

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4s), 557–565 | 557

A Novel PMFFC -Based Software Effort Estimation Using FMGKF-

DENN Algorithm

*1K. Harish Kumar and 2K. Srinivas

Submitted: 10/09/2023 Revised: 22/10/2023 Accepted: 09/11/2023

Abstract: Software Effort Estimation (SEE) is getting more concerned owing to the software industry’s development. An increase in the

deadline along with the budget of the project was led by an incorrect estimation. This may fail the project in turn. Using the Fisher and

Mish Gaussian Kernel Function based Deep Elman Neural Network (FMGKF-DENN) algorithm, a novel Pearson and Mahalanobis-

centered Farthest First Clustering (PMFFC)-centered SEE was proposed in this study. Primarily, through determining specific factors

like scope, objectives, Infrastructure, and characteristics, the details regarding the provided historical projects are obtained. For efficient

task completion, the projects are grouped utilizing the PMFFC algorithm grounded on the details gathered. Next, the classes split the

code for those specific types of projects. After that, the input data is pre-processed. Certain features are retrieved as of the pre-processed

data and the Controlled Sea Turtle Foraging Optimization (CSTFO) approach chooses the crucial features. The deviation value is deemed

as a target for efficient SEE in the FMGKF-DENN, where the selected features are fed. The experiential outcomes illustrated that the

SEE process was executed more accurately by the proposed framework along with outperforming various top-notch models.

Keywords: Software, Effort estimation, project management, feature extraction, Sea Turtle Foraging Optimization (STFO), Neural

Network (NN), Deviation.

1. Introduction

Recently, conventional software development methods

were replaced by the software development process,

which has become more prominent in industries. Since

software includes various applications in the business,

banking, medical field, aerospace, defense, and science

and technology, it is one amongst the significant

inventions that affect human society [1]. It also contains

an array of industrial utilities along with several security

systems. One of the top ten vital success elements in

software projects is Reliable estimation, as per the

Standish Group [2]. To estimate the amount of labor or

the number of hours needed for project completion, SEE

approaches are employed. SEE is often described as

man-hours or man-months [3, 4].

Generalizing as of a few old projects is requisite while

performing Effort Estimation (EE). Generalization from

these types of limited knowledge occurs naturally in

open circumstances [5]. Underestimating the SEE can

result in budget and schedule overruns while

overestimating it can cause project loss [6].

Diverse SEE variants were presented by researchers.

However, for precise estimation, the best method could

not be developed yet. Machine learning, algorithmic

models, and expert judgment are the most recent SEE

approaches. An effort was requisite for conventional

expert judgment approaches to document activities. Thus

the estimation is made more complicated and time-

consuming [7, 8]. Grounded on analogy and deduction,

the software estimation is processed by the utilization of

algorithmic techniques grounded on mathematical

equations and machine learning [9, 10]. Using the

FMGKF-DENN algorithm, a novel PMFFC - based SEE

is developed in this paper to tackle these limitations in

prevailing models.

1.1 Problem Definition

Certain limitation exists even though many approaches

were utilized for efficient SEE. The limitations are

enlisted as follows;

• The main issue with SEE is the lack of project data,

incorporating the utilized element’s size and

quantitative counts, the number of analysis classes,

the number of relationship sorts, the number of

connected attributes, along with the use-case points

• Centered on Line of Code (LoC), prevailing research

approaches categorized the programs. The grouping

was incorrect if the LoC is identical for a diverse type

of code

• During the SEE, deviation may occur.

• The major issue in SEE is the size and inefficiency.

Hence, a novel SEE algorithm is proposed here to

alleviate the issues mentioned above.

1Research Scholar, Department of Computer Science & Engineering,

Koneru Lakshmaiah Education Foundation, Deemed to be University,

Hyderabad, Telangana, India,500075 and Assisstant

Professor,Department of Computer

Science&Informatics.,MahatmaGandhi

University,Nalgonda,Telangna,India 508001. 1khrsharma@gmail.com
2Professor, Department of Computer Science & Engineering, Koneru

Lakshmaiah Education Foundation, Deemed to be University,

Hyderabad, Telangana, India 2srirecw9@klh.edu.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4s), 557–565 | 558

This paper’s remaining part is structured as follows:

Section 2 shows the literature survey, Section 3 explains

the proposed methodology, Section 4 illustrates the

results and discussion, and finally, Section 5 concludes

the paper with future work.

