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Abstract: OpenCV functions are quite intensive in terms of computations, making them inappropriate for real-time embedded processor-

based architectures for the reason that they have a fixed clock frequency and inadequate memory. A primary motivation for using FPGA 

overlays for the compute-intensive part of JPEG compression is that it can lead to fast compile time and OpenCV functions can be used in 

embedded systems. This study intends to synthesize the compute-intensive block of the standard JPEG compression algorithm on PYNQ-

Z2 (Xilinx’s Python productivity board), which has ZYNQ 7000 SoC-mixed programmable device that integrates a multi-core processor 

and an FPGA, providing a compelling platform for IoT, AI, and ML applications and the bit stream generated (overlay) is imported into 

Python as a hardware library. Application developers who are acquainted with software APIs can take advantage of adaptive computing 

platforms using the hardware library for the fast development of applications without needing to employ ASIC-style design tools to design 

hardware. This paper presents the role of the overlay by giving a performance comparison of the OpenCV function on processor-based and 

FPGA platforms in the form of a custom overlay, empowering general-purpose FPGA applications. 
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1. Introduction  

In video processing, machine vision, and the medical 

imaging field, latency is critical for decision-making. A 

video at 40 frames per second with a resolution of 

1280*1024 pixels would require nearly 943 megabits per 

second. A minute-long video would require 7 gigabytes of 

memory [5] [6] [11]. Usually, image processing is 

typically performed separately from the actual application 

in non-real time as latency is not a crucial factor. In real-

time applications space and latency both are critical 

factors [9]. Without severely affecting image quality, 

image compression is a key factor in cutting down on both 

the storage and transmission times for images. The image 

can be compressed to the extent that the human visual 

system (HVS) cannot detect changes [5] [6]. In most of 

the real-time image processing applications image 

compression is a must-have feature due to storage space 

and transmission time limitations. A general-purpose 

CPU is used to implement standard compression methods, 

and latency may have an impact on the efficiency of real-

time applications. 

Implementation of the compression algorithm on a 

hardware platform can reduce latency [1]. The hardware 

implementation creates a dedicated block that handles the 

specified task, which decreases CPU overhead and 

latency. Hardware implementations increase the overall 

performance of the algorithms [1] and are typically 

implemented on an FPGA. Although Verilog code 

synthesizes efficient hardware but coding is labor 

intensive and the utilizer has to manually work on 

pipelining and synchronization [2][4], the alternative to 

Verilog coding is High-Level Synthesis (HLS) [13] [14]. 

Vivado HLS compilers offer a programming environment 

that compiles C++ code into an enhanced RTL 

microarchitecture, resulting in easiness and effective 

coding. In this work, we have developed a customized IP 

core by implementing the color conversion, quantization, 

and DCT (Discrete Cosine Transform) blocks of the JPEG 

compression method. The IP created in HLS is integrated 

with the ZYNQ processing system using Xilinx Vivado 

Design Suite and the bit-stream produced is brought into 

Python as a hardware library, i.e., overlay. 

Since Python is used in interfacing with hardware on 

PYNQ (Python productivity for ZYNQ) framework, 

openCV allows us to compare our custom hardware on 

Programmable logic (PL) with equivalent optimized C++ 

functions on Processing System (PS) [8]. This method can 

also be used for the implementation of OpenCV functions 

other than those mentioned in this study at both a high 

performance and low power level, as well as the user's 

ability to simultaneously target demanding high data rate 

pixel processing jobs on programmable logic and lower 

data rate frame-based processing activities on ARM cores 

[10]. The hardware utilized in this study, which comprises 

of a dual-core ARM 9 CPU and programmable logic akin 

to an Artix 7 series FPGA, is interfaced with Python using 

the PYNQ board 
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2. FPGA Overlay 

Traditionally, the behavior of the FPGA has been 

specified using text-based hardware description languages 

(HDL). However, an in-depth understanding of the 

capabilities of the target technology and core hardware 

ideas like pipelining and synchronization is still required 

to obtain the greatest performance out of the HDL 

implementation [1] [4] [14]. Developing a software 

application is an entirely different experience than coming 

up with timing constraints as well as pipelining and 

optimizing areas, etc., which is error-prone. While 

developing hardware designs, software programmers are 

often found burdened due to considerably lower 

productivity. In this study, we see the ways in which the 

idea of FPGA overlay can ease some of these burdens 

related to fast configuration time, portability, and resource 

abstraction. C Library functions are inbuilt functions in C 

programming, whereas, in the form of a bit stream, the 

overlay is a hardware library for programmable logic 

circuits [1] used to speed up the overall performance of 

software applications. PYNQ board comes with a number 

of default overlays, and also we can develop custom 

overlays using the Xilinx Vivado design suite [4] [8]. 

