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Abstract: The authors of this paper recommend employing state-of-the-art Machine Learning methods for fault prediction in computer 

programmes. The Promise software engineering repository, where NASA stores its data, serves as an example. The basic objective of 

software defect prediction is the early discovery of software flaws. Machine learning algorithms can help with this by making predictions 

based on historical data. The initial experiments' results suffered from low precision and recall since they relied on outdated machine 

learning methods. Modern machine learning methods such as Naive Bayes, Boosting, and Grid Search were incorporated to increase the 

model's accuracy. The performance of the software defect prediction model has been greatly enhanced through the use of state-of-the-art 

machine learning techniques.   The precision and recall rates, two measures of how well a system can forecast errors, have also grown.   

Naive Bayes, Boosting, and Grid Search are just a few of the modern machine learning methods that helped improve the software defect 

prediction model.   The algorithms' increased accuracy and recall rates show how effective they are at finding and predicting software 

defects.   The importance of using state-of-the-art machine learning methods to the task of defect prediction is emphasised. Using techniques 

such as Naive Bayes, Boosting, and Grid Search can significantly increase the model's effectiveness. These methods have improved 

software development processes by accelerating and better isolating bugs. 
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1 Introduction 

Identification during development: During the software 

production process, software defects are identified by 

developers and testers. This can happen during various 

stages such as coding, integration, or system testing. 

Defects are typically logged and tracked in a bug-tracking 

system. Software defects can significantly impact the 

productivity of the development team. Fixing defects 

requires additional time and effort, diverting resources 

from other tasks. It can lead to delays in the software 

production timeline and increased costs. Quality 

assurance: Software defects affect the quality of the 

software. They can cause malfunctions, crashes, or 

incorrect behavior, resulting in poor user experience. 

Quality of the application of modern machine learning 

methods such as Nave Bayes, Boosting, and Grid Search 

aided in the improvement of the software fault prediction 

model. y assurance activities, such as testing and 

debugging, are performed to identify and rectify these 

defects. Maintenance and support: After the software is 

released, defects reported by users need to be addressed 

through maintenance and support activities. This involves 

investigating the reported issues, diagnosing the 

underlying cause, and providing bug fixes or patches. 

Software defects can consume a significant portion of the 

maintenance efforts. 

Customer satisfaction and reputation: Software defects 

impact customer satisfaction and the reputation of the 

software product and its development company. Frequent 

defects can lead to frustration among users and tarnish the 

image of the software. Conversely, a software product 

with fewer defects is more likely to gain positive feedback 

and maintain a good reputation. Identifying and fixing 

software defects is part of an iterative improvement 

process. Feedback from defect reports helps developers 

enhance their understanding of the software, leading to 

improved designs, better code quality, and more robust 

development practices. 

To mitigate the impact of software defects, software 

development teams employ various strategies such as 

code reviews, automated testing, continuous integration, 

and quality assurance processes. The proposed study 

suggests a machine learning paradigm that aims to 

identify and rectify defects early in the software 

production cycle, reducing their impact on productivity, 

quality, and customer satisfaction.  

In order to build a successful software system, it is 

necessary to draw on a wide range of resources, each with 

their own unique set of skills, knowledge, and expertise.   

The software development tasks are intricate.   Assigning 

software development team members to certain projects 

and tasks is a critical element of every project manager's 
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job.   The best time for delivering a project depends on the 

manager taking into account the available skill sets, the 

interdependencies across activities, and the constraints on 

available resources [1-4].   It has been managed in a 

number of formats using a variety of optimisation 

strategies with the goal of reducing total project duration 

[3,5,7].   Allocation decisions made using these techniques 

frequently factor in time and resource constraints. Instead, 

the NP-Completeness of the allocation problem is 

typically dealt with by employing the strategy of 

traversing the optimisation space [3].   Managers of 

projects have the option of using the automated SSSP 

(Single Source Shortest Path) technique to streamline the 

allocation process, which may be tailored to account for a 

wide variety of project and resource variables.  

Machine Learning (ML) techniques are employed in 

Software Defect Prediction (SDP) to identify software 

modules or components that are susceptible to failure.   

The objective of SDP is to assist software developers in 

efficiently allocating their resources for software testing 

and maintenance, by prioritising the focus on potentially 

flawed modules or components prior to the software's 

release [21–24].   SDP models are constructed using 

software characteristics such as software development 

history, source code complexity, software cohesiveness, 

and coupling.   The software qualities mentioned are 

quantified statistically to assess the quality and reliability 

of software systems.  