2. Literature Survey

Passakorn Phannachitta [11] exaggerated an analogy-

centered SEE scheme to determine the effort requisite for

a new software project grounded on the entire effort

utilized in the earlier similar project’s completion.

Regarding accuracy and reliability, the presented

approach’s superiority was revealed by the experiential

outcomes. However, the presented approach’s major

downside was the hyper-parameter optimization needs.

Tirimula Raoet al. [12] suggested a Differential

evolution algorithm for Analogy-centered software

development effort Estimation (DABE). Complicated

multimodal optimization issues were efficiently solved

by the presented approach. Nevertheless, the major

criterion to be pondered was the control parameter.

Tianpei Xia et al. [13] framed Rapid Optimizing

Methods for Estimation (ROME) where Sequential

Model-centered Optimization (SMO) was employed for

EE. However, for both classic waterfall and

contemporary projects, better performance was attained.

The wastage was elevated by resources that were

allocated without appropriate estimation.

Leandro L. Minku [14] investigated an online

supervised hyperparameter tuning process grounded on

SEE. A poor Cross Company (CC) split was successfully

avoided by the presented clustering models. Contrarily,

the estimation performance was affected by the CC

split’s random selection.

Jose Thiago H et al. [15] propounded the Heterogeneous

and Dynamic Ensemble Selection (HDES) model made

of a set of regressors chosen dynamically by classifiers

for SEE. The adapted regression algorithms avoided the

overfitting issue. However, non-functional characteristics

along with quality factors of that project were not

estimated by this technique.

Frank Vijay [16] developed a fuzzy-centered hybrid

technique for SEE. The fuzzy logic and defuzzification

via the weighted average model controlled the

uncertainty in the software size. Regarding Median Mean

Relative Error (MMRE) and Variance Account For

(VAF), better performance was acquired. Nevertheless,

the incorporation of both the functional and non-

functional characteristics in a single framework affected

the feasibility.

Resmi et al. [17] introduced a fuzzy analogy with

optimal firefly algorithm-grounded SEE. The ‘3’ stages

included here were Fuzzification, rule-centered fuzzy

system, and defuzzification. Hence, the parameter’s

maximal likelihoods utilized in the presented approach

were more precisely obtained. However, this mode didn’t

handle the missing and noisy data.

Anfal A. Fadhil et al. [18] established the SEE

technique centered on the hybrid Dolphin and bat

(Dolbat) algorithm. Better outcomes for EE were given

by the measurement’s outcomes. However, only fewer

individuals were optimized by the presented dolphin

algorithm.

Saurabh Bilgaiyan et al. [19] projected Chaos –centered

morphological genetic algorithm for the SEE process.

Mathematical morphology (MM) comprising of a

hybrid-artificial neuron (Dilation Erosion Perceptron

(DEP) extended as of the complete lattice theory (CLT)

concept was the basis for this work. Thus, the method’s

worthiness was proved by the outcomes. Conversely,

data overhead issues affected this model.

Saurabh Bilgaiyan et al. [20] presented Artificial

Neural Network (ANN)-feed-forward back-propagation

neural network and Elman neural network method for

SEE. Eventually, better prediction accuracy was obtained

by the presented model than the prevailing algorithms.

However, the presented model’s limitation was that

better performance was not executed on the data

obtained as of heterogeneous software development

methods.

3. Proposed Novel Software Effort Estimation

Technique

To deliver the product on time and within budget, EE is

an extremely significant activity for planning and

scheduling software project life cycle. So, using the

FMGKF-DENN algorithm, a novel PMFFC-based SEE

framework is proposed in this research. Figure 1

illustrates the proposed model's structural layout.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4s), 557–565 | 559

Fig 1: Structural design of the proposed model.

3.1 Factor Determination

The input pondered to start the SEE process in this work

is the project’s (hospitals, schools, restaurants, etc.)

historical data. Only when a project is completed on

schedule, within budget, and meets its objective, it is

considered successful. It is preferable to determine these

factors to make the SEE process more quick and reliable

as the scopes, objectives, infrastructures, and other

elements of each project may vary. The factors to be

determined are detailed as follows.

❖ Scope: The project's intent in identifying and

documenting a list of objectives, as well as its prompt

delivery and deadlines are referred to as "scope".