High-Level Synthesis and Vivado Design are two 

components of the basic phases of overlay generation 

shown in Figure 1 structure of creating overlays. The 

generated bit stream can be used as a hardware library in 

Python. A developer can dynamically load overlays into 

the FPGA that are identical to the standard library 

functions present in the C/C++ languages [1]

 

Fig 1. Structure for creating overlays 

Vivado HLS and Vivado Integrator have been used in this 

investigation to develop a custom overlay [4][8]. In this 

study, a custom overlay is created and loaded from Python 

as needed for Color Conversion Quantization and DCT 

(Discrete Cosine Transform) blocks of JPEG compression 

algorithms. Without having a thorough understanding of 

CAD tools used to design ASIC-style chips, custom 

overlay enables users to use custom hardware in FPGAs 

[10]. 

3. Need of IP generation with Vivado High 

Level Synthesis (HLS) 

Progressive algorithms in image processing are more 

sophisticated than ever before. Though the FPGA 

architectures are massively paralleled and have 

advantages in power, cost, and performance over 

traditional processors, many developers turn to high-level 

languages (C/C++) for implementing image processing 

algorithms due to the ease of programming on processor-

based architectures over Register Transfer Language 

(RTL) based simulations [1][2][3][9]. Processor-based 

architectures have limitations in performance as they have 

fixed clock frequency and inadequate memory. It is also 

challenging to code these algorithms in RTL as it is time-

consuming and error-prone [2]. The user must concentrate 

on the functionality of the architecture when using the 

Vivado HLS software tool for IP generation since this 

leads to effective coding. The HLS C specification is 

targeted at Xilinx programmable devices for the 

generation of RTL designs without manual interference 

[4] [13].

 

 

 

 

 

 

 

Fig 2. HLS design Flow [4] 
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The Vivado HLS is a framework for high-level synthesis 

provided by Xilinx, Inc. The HLS supports most of the 

libraries in C and C++ for synthesis [3] [4] [13]. Xilinx 

also provides a library of synthesizable OpenCV functions 

[10]. All the IPs in the system communicate with the PS 

using the AXI-4 protocol. In order to create high-

performance hardware, HLS enables hardware designers 

to take the benefit of efficiency while evolving at a high 

degree of abstraction. The Vivado Design Suite tools and 

methodologies can be used to design and optimize IP sub-

systems, integration automation, and accelerated design 

closure. Utilizing the Vivado HLS software tool allows 

exporting the RTL design to create custom IPs. The IPs 

designed in HLS can be modified according to the target 

hardware on which they can be implemented. The Vivado 

Design Suite comes with pre-installed Xilinx target 

devices and any device not listed can be added to the list 

manually. A custom IP creation flow utilising the Vivado 

HLS tool is displayed in the figure 2. The workflow of the 

Vivado HLS tool to generate a custom IP from a high-

level language is as follows: 1. Include the C/C++ code in 

the source code. 2. Convert the C algorithm into an RTL 

implementation 3. Check the RTL implementation. 4. Use 

a test bench to validate IP functionality before synthesis. 

5. Add the RTL to your IP catalog. The computationally 

demanding portions of the algorithm are synthesised in 

HLS, and the device's latency and resource usage are 

tracked.  

4. JPEG Image Compression blocks with 

high computational Demand 

Image compression is a significant issue in academic, 

commercial, and industrial applications. Since image 

processing algorithms need a lot of computation, they are 

not suitable for real-time applications [11]. To reduce the 

data storage and transfer overhead on smart devices, data 

compression is a key feature before transferring real-time 

created datasets for training and classification.  

When processing JPEG images, the RGB color spaces are 

first changed to the Y, Cb, and Cr color spaces. Some 

colors are high-frequency colors because they are seen 

more strongly by the human eyes [11]. Due to the weaker 

sensitivity of the human eye to some chromium 

compounds, such as Cb and Cr, these hues can be 

disregarded. Then, through down sampling, we lower the 

size of the pixels. Our image is divided into 8x8 pixels, 

and forward DCT is used (Direct Cosine Transformation) 

[6][7]. Then, utilizing quantum tables for quantization, 

further, we use encoding methods, such as run-length 

encoding and Huffman encoding, to compress our data. 

This study describes only color transformation, DCT, and 

quantization blocks that were translated into a custom IP. 

4.1 RGB to YCbCr Color Transformation:  

The RGB image is converted into the YCbCr, CMY, and 

YUV,  formats for use in applications where color 

information is crucial. The luminance is easier for the eye 

to perceive than the chrominance components. [11]. The 

biggest benefit of converting an image from RGB to 

YCbCr is the ability to remove the influence of brightness 

during image processing. As a result, the RGB image is 

changed to YCbCr during the JPEG compression process. 

