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Abstract: In numerous smart city applications, including building information modeling (BIM), spatial location applications, energy 

consumption prediction, and signal simulation, accurate 3D modeling of interior environments is crucial. Rapid and stable reconstruction 

of three-dimensional models from point clouds has attracted considerable interest, but the creation of accurate three-dimensional models 

in complex interior environments remains a formidable challenge. This study presents a novel method for autonomously recreating 3D 

models by combining linear structures with three-dimensional geometric surfaces. Using 3D point clouds, the proposed method 

recognizes indoor structural frameworks. It uses a combination of Principal Component Analysis (PCA) variables, such as curvature, 

anisotropy, and verticality, to accurately detect and extract building structures. To evaluate the efficacy of the method, a dataset of real-

world 3D point cloud scans is employed, and the results demonstrate its capacity to recognize structural frameworks with low Chamfer 

and Hausdorff distances. Doors, windows, and pillars are accurately reconstructed, allowing for an Indoor Structural Information model 

to be generated. This model can considerably improve building information modeling, construction planning, and maintenance tasks by 

automating BIM modeling. This method has the potential to improve the accuracy and efficacy of 3D reconstruction in smart city 

applications, allowing for more accurate building information modeling and streamlining construction and maintenance processes. 
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1. Introduction 

Due to its numerous applications in industries including 

design, construction, and building management, the 

extraction of internal building structure from 3D point 

clouds has become an important area of research in 

recent years [1]. Indoor building structure extraction is 

the technique of collecting relevant information from 

3D point clouds, such as walls, doors, and furniture, for 

use in building design, facility management, and even 

virtual reality [2-4]. Traditional techniques, such as 

manual measurements and questionnaires, are labor-

intensive, error-prone, and frequently insufficient. On 

the other hand, invasive testing procedures, like drilling 

and excavation, can be expensive, disruptive, and 

inappropriate for all structures. 

3D scanning technology has enabled the capture of 

high-resolution 3D point cloud data of indoor spaces, 

enabling precise visualization of structures like position, 

form, and size [2]. However, detecting structural 

frameworks remains a challenge due to time and skill 

requirements [5-6]. The need for accurate building 

design, facility management, and virtual reality 

applications has led to the development of an automatic 

and unsupervised method for recognizing interior 

structural frameworks from 3D point clouds [7-8]. This 

approach saves time, and resources to produce more 

accurate and trustworthy outcomes, contributing to the 

sector's efficiency and precision in building design, 

facilities management, and virtual reality applications. 

This research aims to develop an unsupervised 

automated method for recognizing interior structure 

frameworks from 3D point clouds. The proposed 

technique should be able to recognize and extract 

structural features such as beams, columns, and walls 

without requiring prior knowledge or human 

supervision to produce a line framework for a variety of 

applications. In addition, the proposed method must be 

adaptable to a variety of interior environment scenarios, 

point cloud densities, and occlusion levels. The 

following are the primary contributions of this study: 

Developing an unsupervised automated system for 

recognizing and extracting indoor structural frameworks 

from 3D point clouds using a combination of feature 

extraction approaches and clustering algorithms. The 

evaluation of the proposed method uses a database of 

3D point cloud images from the real world, representing 

a range of building types and point cloud density and 

occlusion levels. 

The remaining sections of the paper are organized as 

follows. The following section of the paper provides an 

overview of the pertinent literature, while the third 

section provides a detailed explanation of the developed 

method, which uses indoor point clouds as input. 
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Section 3 describes the extraction of PCA-based 

geometric descriptors to define the structural geometry 

of an interior environment, whereas Section 4 evaluates 

the developed method using existing datasets. Section 5 

discusses the experimental outcomes, including 

advantages, disadvantages, and potential future 

optimization of the experimental procedure. Section 6 

concludes the paper by summarizing its entirety and 

looking ahead to future research. 

2. Related Works 

With the recent development of laser technology and 

digital photogrammetry, a 3D point cloud model can 

restore the true appearance of an object. Point clouds are 

simple to visualize because they consist of clusters of 

points without attribute information. Consequently, their 

use in drawings is problematic for designers. Errors in 

drawings can be decreased if the point cloud can be 

segmented [9]. In addition, point cloud attributes can 

facilitate semi-automatic or fully automated modeling.  