Hence, ()fS signifies the scope factor determined.

❖ Objectives: The information regarding the project’s

outcome was provided by objectives, which are

notated as ()fO .

❖ Infrastructure: It is the project’s basic framework.

Regarding the project undertaken, the infrastructure

is indicated as ()fI .

❖ Characteristics: Via project characteristics ()fC , the

project’s distinguishing feature or quality was

understood.

For the effective SEE, equation (1) gives the

mathematical formulation of the factors determined

()df and is given as,

 nd fffff ,...,,, 321= (1)

Where, the factors determined for −n number of

projects are interpreted as nd ,...,3,2,1= .

3.2 Analogy based projects grouping using PMFFC

Using PMFFC grounded on distance (analogy), the

projects are classified after the determination of specific

factors in this phase. The centroid points are selected

randomly along with assigned to the projects in the

cluster grounded on the maximum (Euclidean) distance

as of the set of already-picked centers in the Farthest

First Clustering (FFC) algorithm. Pearson correlation

() is generated into a conventional FFC by adding a

Mahalanobis distance estimation named PM owing to the

unreliability of this random selection criterion along with

the sensitivity of Euclidean distance to noise or outliers.

PMFFC is defined as the combination of PM and FFC.

The steps involved in PMFFC are revealed further down,

1. Let the factors determined ()df be the input.

Initially, the Pearson correlation () betwixt ()df for

each input project is determined as follows.

()() ()()

()() ()() 



−−

−−
=

222211

2211

ffff

ffff






 (2)

In the above equations, the mean value of
1f and

2f

are denoted as ()1f and ()2f , and factors

determined for projects 1 and 2 are determined as
1f and

2f . The strongest correlation is determined as of the

output obtained.

2. Now, the first centroid considered here is the

strongest correlation. The next points are chosen

grounded on the first centroid.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4s), 557–565 | 560

3. Since a large number of project data was employed

here,
dM is used for distance calculation in PMFFC

Mahalanobis distance. It is defined as,

() ()()21121 ffffM
Td −−= − (3)

4. Grounded on their farthest distance, the steps are

repeated by computing the cluster centroids along

with rearranging the data points grounded on the new

cluster centroids. When every cluster centroid tends

to converge, the procedure comes to an end. Hence,

cV represents the clustered projects. Here,

kc ,,2,1 = , that represents the number of clusters

formed.

3.3 Split the code based on the class

Grounded on class, the codes are divided here for the

grouped projects. To diminish the size and error that

occurs during SEE, one of the defense strategies utilized

is code splitting. Application's certain portions

potentially dangerous are removed by this model of

protection and transferred to a secure server, where they

can operate in a trusted and secure environment. Thus,

the splitted code ()s for each project is modeled as,

Ks = ,....,, 21 (4)

Where, the K -number of splitted codes is represented as

Ks ,...,2,1= .

3.4 Pre-processing

Later, pre-processing is undergone by the splitted codes.

A large number of repetitive data are contained since the

historical data is pondered here. Therefore, to eliminate

redundant or repeated data, Pre-processing is executed.

Additionally, utilizing the numerical conversion process,

the input data's string values are transformed into their

corresponding number values, making it useful for

further processing. The pre-processed data ()p

expression is denoted as

 np = ,...,, 21
 (5)

Here, the n number of pre-processed splitted codes is

referred to as np ,...,2,1= .

3.5 Feature Extraction

From the pre-processed outcome, diverse sorts of

features are extracted in this phase. The features

extracted for effective estimation are the actual effort, the

database system used, the development team’s size, the

application’s experience level, the programming

language used, the analyst's ability, the execution time

constraints, the main storage constraints, the

programmer's ability, etc. The extracted features ()fE

are expressed as,

 Nf EEEE ,,, 21 = (6)

Where, the number of features extracted as of the pre-

processed splitted codes is determined as N . After that,

for feature selection, these features are fed into the

CSTFO.

3.6 Feature Selection using CSTFO

This stage involves using CSTFO to identify the optimal

features needed for the SEE. A nature-inspired

metaheuristic algorithm called Sea Turtle Feeding

Optimisation (STFO) is grounded on the foraging habits

of sea turtles for food. Typically, migration in sea turtles

occurs in a straight line from one location to another.