Machine learning techniques that take advantage of 

software's features are used to build SDP models.   Models 

of SDPs have been built using supervised and 

unsupervised machine learning techniques.   It's the triple-

digits: 31-32-33.   The major objective is to create precise 

and accurate SDP models for foreseeing software issues.   

The quality of the software metric datasets used to create 

SDP models is crucial to the success of the models.   The 

predictive ability of SDP models is highly sensitive to the 

software characteristics used in their construction [25, 26, 

27, 28].   There may be a class imbalance problem because 

SDP models' software properties are often complex and 

involved.   If there is a disproportionate number of faulty 

cases compared to non-defective ones, then the SDP has a 

class imbalance.   The SDP model loses some of its 

predictive power when there is a significant income gap 

between participants in the programme. [34, 35]. 

A small group of developers completing the greatest 

number of tasks (a bug, feature request, or task) in a 

quantifiable manner may have impacts depending on both 

how successfully the bug-fixing technique is completed 

and how many bugs can be solved in a specific length of 

time. When there are hundreds or even thousands of 

defects in a repository, assigning team members to 

problems becomes a major burden. It is much more 

important to allocate the most capable developers to the 

appropriate tasks through smart resource allocation. The 

majority of bug triage techniques [17] rely on text 

categorization. These methods, however, are plagued by 

poor bug reporting, which might cause the triage process 

to assign bugs to the incorrect developers [19], [20]. Low 

recall levels are another issue with these methods [17], 

[18]. In this study, the primary factor used to determine 

how jobs are assigned is the project bug. 

This study introduces a new framework for Software 

Defect Prediction (SDP) that uses ensemble methods 

(specifically Boosting) to enhance the prediction 

performance of SDP models. The framework utilizes the 

cat boost (CB) and XGboost (XB) algorithms as 

classifiers, applied to pre-processed datasets consisting of 

616 instances. The evaluation of the proposed techniques 

is conducted using metrics such as accuracy, Area Under 

Curve (AUC)) Region of Coverage (ROC), and Precision 

Recall analysis (PR curve). This study's key contribution 

is empirical validation of the effect of the homogeneous 

ensemble on the prediction performance of SDP models. 

The paper is divided into sections, as described below:  

Section 2 provides a comprehensive analysis of pertinent 

literature, with a specific focus on the issue of high 

dimensionality in SDP.   Section 3 elucidates the research 

methodology employed in the study.   Section 4 presents 

and illustrates experimental findings and analyses.   

Section 5 serves as the final conclusion of the research.. 

2 Related Work 

The predictive power of Software Defect Prediction 

(SDP) models has been shown to suffer when a class 

imbalance problem is present.   Overfitting and a lack of 

confidence in SDP models are common results of class 

imbalance.   Scholars have proposed a number of 

approaches, including ensemble methods, data sampling, 

and cost-sensitive analysis, to address this issue.  

Singh, Misra, and Sharma [9] examined the effectiveness 

of ensemble methods, including voting and Bagging, for 

predicting the severity of issues in order to rectify the class 

imbalance present in the bug dataset.   Ensemble 

approaches performed better than individual classifiers, 

indicating that this group's methodology may effectively 

resolve class imbalance.  

El-Shorbagy, El-Gammal, and Abdelmoez [10] used a 

heterogeneous ensemble technique called stacking with 

the SMOTE (Synthetic Minority Over-sampling 

Technique) algorithm.   The goal was to combine the 

efficiency of different base classifiers to take use of the 

benefits of dealing with minority class labels.   In terms of 

accurately classifying the minority group, their new 

method surpassed prior approaches.   The stacking 
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ensemble method requires a large number of permutations 

of simple classifiers, which can be laborious and time-

consuming.  

Balogun, Basri, Abdulkadir, Adeyemo, Imam, and Bajeh 

[5] conducted an empirical study to assess the 

predictability of SDP models using data sampling 

techniques.   The researchers examined the use of under-

sampling (Random Under-Sampling: RUS) and over-

sampling (SMOTE) methodologies across different 

imbalance ratios.   Experimental results indicate that the 

presence of a class imbalance in SDP datasets has a 

substantial influence on the prediction performance of 

SDP models.   In addition, they suggested employing the 

SMOTE technique as a solution to the problem of class 

imbalance in SDP.   These findings align with the results 

obtained by Yu, Jiang, and Zhang. [3]. 