 

The advent of 3D scanning technologies in recent years 

has revolutionized the capture and analysis of indoor 

environments. With the ability to acquire high-

resolution 3D point clouds representing the geometric 

details of architectural spaces, researchers have actively 

pursued automated methods to extract useful structural 

information from these data. The extraction of such 

information, including walls, floors, ceilings, and other 

important architectural elements, has enormous 

potential for use in architectural modeling, building 

inspection, and virtual reality. Unsupervised learning 

methods offer advantages in automated 3D point cloud 

structural information extraction, as they learn patterns 

directly from unlabelled data, reducing manual 

annotation and scalability. These methods capture 

complex relationships and variations, making them 

suitable for diverse environments [6]. The line 

framework of interior structures has been extracted from 

point cloud data using a variety of unsupervised 

techniques. 

RANSAC (Random Sample Consensus) is a robust 

algorithm utilized in computer vision and geometric 

modelling to estimate the parameters of a mathematical 

model from a collection of observed data. RANSAC’s 

resistance to outliers and noise makes it well-suited for 

dealing with unstructured point clouds, where data flaws 

are prevalent [10-11]. One study proposed a semi-

automatic method involving the detection of plane 

components based on RANSAC segmentation, which 

enhanced modelling productivity in terms of time 

consumption and facilitated precise object sketching by 

operators [12]. However, additional automation was 

necessary to finish 3D modelling. While another semi-

automatic method involving the segmentation, 

classification, and reconstruction of walls and slabs was 

able to generate a BIM file that allowed for simple 

integration with BIM software [13]. This method also 

accelerated the processing time by using Principal 

Component Analysis(PCA). Using RANSAC to detect 

concealed edges and corners [14], it was determined 

that contour point clouds offer benefits in terms of the 

interior geometry complexity of a building. 

Unsupervised approaches also use probabilistic models, 

such as Gaussian Mixture Models (GMM) or Hidden 

Markov Models (HMM), to represent the underlying 

structure of the point cloud data in model-based 

procedures for point cloud analysis [5]. Construction 

and fitting of probabilistic models, such as Gaussian 

Mixture Models and Hidden Markov Models, can be 

computationally expensive and requires careful 

parameter calibration. In practice, the model's efficacy 

is highly dependent on selecting the optimal number of 

components or states. Analyzing and processing graphs 

can be computationally intensive, especially for large-

scale point cloud datasets. Graph-based models often 

require graph traversal, clustering, or optimization 

algorithms, which may pose scalability challenges and 

hinder real-time or interactive applications. Graph-based 

models, including Graph Neural Networks (GNNs) and 

Graph Convolutional Networks (GCNs), also contribute 

to the generation of wireframe structures from 

unstructured point clouds [15-16]. Each point in the 

unstructured point cloud is converted into a node in the 

resulting graph representation. Certain criteria, such as 

proximity or connectivity between points, are utilized to 

establish the edges between nodes. Each node in the 

graph is allocated additional features that capture 

information about the local geometry or characteristics 

of the corresponding point in the point cloud. These 

attributes may consist of position coordinates, normal 

vectors, or other descriptive characteristics. The 

inherent connectivity and local relationships between 

the unstructured point cloud’s elements are captured and 

utilized to infer the wireframe structure.  

Unsupervised feature extraction techniques such as 

Principal Component Analysis (PCA) or Normal 

Estimation were used to extract geometric descriptors 

from the point cloud data. These descriptors encapsulate 

the local geometric properties and can be used to 

identify and extract the indoor line framework [17-18]. 

PCA is a popular unsupervised technique for extracting 

features from point cloud data, but it has limitations in 

terms of sensitivity to data scaling, linear projection, 

and robustness against anomalies.This study introduces 

a new method for autonomously constructing a three-

dimensional indoor model from point clouds by 
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combining line structures and three-dimensional surface 

geometry. Preserving structural information, the method 

segments unstructured point clouds using Principle 

Component Analysis (PCA) and Local Manifold 

Clustering (LMC) techniques. LMC overcomes the 

limitations of PCA by providing data scaling robustness, 

nonlinear projection robustness, outlier robustness, and 

local feature extraction. KD-tree computes nearest 

neighbors, whereas DBCSAN computes wireframes 

directly from point clouds. The Local Mean Curvature 

(LMC) technique recreates 3D structured models, 

yielding superior geometric attribute derivation results 

compared to PCA-based frameworks. 