However, their capacity for exploration is constrained

along with encountering local optimal issues when they

go over the open sea. Therefore, the exploration control

parameter is introduced into the traditional STFO method

to alleviate the aforementioned problems and is known

as CSTFO. The process is detailed as follows,

Step:1 Firstly, initialize the sea turtles population in the

ocean as
Nf EEEE ,...,, 21= (extracted features) in

d-dimensional search space. Let the food source be

notated as. Also, the N -number of sea turtle’s

position is initialized as

dl STSTSTST ,...,, 21= (7)

Where, the −d number of the position for −n number of

sea turtles is indicated as dl ,...,3,2,1= . Similarly, the

food source’s position ()p is also initialized that is

formulated as,

zp = ,....,, 21
 (8)

Here, the −z number of food sources for sea turtles is

signified as zp ,...,2,1= .

Step:2 Each sea turtle’s velocity ()S in the population is

determined after initializing the sea turtle position in this

step. Thus, the sea turtle velocity is expressed as,

maxmin

21 ,.... LSUSSSS V +++= 

 (9)

Where, the sea turtle population’s velocity is proffered as

V,...,2,1= , the upper and lower bound limit range of

sea turtle velocity is notated as
maxU and

maxL .

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4s), 557–565 | 561

Step:3 Each sea turtle’s fitness (deviation and estimation

accuracy) ()ST in the population is evaluated in this

step. The fittest sea turtle in the population is identified

as the strongest turtle
ST . The fitness evaluation is

modeled as follows,

()f

STST E = (10)

Further, equation (11) gives the expression for the

strongest turtle selection

 ST

f

ST  maxarg= (11)

Step:4 Utilizing the expression (12), the ocean current

velocity of every sea turtle ()()lST is computed as the

sea turtles travel in the open sea for searching food over

long distances.

()  dl STSTSTST ,....,, 21 = (12)

Thus, using ocean current velocity ()()1+TS , the

updated sea turtle velocity is given as,

() ()
() ()()()

()()
() ()()1

1

1
)1(−−













−

−−
++=+ TETE

TE

TETE
STTSTS ff

f

ST

f

ST

f

ST

l






 (13)

In the above expression, the sea turtle’s position at the

timeT is denoted as)(TE f . The turtle’s position at the

time 1−T is notated as ()1−TE f

Step:5 The sea turtles have seagrasses and phytoplankton

as their food during their movement to long distances.

DiMethyl Sulfide (DMS), which has a strong odour was

released by the seagrasses, which in turn aids the sea

turtle to identify their food readily. Grounded on the

resemblance betwixt the sea turtle and the food source,

the DMS odour’s ()oDMS strength is evaluated. The

mathematical formulation for the odour measurement is

provided as,

()

()

()
















=

=

= 













=









T

D

z

p

p

I
ST

ST

o

JEI

e

F

F
DMS

DMS

DMS 22

1

,

0,






 (14)

Where, the strength of odour as of the food source is

referred as
DMS , the

thI food source fitness value is

symbolized as ()IF  , the parameter explaining the way

the DMS spread is signified as ()T2 and JI E
D


stands for the turtle
JE and the food source

I

distance.

Step:6 By considering the maximum value of
oDMS ,

the best food source ()pBest is now identified and is

expressed as,

()  op DMSBest maxarg= (15)

Step:7 Thus, the sea turtle’s position is updated

()()1+TE f using (16)

() () () () () TEBestTSTETE f

pp

ff −+++=+ 11 

 (16)

Where, the control parameter is represented as , which

is obtained using the following equation,

() 12 −+= HG (17)

Here, the constant diminishing linearly from 2 to 0 is

denoted as G , and the random value ranging between

 1,0 is denoted as H .

Step:8 Until the optimal food source is recognized, the

process is repeated. Thus, the number of features

selected ()sf via CSTFO is modeled as,

qs ffff ,...,, 21= (18)

In the above equation, the number of optimal features

selected is preferred as qs ,...,2,1= . The proposed

CSTFO’s pseudo code is displayed below.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4s), 557–565 | 562

3.7 Effort estimation using FMGKF-DENN

SEE occurs after the requisite optimal features have been

chosen. A feed-forward network having an input layer,

hidden layer, context layer, and output layer is called a

"Deep Elmann Neural Network" (DENN). Here, the

output is created by multiplying the incoming features by

the activation function along with adding the bias values.