Laradji, Alshayeb, and Ghouti [13] conducted a study to 

examine the application of feature selection in 

combination with ensemble approaches for SDP.   Their 

objective was to utilise ensemble approaches to tackle the 

issue of class imbalance and eradicate feature redundancy 

through the use of feature selection algorithms.   Laradji, 

Alshayeb, and Ghouti [13] found that incorporating 

feature selection with ensemble approaches improved the 

accuracy of SDP model prediction.   The models improved 

their performance by meticulously choosing pertinent 

traits and minimising feature duplication.  

The results show that class imbalance has a significant 

impact on SDP models' ability to predict outcomes.   

Experts have stressed the significance of addressing this 

issue by employing an appropriate mixture of data 

collection methods, classifiers, and ensemble approaches.  

Based on their empirical research, Song, Guo, and 

Shepperd [15] concluded that class imbalance reduces the 

predictive accuracy of SDP models.   The right 

combination of data sampling methods and classifiers was 

also stressed as crucial for maximising predicted 

accuracy.  

To emphasise the critical relevance of adopting data 

sampling methods, Goel, Sharma, Khatri, and Damodaran 

[3] all agreed that the class imbalance problem in SDP can 

be effectively solved by implementing an appropriate data 

sample methodology.   After analysing the prediction 

performance of seven different boosting ensemble 

methods, Malhotra and Jain [14] concluded that data 

sampling methods should be employed prior to using the 

boosting ensemble methodology.  

Several methods for resolving class differences in SDP 

were compared by Wang and Yao [35]. They discovered 

that ensemble strategies outperformed data sampling and 

cost-sensitive approaches.   The findings of Rodriguez, 

Herraiz, Harrison, Dolado, and Riquelme [7] reinforce 

this finding, showing that the combination of different 

approaches can yield better results than the use of any of 

them alone.  

To identify critical source code metrics for defect 

detection, Kumar, Misra, and Rath [36] used correlation 

analysis and multivariate linear regression feature 

selection.   After that, neural networks and ensemble 

methods were used to train the datasets.   The results of 

their study demonstrated the usefulness of ensemble 

methods for Semantic Dependency Parsing (SDP), 

particularly when combined with feature selection 

procedures.  

This research proposes a strategy for improving the 

accuracy of SDP model prediction by integrating data 

sampling with homogeneous ensemble methods (Bagging 

and Boosting), specifically to deal with the problem of 

class imbalance. 

3 Methodology 

3.1Classification Algorithm 

The primary prediction models utilised in this study 

consist of the Support Vector Machine (SVM) and 

Random Forest (RF) algorithms.   These algorithms have 

been commonly employed in SDP experiments and have 

consistently shown excellent predictive capabilities.   

Furthermore, they have been demonstrated to exhibit 

stability while handling datasets that are skewed [3, 5]. 

3.2Homogeneous Ensemble Methods 

The boosting ensemble approach is a methodology that 

trains a sequence of weak classifiers progressively on re-

weighted training data. Each weak classifier is trained to 

concentrate on examples misclassified by the prior 

classifiers. The boosting ensemble makes its final 

judgment by combining the predictions of all weak 

hypotheses using a majority voting procedure [17]. 

Boosting utilises weighted averages to enhance the 

effectiveness of weak classifiers.   During each iteration, 

the weights assigned to the training samples are adjusted, 

prioritising the misclassified data by increasing their 

significance.   Boosting aims to enhance the overall 

performance of the ensemble by giving more emphasis on 

incorrectly identified samples. 

Furthermore, boosting also incorporates a feature 

selection mechanism. Each weak classifier in the boosting 

process decides which features or attributes are most 

informative for the next iteration. This iterative feature 

selection process helps the boosting ensemble to focus on 

the most relevant features and improve the prediction 

performance. 

Overall, boosting ensemble combines the predictions of 

multiple weak classifiers by assigning weights to their 
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outputs and using a majority voting mechanism. Through 

the iterative training process and feature selection, 

boosting goals to augment the performance of the 

ensemble and create a stronger overall classifier. 

3.3 Dataset of Software Defects 

In this section, the software defect dataset used in the 

study is discussed. 

CM Dataset: 

CM is a software defect prediction dataset developed by 

NASA, utilizing the NASA Metrics Data Program (MDP). 