 

3. Proposed Methodology 

The proposed methodology for extracting indoor 

structural information from 3D point clouds is outlined 

in Fig. 1. The flowchart provides a comprehensive 

overview of the step-by-step process employed in this 

research. The methodology encompasses a series of key 

stages, including data acquisition, pre-processing, 

segmentation, structural wireframe generation, and 

results visualization. 

The proposed methodology for extracting indoor 

structural information from 3D point clouds is outlined 

in Fig. 1. The flowchart provides a comprehensive 

overview of the step-by-step process employed in this 

research. The methodology encompasses a series of key 

stages, including data acquisition, pre-processing, 

segmentation, structural wireframe generation, and 

results visualization. This study's input data consists of 

point cloud information representing an indoor 

environment. Point clouds are three-dimensional 

representations of objects or surfaces generated by laser 

scanning or photogrammetry. The research focuses on 

working with high-quality point cloud data to reduce the 

likelihood of problems during subsequent modeling and 

reconstruction steps. 

In the pre-processing stage, various techniques are 

applied to the acquired point cloud data to enhance its 

quality and prepare it for subsequent analysis. This 

subsection focuses on two key pre-processing steps: 

Statistical Outlier Removal and Voxel Down-sampling. 

Statistical Outlier Removal is a technique for denoising 

point cloud data by removing deviating points, and 

removing noise, artifacts, and incorrect elements. 

 

Fig. 1 Flowchart of the proposed methodology 

This improves accuracy and reliability for modeling and 

analysis, eliminating spurious points caused by sensor 

noise, environmental interference, or scanning artifacts. 

Voxel downsampling reduces the density and size of 

point clouds by dividing them into 3D grids called 

voxels and selecting representative points. This 

technique increases efficiency, reduces noise, preserves 

structural information, and reduces data size, resulting 

in more refined and comprehensive representations of 

fundamental geometry. 

Table 1. Definition of Geometric Descriptors 

 

The objective of the rough segmentation block is to 

comprehend the structural geometry of unstructured 

point cloud data by extracting global- and local-level 
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features using Principal Component Analysis (PCA). 

Using PCA based on eigenvalues and eigenvectors, the 

geometric features of the point cloud are computed. 

Principal Component Analysis (PCA) is a statistical 

method for analyzing data and identifying significant 

patterns using eigenvalues and eigenvectors. PCA 

enables the extraction of geometric features that 

characterize the shape and orientation of objects or 

surfaces within a point cloud in the context of point 

cloud analysis.PCA is applied locally to the 

preprocessed point cloud to compute the eigenvalues 

and eigenvectors of each point's surrounding 

neighborhood. These local characteristics provide 

information about the geometry and orientation of the 

point cloud at the local level. PCA is also used on a 

global scale to capture the geometry characteristics of 

the point cloud as a whole. By contemplating the entire 

point cloud or larger regions, global-level characteristics 

reveal the structural geometry at a larger scale. PCA 

reduces dimensionality in point cloud data, capturing 

dominant variations and identifying principal axes. 

LMC analyzes local geometric properties, capturing 

fine-grained details and local structures. Combining 

PCA and LMC offers a global overview, capturing 

dominant patterns and local geometric details, resulting 

in more comprehensive and accurate geometric 

descriptors for further analysis or applications. 

The PCA eigenvalues and eigenvectors are utilized to 

extract the pertinent geometric features. These 

characteristics may include ratios of eigenvalues, sums 

of eigenvalues, anisotropy, verticality, and others as 

listed in Table. 1. They serve as descriptions of the 

structural characteristics of the point cloud. 

From the unstructured point cloud data, valuable 

geometric information is extracted using PCA during 

the initial segmentation stage. The extracted global-level 

and local-level features enhance comprehension of the 

point cloud's structural geometry, laying the 

groundwork for subsequent analysis and segmentation 

procedures. 

