

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(5s), 258–265 | 258

Time Efficient FPGA Overlay for Compute Intensive JPEG

Compression Blocks for Real Time Applications

1Minal S. Deshmukh and 2P. D. Khandekar

Submitted: 17/09/2023 Revised: 29/10/2023 Accepted: 13/11/2023

Abstract: OpenCV functions are quite intensive in terms of computations, making them inappropriate for real-time embedded processor-

based architectures for the reason that they have a fixed clock frequency and inadequate memory. A primary motivation for using FPGA

overlays for the compute-intensive part of JPEG compression is that it can lead to fast compile time and OpenCV functions can be used in

embedded systems. This study intends to synthesize the compute-intensive block of the standard JPEG compression algorithm on PYNQ-

Z2 (Xilinx’s Python productivity board), which has ZYNQ 7000 SoC-mixed programmable device that integrates a multi-core processor

and an FPGA, providing a compelling platform for IoT, AI, and ML applications and the bit stream generated (overlay) is imported into

Python as a hardware library. Application developers who are acquainted with software APIs can take advantage of adaptive computing

platforms using the hardware library for the fast development of applications without needing to employ ASIC-style design tools to design

hardware. This paper presents the role of the overlay by giving a performance comparison of the OpenCV function on processor-based and

FPGA platforms in the form of a custom overlay, empowering general-purpose FPGA applications.

Keywords: FPGA, synthesize, overlay, empowering, programmable, compression

1. Introduction

In video processing, machine vision, and the medical

imaging field, latency is critical for decision-making. A

video at 40 frames per second with a resolution of

1280*1024 pixels would require nearly 943 megabits per

second. A minute-long video would require 7 gigabytes of

memory [5] [6] [11]. Usually, image processing is

typically performed separately from the actual application

in non-real time as latency is not a crucial factor. In real-

time applications space and latency both are critical

factors [9]. Without severely affecting image quality,

image compression is a key factor in cutting down on both

the storage and transmission times for images. The image

can be compressed to the extent that the human visual

system (HVS) cannot detect changes [5] [6]. In most of

the real-time image processing applications image

compression is a must-have feature due to storage space

and transmission time limitations. A general-purpose

CPU is used to implement standard compression methods,

and latency may have an impact on the efficiency of real-

time applications.

Implementation of the compression algorithm on a

hardware platform can reduce latency [1]. The hardware

implementation creates a dedicated block that handles the

specified task, which decreases CPU overhead and

latency. Hardware implementations increase the overall

performance of the algorithms [1] and are typically

implemented on an FPGA. Although Verilog code

synthesizes efficient hardware but coding is labor

intensive and the utilizer has to manually work on

pipelining and synchronization [2][4], the alternative to

Verilog coding is High-Level Synthesis (HLS) [13] [14].

Vivado HLS compilers offer a programming environment

that compiles C++ code into an enhanced RTL

microarchitecture, resulting in easiness and effective

coding. In this work, we have developed a customized IP

core by implementing the color conversion, quantization,

and DCT (Discrete Cosine Transform) blocks of the JPEG

compression method. The IP created in HLS is integrated

with the ZYNQ processing system using Xilinx Vivado

Design Suite and the bit-stream produced is brought into

Python as a hardware library, i.e., overlay.

Since Python is used in interfacing with hardware on

PYNQ (Python productivity for ZYNQ) framework,

openCV allows us to compare our custom hardware on

Programmable logic (PL) with equivalent optimized C++

functions on Processing System (PS) [8]. This method can

also be used for the implementation of OpenCV functions

other than those mentioned in this study at both a high

performance and low power level, as well as the user's

ability to simultaneously target demanding high data rate

pixel processing jobs on programmable logic and lower

data rate frame-based processing activities on ARM cores

[10]. The hardware utilized in this study, which comprises

of a dual-core ARM 9 CPU and programmable logic akin

to an Artix 7 series FPGA, is interfaced with Python using

the PYNQ board

School of Electronics and Telecommunication Engineering

Dr.Vishwanath Karad MIT WPU, Pune 411038,India

Ketan Raut

Vishwakarma Institute of Information Technology Pune

Email:mrsminal@yahoo.com, khandekar.prasad@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(5s), 258–265 | 259

2. FPGA Overlay

Traditionally, the behavior of the FPGA has been

specified using text-based hardware description languages

(HDL). However, an in-depth understanding of the

capabilities of the target technology and core hardware

ideas like pipelining and synchronization is still required

to obtain the greatest performance out of the HDL

implementation [1] [4] [14]. Developing a software

application is an entirely different experience than coming

up with timing constraints as well as pipelining and

optimizing areas, etc., which is error-prone. While

developing hardware designs, software programmers are

often found burdened due to considerably lower

productivity. In this study, we see the ways in which the

idea of FPGA overlay can ease some of these burdens

related to fast configuration time, portability, and resource

abstraction. C Library functions are inbuilt functions in C

programming, whereas, in the form of a bit stream, the

overlay is a hardware library for programmable logic

circuits [1] used to speed up the overall performance of

software applications. PYNQ board comes with a number

of default overlays, and also we can develop custom

overlays using the Xilinx Vivado design suite [4] [8].