It specifically targets a spacecraft instrument developed 

by NASA, which is executed in the C programming 

language. The dataset includes features extracted from 

Halstead metrics, which provide insights into the 

characteristics of the source code at the segment, function, 

or method level. These metrics serve as valuable 

indicators for predicting software defects in the CM1 

dataset. 

KC1 Dataset: 

The KC dataset is a software defect prediction dataset 

created by NASA, utilizing the NASA Metrics Data 

Program (MDP). It specifically targets a storage 

management project developed by NASA, which involves 

receiving and processing ground data. The project is 

implemented in the C++ programming language. The 

dataset includes features derived from Halstead metrics, 

which provide valuable information about the complexity 

and characteristics of the code. These metrics are utilized 

to build models for predicting software defects in the KC1 

dataset. 

KC2 Dataset: 

The KC dataset is a software defect prediction dataset 

created by NASA, utilizing the NASA Metrics Data 

Program (MDP). It specifically focuses on the science 

data processing portion of the KC1 project, which is 

another project developed by NASA. The code in KC2 is 

written in the C++ programming language and 

incorporates third-party software libraries in addition to 

the code from KC1. The dataset consists of 522 instances, 

and the data is derived from Halstead metrics extracted 

from the source code. These metrics provide valuable 

insights into the complexity and characteristics of the 

code, enabling the development of software defect 

prediction models using the KC2 dataset. 

PC Dataset: 

NASA generated the PC dataset to anticipate software 

defects using the NASA Metrics Data Program (MDP). It 

focuses on flight software made for an earth-orbiting 

satellite; a vital component developed by NASA. The 

software is implemented in the C programming language. 

The PC1 dataset consists of data derived from Halstead 

metrics, which provide valuable insights into the 

complexity and characteristics of the source code. These 

parameters are used to develop models for predicting 

software defects in the PC1 dataset, with the aim of 

enhancing the reliability and performance of the flight 

software. 

3.4 Algorithms used: 

Catboost: In classification tasks, CatBoost employs a 

default encoding technique for categorical variables that 

have a set of distinct values exceeding the minimum size 

required for one-hot encoding. This encoding technique is 

utilized to transform categorical features into numerical 

features, facilitating their effective use in the classification 

models built by CatBoost. 

XGBoost: XGBoost uses gradient descent on decision 

trees to build a series of models that are iteratively 

integrated, with each successive model fixing the errors of 

the preceding ones. This iterative approach allows 

XGBoost to generate a final optimal model for the given 

task. Notably, XGBoost exhibits remarkable efficiency in 

terms of computational resource utilization and 

processing speed. It efficiently utilizes available resources 

while providing fast and effective model training and 

prediction capabilities. This efficiency makes XGBoost a 

popular choice for various applications where processing 

large datasets or real-time predictions are critical 

considerations. 

To expedite the model training process, we employ GPUs 

for both XGBoost and CatBoost algorithms. Leveraging 

GPUs significantly accelerates the training time, enabling 

us to complete our experiments within a practical 

timeframe. Specifically, for XGBoost, we found that 

explicitly setting the learning rate to 0.1 and constraining 

the maximum depth of its constituent decision trees to 6 

were necessary to achieve reasonable training times. 

These parameter settings strike a balance between model 

complexity and training efficiency, ensuring that the 

training process is efficient without compromising the 

model's performance. The use of GPUs and the carefully 

selected parameter settings allow us to conduct our 

experiments effectively and obtain meaningful results in a 

feasible amount of time. 

3.5 Performance Assessment Metrics in the Context of 

software defect prediction: 

 performance assessment metrics include: 

True Positive (TP): The model correctly predicts a 

software problem. 

True Negative (TN): The model accurately predicts a non-

defective occurrence. 
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False Positive (FP): A false alarm occurs when the model 

predicts a software defect that does not exist. 

 

False Negative (FN): When there is a software defect, the 

model fails to predict it (missed detection). 

These assessment measures have been widely used and 

proved to be reliable in SDP studies [3,13,19]. 

Accuracy: Calculates the proportion of correctly classified 

cases (TP and TN) to the total number of examples to 

determine the overall correctness of the model's 

predictions. 

Precision is the ratio of correctly predicted faults (TP) to 

the total number of instances predicted as defects (TP + 

FP). It represents the model's ability to predict defects. 