The estimation error is maximized by the general

activation function along with the utilization of random

weight values and lengthens the task completion time.

The traditional DENN is therefore modified to include

the Fish and Mish Gaussian Kernel function, giving rise

to the term FMGKF-DENN.

The EE methodology is briefed below.

➢ In the EE process, the target value ()star is pondered

initially. Here, a target value is fixed for effective

estimation as there exists a probability of deviating

from the actual value and the estimation value.

➢ With X number of input layers ()XI and s number

of output layers ()sO , the DENN is provided. The

number of hidden layers () and context layers ()c

ranges betwixt 22, YcXYX   . Thus, the

input is multiplied by input-hidden weights at every

node. The hidden layer output ()o is given by (19),

()()s

ioo fcBcB 12 +=  (19)

1−= ooc  (20)

Where, the context layer output is modeled as
oc , the

context layer’s input is signified as ()s

i fc , Miss

Gaussian Kernel activation function is proffered as  ,

and is illustrated in (19), the input-hidden layer weight

value and context-hidden layer weight value was

symbolized as 21, BB

()
mn

e 2
1

22
−−

=


 (21)

Input: Extracted features ()fE

Output:Selected features ()()sf

Begin

Initialize sea turtle population ()fE

Initialize
dl STSTSTST ,...,, 21=

Initialize food source position ()p

Obtain ()S

Evaluate fitness value ()f

STST E =

Determine  ST

f

ST  maxarg=

Estimate ocean current velocity

Update ()()1+TS

If ST

then 0=DMS

Else if ST

Calculate
()

()

()













=





 


=

T

D

z

p

p

I
JEI

e

F

F
DMS

22

1



End if

Compute best food source ()pBest

Update sea turtle position ()()1+TE f

Obtain ()sf

End

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4s), 557–565 | 563

Here,  denotes the free space dimension and constant

values were indicated by mn .

➢ By taking the Fisher score value’s mean, the DENN’s

weight initialization ()iB is done and is signified as

 321 ,, BBBBi = x (22)

()() 1−
+= nm

i scscmeanB (23)

Here, the regularisation parameter is represented as  ,

the neural network’s class scatter matrix is symbolized as
msc , and the neural network’s total scatter matrix is

indicated as
nsc .

➢ The FMGKF-DENN’s output obtained is

()sY fBO 3= (24)

Where, the hidden-output layer weight values are

denoted as 3B .

➢ Utilizing equation (25), the effort values () are

computed after obtaining the output values.

()
2

1


=

−=
q

s

s

s Otar (25)

Thus, the effort values are more efficiently estimated by

the proposed FMGKF-DENN approach.

4. Result and Discussion

In this section, the proposed PMFFC-centered SEE is

implemented in the PYTHON platform along with the

validation of its performance.

4.1 Database Description

COCOMO 81, COCOMOII-60, COCOMONASA-93,

and Desharnais are utilized for the superiority

measurement in the proposed methodology. Grounded on

the effort and time requisite for such a project’s

development, the cost of a software package was

determined by the COCOCMO [13] (Constructive Cost

Estimation Model), COCOMOII [18], and

COCOMONASA [16]. The information regarding the

software projects is contained in the Desharnais [12]

dataset.

4.2 Performance Analysis of proposed FMGKF-

DENN

By analogizing the proposed FMGKF-DENN with the

prevailing Deep Neural Network (DNN), Recurrent

Neural Network (RNN), Convolutional Neural Network

(CNN), and Deep Belief Network (DBN), the proposed

scheme’s performance was analyzed regarding the

accuracy, F-measure and deviation.

Fig 2: Performance validation based on accuracy.

Regarding accuracy, the result comparison of proposed

and prevailing techniques were illustrated in figure 2.

The system’s better performance was revealed by high

accuracy. While the other methods have lower accuracy

of 95.0324% (DNN), 93.752% (RNN), 91.0547%

(CNN), and 89.0124% (DBN), the proposed model

attained a higher accuracy of 98.4598% for the

COCOMO dataset. Identically, the accuracy may vary

for other datasets also. When analogized with the

prevailing models, a higher accuracy measure was

exhibited by the proposed one from these values.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4s), 557–565 | 564

Table1: Comparative measurement based on F-measure.