High-Level Synthesis and Vivado Design are two

components of the basic phases of overlay generation

shown in Figure 1 structure of creating overlays. The

generated bit stream can be used as a hardware library in

Python. A developer can dynamically load overlays into

the FPGA that are identical to the standard library

functions present in the C/C++ languages [1]

Fig 1. Structure for creating overlays

Vivado HLS and Vivado Integrator have been used in this

investigation to develop a custom overlay [4][8]. In this

study, a custom overlay is created and loaded from Python

as needed for Color Conversion Quantization and DCT

(Discrete Cosine Transform) blocks of JPEG compression

algorithms. Without having a thorough understanding of

CAD tools used to design ASIC-style chips, custom

overlay enables users to use custom hardware in FPGAs

[10].

3. Need of IP generation with Vivado High

Level Synthesis (HLS)

Progressive algorithms in image processing are more

sophisticated than ever before. Though the FPGA

architectures are massively paralleled and have

advantages in power, cost, and performance over

traditional processors, many developers turn to high-level

languages (C/C++) for implementing image processing

algorithms due to the ease of programming on processor-

based architectures over Register Transfer Language

(RTL) based simulations [1][2][3][9]. Processor-based

architectures have limitations in performance as they have

fixed clock frequency and inadequate memory. It is also

challenging to code these algorithms in RTL as it is time-

consuming and error-prone [2]. The user must concentrate

on the functionality of the architecture when using the

Vivado HLS software tool for IP generation since this

leads to effective coding. The HLS C specification is

targeted at Xilinx programmable devices for the

generation of RTL designs without manual interference

[4] [13].

Fig 2. HLS design Flow [4]

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(5s), 258–265 | 260

The Vivado HLS is a framework for high-level synthesis

provided by Xilinx, Inc. The HLS supports most of the

libraries in C and C++ for synthesis [3] [4] [13]. Xilinx

also provides a library of synthesizable OpenCV functions

[10]. All the IPs in the system communicate with the PS

using the AXI-4 protocol. In order to create high-

performance hardware, HLS enables hardware designers

to take the benefit of efficiency while evolving at a high

degree of abstraction. The Vivado Design Suite tools and

methodologies can be used to design and optimize IP sub-

systems, integration automation, and accelerated design

closure. Utilizing the Vivado HLS software tool allows

exporting the RTL design to create custom IPs. The IPs

designed in HLS can be modified according to the target

hardware on which they can be implemented. The Vivado

Design Suite comes with pre-installed Xilinx target

devices and any device not listed can be added to the list

manually. A custom IP creation flow utilising the Vivado

HLS tool is displayed in the figure 2. The workflow of the

Vivado HLS tool to generate a custom IP from a high-

level language is as follows: 1. Include the C/C++ code in

the source code. 2. Convert the C algorithm into an RTL

implementation 3. Check the RTL implementation. 4. Use

a test bench to validate IP functionality before synthesis.

5. Add the RTL to your IP catalog. The computationally

demanding portions of the algorithm are synthesised in

HLS, and the device's latency and resource usage are

tracked.

4. JPEG Image Compression blocks with

high computational Demand

Image compression is a significant issue in academic,

commercial, and industrial applications. Since image

processing algorithms need a lot of computation, they are

not suitable for real-time applications [11]. To reduce the

data storage and transfer overhead on smart devices, data

compression is a key feature before transferring real-time

created datasets for training and classification.

When processing JPEG images, the RGB color spaces are

first changed to the Y, Cb, and Cr color spaces. Some

colors are high-frequency colors because they are seen

more strongly by the human eyes [11]. Due to the weaker

sensitivity of the human eye to some chromium

compounds, such as Cb and Cr, these hues can be

disregarded. Then, through down sampling, we lower the

size of the pixels. Our image is divided into 8x8 pixels,

and forward DCT is used (Direct Cosine Transformation)

[6][7]. Then, utilizing quantum tables for quantization,

further, we use encoding methods, such as run-length

encoding and Huffman encoding, to compress our data.