The content of a monochrome image is closely 

approximated by the luma channel, which is commonly 

abbreviated Y (or, more accurately, Y', denoting that the 

channel is gamma encoded) the two Chroma channels, Cb 

and Cr, are the colour difference channels.  

4.2 Discrete Cosine Transform 

Many image and video compression techniques, such as 

the still image standard JPEG in lossy mode and the video 

compression standards MPEG-1, MPEG-2, and MPEG-4 

(DCT), are built on the discrete cosine transform. Given 

that an image is a two-dimensional signal, the two-

dimensional DCT is essential for still picture and video 

compression. DCT is a separable function, making it 

possible to compute the two-dimensional DCT by first 

applying the one-dimensional DCT across the signal 

horizontally, then vertically. [6] [15]. 

4.3 Quantization: 

The quantization procedure reduces the amount of bits 

needed to hold an integer value by reducing the precision 

of the integer [11]. We may typically decrease the 

precision of the coefficients as we deviate from the DC 

coefficient given a matrix of DCT coefficients. This is due 

to the fact that as we get further away from the DC 

coefficient, an element's contribution to the graphical 

representation decreases and we are less concerned with 

preserving strict precision in its value. 

5. PYNQ- Device used for prototyping  

The key objective of PYNQ, Python Productivity for 

ZYNQ, is to make it simple for engineers of embedded 

systems to exploit the distinctive benefits of Xilinx 

devices in computer vision applications.
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Fig 3. PYNQ Frame work 

PYNQ frame work shown in figure 3 comprises the 

following features: A Client-side Jupyter notebook 

interface having web apps, open-source preinstalled 

packages, overlays, APIs, and IPs, and a Linux-based 

public library to regulate programmable logic [8]. Without 

prior knowledge of ASIC-style design, engineers and 

programmers who design embedded systems can use 

PYNQ, an open-source framework, to make use of ZYNQ 

devices (programmable logic from the Artix-7 family). 

ZYNQ-SOC integrates an ARM Cortex A9 dual-core 

processor and a ZyNQ XC7Z020 FPGA. The TUL 

PYNQ-Z2 board, which holds the XilinxZYNQ-7020 

SOC, was employed in this investigation. The SOC 

contains 4 high-performance AXI ports, 13000 logic 

slices of PL (programmable logic) with 4 6 input LUTs on 

each, 8 FFs, 220 specialised DSP slices, and 630 KB of 

rapid block RAM. A bootable Linux image called PYNQ 

contains a number of open-source Python packages [8]. 

The PYNQ boards provide a Python interface to the 

hardware on the ZYNQ board, so it can be effortlessly 

programmed in the Jupyter Notebook using Python. The 

Processing unit and the Programmable Logic unit can 

communicate with one another using interfaces built on 

ARMs in AMBA AXI4. The PYNQ framework is based 

on the Jupiter notebook, and the implementation is almost 

similar to using the Jupiter notebook on any other system. 

An Ethernet cable connects the board to the host computer 

and the power to the board can be applied with a USB 

cable or a 12V power supply, and the operating system is 

loaded onto the board. Copy the bit stream file to the board 

in order to use the IP in the PL part [8][9] [13]. 

6. HSL Implementation 

A programming environment that compiles C++ code 

into an improved RTL microarchitecture is provided 

by the VIVADO HLS compiler. The Vivado High-

level Synthesis translates C/C++ code into Register 

Transfer Language. High-level RGB to YCbCr and 

Grey, DCT, quantization routines are written in C++. 

The RTL block must pass the test bench before 

exporting IP into the VIVADO design suite to 

generate the bit stream [13].

___________________________________ 

Algorithm: Color Transformation Function 

_____________________________________ 

Require: I/O Streaming Interface 

Ensure: Data Transmission on Input Stream 

while Input Buffer Not Empty do 

Multiply I/P data with YCbCr matrix 

Transfer Result on output stream 

if last pixel then 

BREAK 

else 

CONTINUE 

end if 

end while 
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The 256*256 original RGB image is converted to a 

YCbCr image using the colour transformation 

function described in the preceding technique, and the 

resulting YCbCr image shown in figure 4 is then used 

as input for the quantization and DCT block.  

 

Fig 4.RGB to YCbCr Simulation result 

Applying the aforementioned 2D DCT and 

Quantization base line JPEG compression algorithm 

produced a compressed image with a dimension of 

256 * 256 and a compression ratio of 1.97 when using 

HLS. 