Datasets Proposed

FNGKF-DENN

DNN RNN DBN CNN

COCOMO [13] 97.3913 95.9187 93.0112 89.8812 87.1532

COCOMOII [18] 96.9541 90.1485 88.7952 85.74221 83.0414

COCOMONASA [16] 97.8752 92.1045 89.4019 86.0475 84.1032

Desharnais [12] 98.0012 94.8510 91.8854 88.0907 86.9520

The proposed technique’s f-measure is depicted in table

1. When analogized with the prevailing models, the

proposed model has a higher f-measure of 97.3913% in

the COCOMO dataset. A lower f-measure of 83.0414%

for the COCOMOII dataset was obtained by the

prevailing techniques like CNN than the proposed one.

Likewise, the other methods also obtained a lower f-

measure than the proposed one. The prevailing

technique’s decreased performance was exhibited by the

lower f-measure values. Hence it is evident that the

proposed one tends to be more precise and accurate.

Fig 3: Performance measurement based on the deviation.

A lower deviation value of 5% was attained by the

proposed model for the COCOMOII dataset, which was

depicted in figure 3. A higher deviation of DNN (18%),

RNN (28%), DBN (35%), and CNN (52%) was

exhibited by the prevailing models on the other hand.

Identically, variation occurred in the other dataset’s

deviation values. Hence, it is apparent that several

prevailing methods were outperformed by the proposed

work.

5. Conclusion

Using the FMGKF-DENN methodology, a novel

PMFFC-based SEE was proposed in this paper. The

proposed scheme entails a number of steps, including the

determination of specific factors, project grouping, and

code splitting. Then, using a feature extraction and

selection technique, EE is carried out. Regarding some

performance metrics, the proposed scheme along with

the prevailing techniques (DNN, RNN, DBN, CNN)

performance analysis and the comparative analysis is

executed to validate the proposed algorithms’ efficiency.

Therefore, higher metrics rates of 98.4598% accuracy,

3% deviation, and 97.3913% F-measure were attained by

the proposed FMGKF-DENN for the COCOMO dataset.

The proposed approach can be expanded in the future by

incorporating more sophisticated algorithms to improve

performance.

References

[1] Sharma and N. Chaudhary, “Linear regression

model for agile software development effort

estimation,” 2020 5th IEEE International

Conference on Recent Advances and Innovations in

Engineering, ICRAIE 2020 - Proceeding, vol. 2020,

pp. 4–7, 2020, doi:

10.1109/ICRAIE51050.2020.9358309.

[2] S. Shukla, S. Kumar, and P. R. Bal, “Analyzing

effect of ensemble models on multi-layer

perceptron network for software effort estimation,”

Proceedings - 2019 IEEE World Congress on

Services, SERVICES 2019, vol. 2642–939X, pp.

386–387, 2019, doi:

10.1109/SERVICES.2019.00116.

[3] O. Malgonde and K. Chari, "An ensemble-based

model for predicting agile software development

effort", Empirical Software Engineering, 2019. doi:

10.1007/s10664-018-9647-0.

[4] Y. Mahmood, N. Kama, A. Azmi, and M. Ali,

“Improving estimation accuracy prediction of

software development effort: a proposed ensemble

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4s), 557–565 | 565

model,” 2nd International Conference on

Electrical, Communication and Computer

Engineering, ICECCE 2020, no. June, pp. 12–13,

2020, doi: 10.1109/ICECCE49384.2020.9179279.

[5] R. Sari Dewi and R. Sarno, “Software effort

estimation using early COSMIC to substitute use

case weight,” Proceedings - 2020 International

Seminar on Application for Technology of

Information and Communication: IT Challenges for

Sustainability, Scalability, and Security in the Age

of Digital Disruption, ISemantic 2020, X, pp. 214–

219, 2020, doi:

10.1109/iSemantic50169.2020.9234227.

[6] D. S. Senevirathne and T. K. Wijayasiriwardhane,

“Extending use-case point-based software effort

estimation for Open Source freelance software

development,” Proceedings - International

Research Conference on Smart Computing and

Systems Engineering. SCSE 2020, pp. 188–194,

2020, doi: 10.1109/SCSE49731.2020.9313007.

[7] H. D. P. De Carvalho, R. Fagundes, and W. Santos,

“Extreme learning machine applied to software

development effort estimation,” IEEE Access, vol.