This study describes only color transformation, DCT, and

quantization blocks that were translated into a custom IP.

4.1 RGB to YCbCr Color Transformation:

The RGB image is converted into the YCbCr, CMY, and

YUV, formats for use in applications where color

information is crucial. The luminance is easier for the eye

to perceive than the chrominance components. [11]. The

biggest benefit of converting an image from RGB to

YCbCr is the ability to remove the influence of brightness

during image processing. As a result, the RGB image is

changed to YCbCr during the JPEG compression process.

The content of a monochrome image is closely

approximated by the luma channel, which is commonly

abbreviated Y (or, more accurately, Y', denoting that the

channel is gamma encoded) the two Chroma channels, Cb

and Cr, are the colour difference channels.

4.2 Discrete Cosine Transform

Many image and video compression techniques, such as

the still image standard JPEG in lossy mode and the video

compression standards MPEG-1, MPEG-2, and MPEG-4

(DCT), are built on the discrete cosine transform. Given

that an image is a two-dimensional signal, the two-

dimensional DCT is essential for still picture and video

compression. DCT is a separable function, making it

possible to compute the two-dimensional DCT by first

applying the one-dimensional DCT across the signal

horizontally, then vertically. [6] [15].

4.3 Quantization:

The quantization procedure reduces the amount of bits

needed to hold an integer value by reducing the precision

of the integer [11]. We may typically decrease the

precision of the coefficients as we deviate from the DC

coefficient given a matrix of DCT coefficients. This is due

to the fact that as we get further away from the DC

coefficient, an element's contribution to the graphical

representation decreases and we are less concerned with

preserving strict precision in its value.

5. PYNQ- Device used for prototyping

The key objective of PYNQ, Python Productivity for

ZYNQ, is to make it simple for engineers of embedded

systems to exploit the distinctive benefits of Xilinx

devices in computer vision applications.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(5s), 258–265 | 261

Fig 3. PYNQ Frame work

PYNQ frame work shown in figure 3 comprises the

following features: A Client-side Jupyter notebook

interface having web apps, open-source preinstalled

packages, overlays, APIs, and IPs, and a Linux-based

public library to regulate programmable logic [8]. Without

prior knowledge of ASIC-style design, engineers and

programmers who design embedded systems can use

PYNQ, an open-source framework, to make use of ZYNQ

devices (programmable logic from the Artix-7 family).

ZYNQ-SOC integrates an ARM Cortex A9 dual-core

processor and a ZyNQ XC7Z020 FPGA. The TUL

PYNQ-Z2 board, which holds the XilinxZYNQ-7020

SOC, was employed in this investigation. The SOC

contains 4 high-performance AXI ports, 13000 logic

slices of PL (programmable logic) with 4 6 input LUTs on

each, 8 FFs, 220 specialised DSP slices, and 630 KB of

rapid block RAM. A bootable Linux image called PYNQ

contains a number of open-source Python packages [8].

The PYNQ boards provide a Python interface to the

hardware on the ZYNQ board, so it can be effortlessly

programmed in the Jupyter Notebook using Python. The

Processing unit and the Programmable Logic unit can

communicate with one another using interfaces built on

ARMs in AMBA AXI4. The PYNQ framework is based

on the Jupiter notebook, and the implementation is almost

similar to using the Jupiter notebook on any other system.

An Ethernet cable connects the board to the host computer

and the power to the board can be applied with a USB

cable or a 12V power supply, and the operating system is

loaded onto the board. Copy the bit stream file to the board

in order to use the IP in the PL part [8][9] [13].

6. HSL Implementation

A programming environment that compiles C++ code

into an improved RTL microarchitecture is provided

by the VIVADO HLS compiler. The Vivado High-

level Synthesis translates C/C++ code into Register

Transfer Language. High-level RGB to YCbCr and

Grey, DCT, quantization routines are written in C++.

The RTL block must pass the test bench before

exporting IP into the VIVADO design suite to

generate the bit stream [13].

Algorithm: Color Transformation Function

Require: I/O Streaming Interface

Ensure: Data Transmission on Input Stream

while Input Buffer Not Empty do

Multiply I/P data with YCbCr matrix

Transfer Result on output stream

if last pixel then

BREAK

else

CONTINUE

end if

end while

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(5s), 258–265 | 262

The 256*256 original RGB image is converted to a

YCbCr image using the colour transformation

function described in the preceding technique, and the

resulting YCbCr image shown in figure 4 is then used

as input for the quantization and DCT block.

