was 

depicted in figure 3. A higher deviation of DNN (18%), 

RNN (28%), DBN (35%), and CNN (52%) was 

exhibited by the prevailing models on the other hand. 

Identically, variation occurred in the other dataset’s 

deviation values. Hence, it is apparent that several 

prevailing methods were outperformed by the proposed 

work.  

5. Conclusion  

Using the FMGKF-DENN methodology, a novel 

PMFFC-based SEE was proposed in this paper. The 

proposed scheme entails a number of steps, including the 

determination of specific factors, project grouping, and 

code splitting. Then, using a feature extraction and 

selection technique, EE is carried out. Regarding some 

performance metrics, the proposed scheme along with 

the prevailing techniques (DNN, RNN, DBN, CNN) 

performance analysis and the comparative analysis is 

executed to validate the proposed algorithms’ efficiency. 

Therefore, higher metrics rates of 98.4598% accuracy, 

3% deviation, and 97.3913% F-measure were attained by 

the proposed FMGKF-DENN for the COCOMO dataset. 

The proposed approach can be expanded in the future by 

incorporating more sophisticated algorithms to improve 

performance. 
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