9, pp. 92676–92687, 2021, doi:

10.1109/ACCESS.2021.3091313.

[8] K. Korenaga, A. Monden, and Z. Yucel, “Data

smoothing for software effort estimation,”

Proceedings - 20th IEEE/ACIS International

Conference on Software Engineering, Artificial

Intelligence, Networking and Parallel/Distributed

Computing. SNPD 2019, pp. 501–506, 2019, doi:

10.1109/SNPD.2019.8935841.

[9] M. Fernández-Diego, E. R. Méndez, F. González-

Ladrón-De-Guevara, S. Abrahão, and E. Insfran,

“An update on effort estimation in agile software

development: A systematic literature review,” IEEE

Access, vol. 8, pp. 166768–166800, 2020, doi:

10.1109/ACCESS.2020.3021664.

[10] M. Daud and A. A. Malik, “Improving the accuracy

of early software size estimation using analysis-to-

design adjustment factors (ADAFs),” IEEE Access,

vol. 9, 2021, doi: 10.1109/ACCESS.2021.3085752.

[11] P. Phannachitta, “On an optimal analogy-based

software effort estimation,” Information and

Software Technology., vol. 125, no. May, p.

106330, 2020, doi: 10.1016/j.infsof.2020.106330.

[12] T. R. Benala and R. Mall, “DABE: Differential

evolution in analogy-based software development

effort estimation,” Swarm and Evolutionary

Computation., vol. 38, pp. 158–172, 2018, doi:

10.1016/j.swevo.2017.07.009.

[13] T. Xia, R. Shu, X. Shen, and T. Menzies,

“Sequential model optimization for software effort

estimation,” IEEE Transactions on Software

Engineering., vol. 5589, no. c, pp. 1–16, 2020, doi:

10.1109/TSE.2020.3047072.

[14] Minku, L. L., (2019). A novel online supervised

hyperparameter tuning procedure applied to cross-

company software effort estimation. Empirical

Software Engineering.

https://doi.org/10.1007/s10664-019-09686-w

[15] J. T. H. Jose Thiago and A. L. I. Oliveira,

“Ensemble effort estimation using dynamic

selection,” Journal of Systems and Software., vol.

175, p. 110904, 2021, doi:

10.1016/j.jss.2021.110904.

[16] J. Frank Vijay, “Enrichment of accurate software

effort estimation using fuzzy-based function point

analysis in business data analytics,” Neural

Computing. Applications., vol. 31, no. 5, pp. 1633–

1639, 2019, doi: 10.1007/s00521-018-3565-3.

[17] V. Resmi, S. Vijayalakshmi, and R. S.

Chandrabose, “An effective software project effort

estimation system using optimal firefly algorithm,”

Cluster Computing., vol. 22, pp. 11329–11338,

2019, doi: 10.1007/s10586-017-1388-0.

[18] A. Fadhil, R. G. H. Alsarraj, and A. M. Altaie,

“Software cost estimation based on dolphin

algorithm,” IEEE Access, vol. 8, pp. 75279–75287,

2020, doi: 10.1109/ACCESS.2020.2988867.

[19] Singh, J., Bilgaiyan, S., Shankar Prasad Mishra, B.,

Dehuri, S., (2020), "A journey towards bio-inspired

techniques in software engineering", Intelligent

Systems Reference Library,

https://doi.org/10.1007/978-3-030-40928-9

[20] S. Bilgaiyan, S. Mishra, and M. Das, “Effort

estimation in agile software development using

experimental validation of neural network models,”

International Journal of Information Technology.,

vol. 11, no. 3, pp. 569–573, 2019, doi:

10.1007/s41870-018-0131-2..
[21] Ms. Madhuri Zambre. (2012). Performance

Analysis of Positive Lift LUO Converter .

International Journal of New Practices in

Management and Engineering, 1(01), 09 - 14.

Retrieved from

http://ijnpme.org/index.php/IJNPME/article/view/3

[22] Sharma, M. K. (2021). An Automated Ensemble-

Based Classification Model for The Early

Diagnosis of The Cancer Using a Machine

Learning Approach. Machine Learning

Applications in Engineering Education and

Management, 1(1), 01–06. Retrieved from

http://yashikajournals.com/index.php/mlaeem/articl

e/view/1