DBSCAN (Density-Based Spatial Clustering of 

Applications with Noise) is later employed to improve 

the wireframe derived from the geometric descriptors. 

DBSCAN is a density-based clustering algorithm that 

efficiently identifies dense regions within the point 

cloud, thereby contributing to the refinement of the 

wireframe representation.  

DBSCAN clustering enhances wireframe refinement by 

grouping densely connected points, identifying 

significant structures and segments, filtering out noise 

and anomalies, and identifying critical cluster boundary 

locations for wireframe reconstruction. Its adaptability 

to varying densities in the point cloud enables flexible 

parameter settings, making it suitable for complex 

indoor environments with variable data densities. 

By applying DBSCAN clustering to the wireframe 

generated from the geometric descriptors, the wireframe 

representation is enhanced by removing noise, 

identifying meaningful clusters, and determining precise 

boundary lines. This improved wireframe model 

provides a more trustworthy basis for subsequent 

analysis, reconstruction, and visualization duties. 

4. Experimental Results 

4.1 Dataset 

The dataset chosen for evaluation is the ISPRS 

Benchmark on Multisensory Indoor Mapping and 

Positioning and the Navvis dataset[19] whichis a 

colored point clouds that capture the structure of indoor 

spaces withhigh spatial resolution. The ISPRS 

Benchmark on Multisensorial IndoorMapping And 

Positioning (MiMAP) project provided a common 

frameworkfor the evaluation and comparison of 

LiDAR-based SLAM, BIM feature extraction, and 

smartphone-based indoor positioning methods [20-

21].TheBIM feature extraction dataset contains data 

from three indoor scenes with varying complexity. For 

each of the scenes, raw data (point cloud in LAS 

format) and corresponding BIM line framework (in OBJ 

format) are provided.Table. 2 contains a description of 

the employed dataset. 
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Table 2.Description of MiMaP BIM Feature Extraction dataset 

4.2 Point Cloud Pre-processing 

After applying the SOR filter with the specified 

parameters, a denoised point cloud containing 281,765 

points was obtained after effectively eliminating points 

from the original point cloud, of 307,484 points, 

designated as outliers or noise, resulting in a more 

accurate and reliable representation of the underlying 

structural data. Denoising with the SOR filter is 

essential for producing point cloud data for modeling 

and reconstruction. It improves the accuracy and 

reliability of the subsequent analysis by reducing noise 

and outliers, resulting in more accurate structural 

information extraction from the point cloud data. 

Table 3. Voxel Downsampling of denoised point cloud 

 

In the voxel downsampling phase, the previously 

obtained denoised point cloud is downsampled using 

variable voxel grid sizes. The point cloud is specifically 

downsampled at three distinct voxel grid sizes: 0.1, 

0.03, and 0.05 as shown in Table. 3.The resolution at 

which the point cloud is represented after 

downsampling is determined by the voxel grid size. A 

reduced voxel grid size increases the level of detail and 

preserves the point cloud's finer-grained features. A 

larger voxel grid size, on the other hand, reduces the 

level of detail but can simplify the point cloud 

representation. It is essential to choose a voxel grid size 

based on the application's specific requirements and the 

intended balance between level of detail and 

computational efficiency. To assure optimal results for 

the extraction of indoor structural information from the 

downsampled point cloud, the voxel grid size of 0.05 

was chosen in accordance with the goals of the 

subsequent modeling and reconstruction steps. 

4.3 Framework generation 

In this study, PCA-based geometric features were 

applied to indoor scene point cloud data in order to 

obtain insight into the overall structural geometry. These 

characteristics allowed for a comprehensive 

comprehension of the efficacy of comprehending 

structural geometry. To discern the fine geometry of the 

structure, it was essential to comprehend the 

neighborhood specifics. To accomplish this, local 

characteristics were extracted from the k-valued 

neighborhoods of coordinates. This method provided 

valuable information about the neighborhood-level 

properties of coordinates. Again, PCA and LMC 

analysis was utilized to comprehend the neighborhood-

level characteristics. Two conspicuous characteristics of 

the local neighborhood were identified.  