Fig 4.RGB to YCbCr Simulation result

Applying the aforementioned 2D DCT and

Quantization base line JPEG compression algorithm

produced a compressed image with a dimension of

256 * 256 and a compression ratio of 1.97 when using

HLS.

Algorithm: 2D DCT and Quantitation

Require: I/O Streaming Interface

Ensure: Data Transmission on Input Stream

while Input Buffer Not Empty do

Feed input data to 2d-dct function

Multiply the result with quantization matrix

if last pixel then

BREAK

else

CONTINUE

end if

end while

HLS offers C libraries to support greater efficiency and

high performance RTL design. This technique can enable

numerous computer vision algorithm to be developed with

high performance. This design we can put it to the Vivado

Design suit to create IP core.

7. Developing Custom IP Core for Color

Transformation Function quantization and DCT

using HLS

The Vivado Design includes a ZYNQ processing system

(PS), AXI interconnect, and a custom IP AXI_DMA

controller. Design for color conversion shown in figure

5. and DCT, quantization block is in Figure 6. This

configuration, enables very quick communication

between the processing system and the programmable

logic as well as the sharing of external memory by the

CPU and FPGA over a relatively quick memory interface

in comparison to off-chip memory. This kind of approach

combines the adaptability of a CPU with the speed of

specialized hardware by allowing ordinary software to

interleave with hardware-accelerated function calls.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(5s), 258–265 | 263

Fig 5. Vivado Design for YCbCr Color conversion blocks

The operating system peripheral interface of the

ARMA9 processor is part of the ZYNQ processing

system. Using the AXI interface, the ZYNQ

processing system interfaces with customized

Intellectual Property (IP; predefined logic functions

that can be incorporated into your design). Xilinx

video processing components typically connect with

pixel data using the AXI14 streaming protocol. The

AXI memory interface and AXI peripheral

interconnect allow any CPU-based software to

incorporate the AXI14 connector and utilize it to

connect to an FPGA device. Direct memory access

(DMA), which is used to access data from IP,

minimizes CPU overhead. The PYNQ structure's

custom IP core was created in VIVADO HLS and then

imported into the Python interface of the framework.

In order to leverage the PYNQ framework for direct

performance comparison of software and hardware

implementation, the PYNQ-Z2 board comprises the

ZYNQ-7020 SOC (system on chip) [7][8][10].

Fig 6. Vivado Design for DCT & Quantization block

8. Performance Comparison

The PYNQ Z-2 board's related IPs correspond to the

computationally intensive color transformation, DCT, and

quantization functions that are built and synthesized in

Vivado HLS. We have measured the execution time on

the FPGA, and on the CPU with and without the OpenCV

function. For real-time image processing applications, the

FPGA execution time is shorter in color transformations,

DCT, and quantization, according to Tables I and II,

which also provide details on an essential study attribute

used for custom overlay design. PYNQ overlays are

created using the Vivado IP integrator, which simplifies

embedded design. Without having to create a color

transformation overlay, software developers can import

bespoke overlays using the Python environment. This

makes it possible for Python running on the Processing

system to control overlays made using programmable

logic. This is akin to software libraries created by

competent programmers that are accessible to

programmers working at the application level [3].

Because Python is used in the PYNQ structure to interface

with hardware, OpenCV can compare custom hardware

implementation on programmable logic (PL) with

equivalent optimized C++ functions on the processing

system (PS) [8].

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(5s), 258–265 | 264

Table I. performance estimate of the RGB to YCbCr

Computing System Process Time (S)

IP on Programmable

 Logic of FPGA(custom overlay)

0.00366

Processing System without

using OpenCV function

0.1011

Processing System using OpenCV function 0.00768

Table II. Performance estimate of 2D-DCT and Quantization

Computing System Process Time (S)

IP on Programmable

 Logic of FPGA(custom overlay)

0.8531

Processing System without

using OpenCV function

120.44

Processing System using OpenCV function 0.5114

9. Conclusion

This study presents cutting-edge technology, i.e.,

FPGA custom overlay for color transformation, DCT,

and quantization blocks to accelerate real-time

processing applications. HLS successfully converts

C++ code to HDL code while utilizing the fewest

resources possible and getting a custom IP on FPGA

to execute at the fastest possible speed. The approach

used to employ specific design in programmable logic

without the need for application-specific integrated

circuits gives designers greater options when

balancing precision, speed, and power in portable

systems. Only executable codes are reloaded when

switching applications, ensuring excellent portability

without the need for FPGA re-synthesis, in a manner

similar to loading a software default library. Overlays

for color conversion and DCT can be loaded into the

FPGA as needed for any image processing

application, not limited to JPEG compression. This

approach allows for the development of complex real

time algorithms on FPGA.