The proportion of accurately anticipated defects (TP) to 

the total number of actual defects (TP + FN) is referred to 

as recall. It represents the model's ability to discover 

problems. 

F1 rating: The harmonic mean of precision (the model's 

accuracy in predicting flaws) and recall (the model's 

ability to recognize problems) is used to calculate the F1 

score. This balanced measure takes precision and recall 

into account, making it particularly useful when there is a 

class imbalance or when both false positives and false 

negatives occur. 

AUC-ROC (Area Under the Receiver Operating 

Characteristic Curve): This metric measures the model's 

ability to distinguish between defective and non-defective 

cases at different probability levels. A higher AUC-ROC 

value indicates better prediction performance. 

      

4 Experimental Framework 

In order to evaluate the performance of the suggested 

approach to SDP, the following methods were 

incorporated into the experimental framework of this 

research: 

Dataset Selection: The dataset was chosen from the 

NASA MDP Promise repository. The specific dataset was 

selected based on its size and relevance to the study. 

Classifier Selection: SVM, Random Forest, Logical 

regression, and Neural network classifiers were selected 

based on their widespread use in SDP studies and their 

potential to handle the dataset effectively and compared 

with ensembled machine learning algorithms like EDA, 

Boosting, Cat boost, XGBoost.  

Evaluation Metrics: The performance of each classifier 

was assessed based on parameters such as precision, 

recall, and accuracy.   These metrics offer insights into the 

classifier's accuracy in correctly identifying instances and 

its overall performance on the dataset. 

Result Analysis: After evaluating the classifiers, the 

results were analysed to regulate the strengths and 

weaknesses of each algorithm. The researchers examined 

the precision, recall, and accuracy values of each classifier 

to understand their performance on the specific dataset. 

Algorithm Suitability: Based on the results, conclusions 

regarding the suitability of each algorithm for different 

types of datasets is given. Factors such as the classifier's 

accuracy, precision, recall, and overall performance are 

considered to identify which algorithm performed best for 

the given dataset. 

Figure 1 illustrates the framework for predicting software 

defects.  

 

Fig.1: Outline for software defect prediction 
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5 Results 

Popular methods such as SVM,  Random Forest, Logistic 

Regression, and Neural Networks were chosen to assess 

the effectiveness of different classifiers in SDP studies. 

These classifiers were selected due to their prevalent use 

in the field and their potential to effectively handle the 

dataset. 

Ensemble machine learning algorithms were adopted to 

improve the model's performance even further. Ensemble 

methods like such as EDA, Boosting, CatBoost, and 

XGBoost combine multiple individual models to create a 

more powerful predictive model. Upon applying the 

ensemble algorithm to the dataset, significant 

improvements in the performance of the models are 

observed. The ensemble techniques allowed us to pull the 

strengths of each individual classifier, leading to enhanced 

accuracy and predictive power. By combining the 

predictions from multiple models, bias, variance, and 

overfitting were able to reduced resulting in more robust 

and reliable predictions. 

Overall, incorporating ensemble algorithms alongside the 

chosen classifiers proved to be a beneficial technique for 

the SDP study. This approach not only expanded the range 

of techniques used but also significantly improved the 

performance of the models, enabling to achieve more 

accurate and reliable results for the given dataset. 

The graph below depicts A classification model's 

performance across all classification thresholds. This 

graph illustrates two parameters: the True Positive Rate 

and the False Positive Rate. The percentage of false 

positives. Figures 5.1 and 5.2 show that the model has 

strong discriminatory power and distinguishes between 

positive and negative events across various classification 

levels. The lift curve, depicted in Fig 5.3, is a graphical 

depiction that aids in determining the effectiveness of a 

binary classification model for targeting positive cases. 

Finally, Figure 5.4 depicts the overall performance of the 

binary classification model in terms of precision and 

recall.

 

Fig 5.1: Convex ROC Curves for the models 

 

Fig 5.2: ROC Curve Analysis for the models 



International Journal of Intelligent Systems and Applications in Engineering                                             IJISAE, 2024, 12(4s), 676–684 |  682 

 

Fig 5.3: Lift Curves 

 

Fig 5.4: Precession recall 

6  Conclusion 

This article shows an SDP method that has been tested in 

the real world using the uniform ensemble (Bagging and 

Boosting). It was shown in the research that the method 

can improve prediction performance while also making 

the base classifiers better at prediction. This study will 

look into SDP methods further to improve ensemble 

parameters and the level of data sampling.. 
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