The surface curvature of edge points and corner points 

was found to be greater than that of points on level 

surfaces. This distinction is due to the more diverse 

orientations and reduced variation in the local region of 

edge and corner points. The anisotropy values of edge 

points and corner points were low due to their typical 

location at the boundaries of distinct surfaces. 
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Table 4. Line Framework Generation on Navvis Dataset 

 

Table 5. Line Framework Generation on MiMaP dataset. 

 

 

Therefore, edge points and corner points exhibited 

reduced anisotropy. By collecting the finer details of the 

point cloud data, these local features significantly 

contributed to a more thorough comprehension of the 

structural geometry. These two characteristics were used 

to extract the generated wireframe, which was then 

clustered using the DBSCAN clustering mechanism. 

This algorithm was evaluated on both experimental 

datasets. The results for the Navvis dataset are depicted 

in Table. 4 and that of Scene 1 in the MiMAP dataset is 

depicted in Table. 5.The results indicate that the derived 

features from the Navvis dataset defined a detailed line 

framework model. However, when applied to the 

MiMaP dataset, which consisted of a long corridor and 

multiple interconnected rooms, the generated 

framework exhibited insufficient detail. 

4.4 Evaluation metrics 

To quantify the difference between point clouds, 

numerous evaluation metrics are employed to provide 

objective measures of dissimilarityand enable 

comparisons between distinct algorithms or methods. 

Various metrics, such as Chamfer distance and 

Hausdorff distance, allow for the evaluation of how 

closely a reconstructed point cloud aligns with ground 

truth data.  

 

Table 6. Evaluation of the proposed method on the MiMaP dataset 

 

Chamfer distance measures the average distance 

between points in one point cloud and the point in the 

other point cloud that is closest to them. It is symmetric 

and takes distances between points in both clouds into 

consideration. In Table. 6., for scene 1, the chamfer 

distance was determined to be 1.938, indicating that 

each original point cloud point is approximately 1.938 

units from its closest point in the ground truth point 

cloud. A smaller Chamfer distance indicates greater 

similarity between the two point clouds. While the 



International Journal of Intelligent Systems and Applications in Engineering                                             IJISAE, 2024, 12(4s), 723–730 |  729 

Hausdorff distance measures the error between two 

point clouds, it also evaluates the distances between 

points in one cloud and the closest point in the other 

cloud. It has a high sensitivity to outliers and large 

deviations. A 7.72 Hausdorff distance indicates that the 

two clouds are more closely aligned. 

5. Conclusion 

The proposed method extracts the line framework from 

point cloud data using PCA-based geometric 

descriptors, as evaluated on the Navvis and MiMaP 

Benchmark Dataset.  The procedure effectively reduces 

the number of points in the original point cloud, 

allowing for more efficient data representation and 

processing. Despite the reduction in point cloud size, the 

method exhibits reasonable computation times, with the 

processing time for the evaluated scenes ranging from 

69.71 to 79.62 minutes. The line frameworks generated 

by the method are compared to the ground truth data to 

demonstrate the method's ability to capture the 

fundamental characteristics of the scene's line 

structures. The use of evaluation metrics such as the 

Chamfer distance and Hausdorff distance provides 

quantitative measures of the efficacy of a method, 

enabling objective comparisons and benchmarking. 

However, the method depends on PCA-based geometric 

descriptors, which may limit its performance when the 

line structures have complex geometries that are not 

well captured by LMC. The efficiency of the method is 

affected by the precision of the extracted line 

framework, which is dependent on the quality of the 

preprocessing phase. While the method's performance 

on the MiMaP Benchmark Dataset is promising, its 

performance on other datasets or in real-world scenarios 

may vary. To assess its generalizability, additional 

testing on various data sets is required. The proposed 

method provides benefits such as reduced point cloud 

size, reasonable computation times, and precise line 

framework extraction. Nonetheless, its reliance on PCA, 

sensitivity to pre-processing, and limited 

generalizability must be taken into account. These 

limitations could be addressed through additional 

research and experimentation, thereby expanding the 

method's applicability in a variety of contexts.    
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