References

[1] Abhishek Kumar Jain, Douglas L. Maskell ,and

Suhaib A. Fahmy , Senior Member, IEEE “Coarse

Grained FPGA Overlay for Rapid Just-In-Time

Accelerator Compilation”, IEEE Transactions on

Parallel and Distributed Systems (Volume: 33, Issue:

6, 01 June 2022).

[2] Yunxuan Yu, Chen Wu, Xiao Shi, Lei He,

“Overview of a FPGA-Based Overlay Processor”,

2019 China Semiconductor Technology

International Conference (CSTIC), Added to IEEE

Xplore: 08 July 2019.

[3] Jason Cong, Bin Liu, Stephen Neuendorffer, Juanjo

Noguera, Kees Vissers, Zhiru Zhang, “High-Level

Synthesis for FPGAs: From Prototyping to

Deployment”, Ieee Transactions On Computer-

Aided Design Of Integrated Circuits And Systems,

Vol. 30, No. 4, April 2011

[4] Vivado Design Suite User Guide, UG910 (v2021.2)

October 27, 2021.

[5] Weidong Xiao,Nianbin Wan, Alan Hong, Xiaoyan

Chen, “A Fast JPEG Image Compression Algorithm

Based on DCT”. 2020 IEEE International

Conference on Smart Cloud (SmartCloud), Added to

IEEE Xplore: 27 November 2020.

[6] N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete

Cosine Transform”, IEEE Trans. Computers, vol. C-

23, pp. 90-93, Jan. 1974.

[7] G. K. Wallace, “The JPEG still picture

compression standard”, in Communications of

the ACM, vol. 34, pp. 31-44, April 1991

[8] Python productivity for Zynq (Pynq)

Documentation, Release 2.7, Xilinx, November

,2021.

[9] Accelerating OpenCV Applications with Zynq-

7000 All Programmable SoC using Vivado HLS

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(5s), 258–265 | 265

Video Libraries, XAPP1167 (v3.0) April 30,

2015

[10] John C. Russ, F. Brent Neal, “The Image

Processing Handbook, 7th Edition”, CRC Press

ISBN: 9781498740289, September 2018.

[11] Yahia Said, Taoufik Saidani, Mohamed Atri,

“FPGA-based Architectures for Image

Processing using High-Level Design”, WSEAS

TRANSACTIONS on SIGNAL PROCESSING

Volume 11, 2015.

[12] Jason Cong, Bin Liu, Stephen Neuendorffer,

Juanjo Noguera,Kees Vissers, and Zhiru Zhang,

“High-Level Synthesis for FPGAs: From

Prototyping to Deployment”, IEEE

TRANSACTIONS ON COMPUTER-AIDED

DESIGN OF INTEGRATED CIRCUITS AND

SYSTEMS, VOL. 30, NO. 4, APRIL 2011.

[13] Dimitris Tsiktsiris, Dimitris Ziouzios, Minas

Dasygenis, “A High-Level Synthesis

Implementation and Evaluation of an Image

Processing Accelerator”, Special Issue "Modern

Circuits and Systems Technologies on

Electronics 2018"

[14] Brant and G. G. F. Lemieux. ZUMA: an open

FPGA overlay architecture. In 2012 IEEE 20th

Annual International Symposium on Field-

Programmable Custom Computing Machines,

FCCM 2012, 29 April - 1 May 2012, Toronto,

Ontario, Canada.

[15] Muzhir Shaban AL-Ani, Fouad Hammadi Awad,

“THE JPEG IMAGE COMPRESSION

ALGORITHM”, International Journal of

Advances in Engineering & Technology ISSN

2231-1963 2013

[16] María, K., Järvinen, M., Dijk, A. van, Huber, K.,

& Weber, S. Machine Learning Approaches for

Curriculum Design in Engineering Education.

Kuwait Journal of Machine Learning, 1(1).

Retrieved from

http://kuwaitjournals.com/index.php/kjml/articl

e/view/111

[17] Tonk, A., Dhabliya, D., Sheril, S., Abbas,

A.H.R., Dilsora, A. Intelligent Robotics:

Navigation, Planning, and Human-Robot

Interaction (2023) E3S Web of Conferences, 399,

art. no. 04044, .