________________________________ 

Algorithm: 2D DCT and Quantitation 

_____________________________________ 

Require: I/O Streaming Interface 

Ensure: Data Transmission on Input Stream 

while Input Buffer Not Empty do 

Feed input data to 2d-dct function 

Multiply the result with quantization matrix 

if last pixel then 

BREAK 

else 

CONTINUE 

end if 

end while 

HLS offers C libraries to support greater efficiency and 

high performance RTL design. This technique can enable 

numerous computer vision algorithm to be developed with   

high performance. This design we can put it to the Vivado 

Design suit to create IP core. 

7.  Developing Custom IP Core for Color 

Transformation Function quantization and DCT 

using HLS 

The Vivado Design includes a ZYNQ processing system 

(PS), AXI interconnect, and a custom IP AXI_DMA 

controller. Design for color conversion shown in figure 

5.  and DCT, quantization block is in Figure 6. This 

configuration, enables very quick communication 

between the processing system and the programmable 

logic as well as the sharing of external memory by the 

CPU and FPGA over a relatively quick memory interface 

in comparison to off-chip memory. This kind of approach 

combines the adaptability of a CPU with the speed of 

specialized hardware by allowing ordinary software to 

interleave with hardware-accelerated function calls.
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Fig 5.  Vivado Design for YCbCr Color conversion blocks 

The operating system peripheral interface of the 

ARMA9 processor is part of the ZYNQ processing 

system. Using the AXI interface, the ZYNQ 

processing system interfaces with customized 

Intellectual Property (IP; predefined logic functions 

that can be incorporated into your design). Xilinx 

video processing components typically connect with 

pixel data using the AXI14 streaming protocol. The 

AXI memory interface and AXI peripheral 

interconnect allow any CPU-based software to 

incorporate the AXI14 connector and utilize it to 

connect to an FPGA device. Direct memory access 

(DMA), which is used to access data from IP, 

minimizes CPU overhead. The PYNQ structure's 

custom IP core was created in VIVADO HLS and then 

imported into the Python interface of the framework. 

In order to leverage the PYNQ framework for direct 

performance comparison of software and hardware 

implementation, the PYNQ-Z2 board comprises the 

ZYNQ-7020 SOC (system on chip) [7][8][10]. 

 

Fig 6. Vivado Design for DCT & Quantization block 

8. Performance Comparison 

The PYNQ Z-2 board's related IPs correspond to the 

computationally intensive color transformation, DCT, and 

quantization functions that are built and synthesized in 

Vivado HLS. We have measured the execution time on 

the FPGA, and on the CPU with and without the OpenCV 

function. For real-time image processing applications, the 

FPGA execution time is shorter in color transformations, 

DCT, and quantization, according to Tables I and II, 

which also provide details on an essential study attribute 

used for custom overlay design. PYNQ overlays are 

created using the Vivado IP integrator, which simplifies 

embedded design. Without having to create a color 

transformation overlay, software developers can import 

bespoke overlays using the Python environment. This 

makes it possible for Python running on the Processing 

system to control overlays made using programmable 

logic. This is akin to software libraries created by 

competent programmers that are accessible to 

programmers working at the application level [3]. 

Because Python is used in the PYNQ structure to interface 

with hardware, OpenCV can compare custom hardware 

implementation on programmable logic (PL) with 

equivalent optimized C++ functions on the processing 

system (PS) [8].
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Table I. performance estimate of the RGB to YCbCr 

Computing System Process Time (S) 

IP on Programmable 

 Logic  of FPGA(custom overlay) 

0.00366 

Processing System without  

using OpenCV function 

0.1011 

Processing System using   OpenCV function 0.00768 

Table II. Performance estimate of 2D-DCT and Quantization  

Computing System Process Time (S) 

IP on Programmable 

 Logic  of FPGA(custom overlay) 

0.8531 

Processing System without  

using OpenCV function 

120.44 

Processing System using   OpenCV function 0.5114 

 

9. Conclusion 

This study presents cutting-edge technology, i.e., 

FPGA custom overlay for color transformation, DCT, 

and quantization blocks to accelerate real-time 

processing applications. HLS successfully converts 

C++ code to HDL code while utilizing the fewest 

resources possible and getting a custom IP on FPGA 

to execute at the fastest possible speed. The approach 

used to employ specific design in programmable logic 

without the need for application-specific integrated 

circuits gives designers greater options when 

balancing precision, speed, and power in portable 

systems. Only executable codes are reloaded when 

switching applications, ensuring excellent portability 

without the need for FPGA re-synthesis, in a manner 

similar to loading a software default library. Overlays 

for color conversion and DCT can be loaded into the 

FPGA as needed for any image processing 

application, not limited to JPEG compression. This 

approach allows for the development of complex real 

time algorithms on FPGA. 
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