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Abstract: The ability to establish the relative distances of objects in a single image is essential for many computer vision applications, 

including scene understanding, augmented reality, and robotics. In this study, we present a method that combines object detection and 

depth maps to provide an estimate of the relative depth of objects within an image. First, we locate and identify objects within the image 

using a state-of-the-art object identification model, which yields a set of bounding box coordinates, then estimate the monocular depth 

maps using a deep learning model. The estimated depth map statistics are used to determine the average depth value of each object enclosed 

within the bounding box.  This data is utilized to estimate the relative distance of objects in the scene. The level of closeness is measured 

by comparing the average depth value of the objects with a hyper-parameter.  An object with average depth value higher than the hyper-

parameter is closer to the camera, whereas an object with an average depth value lower than the hyper-parameter is farther away from the 

camera. We have categorized the relative depths of objects into four levels on the basis of the average depth value's correlation to the hyper-

parameter. Experimental evaluations on standard and real-time datasets have shown that the proposed strategy is effective and precise, 

emphasizing its potential applicability in several computer vision areas. 
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1. Introduction 

The advancement of image processing and computer vision 

methods have led to significant progress in various applications, 

including vehicle navigation. To achieve complete autonomy in 

driving and navigation, a critical hurdle lies in ensuring dependable 

and precise obstacle detection. Numerous studies have been 

dedicated to tackling the challenge of identifying obstacles [1] 

through object detection and distance prediction techniques. When 

it comes to object detection, a crucial prerequisite for seamless 

navigation for the autonomous system is to possess comprehensive 

information about the objects present in its immediate 

surroundings. To overcome this barrier, researchers have 

investigated several methods of integrating object identification 

algorithms with depth mapping techniques to provide predictions 

about the relative depth of objects in images. The relative depth of 

objects refers to the correspondence of their positions in relation to 

one another based on their distance from the observer. In hazy 

conditions, the presence of airborne particles and scattering 

phenomena severely reduces visibility and makes it difficult to 

perceive the depth information accurately. Consequently, to 

acquire relative depths of objects in hazy images, it becomes 

indispensable to dehaze these images as it's a critical requirement 

for various applications, including autonomous navigation, 

augmented reality, and scene understanding. 

In recent years, object-detection algorithms based on deep-learning 

concepts, such as Convolutional Neural Networks(CNNs) [2] and 

region-based methods like Faster R-CNN (Region-based CNN) [3] 

and YOLO(You Only Look Once) [4], are successful in accurately 

localizing and identifying objects in images. These methods can 

not only locate objects within an image, but also provide bounding 

box coordinates that define their spatial extent within the image. 

By leveraging these object detection outputs, researchers have 

explored the possibility of estimating the relative depth of objects 

in dehazed images. 

Another important component in estimating relative depth is the 

utilization of depth maps. Depth maps represent the scene's 

geometric structure by assigning a depth value to each pixel, 

indicating the distance of that pixel from the camera. Traditional 

depth estimation techniques often rely on stereo vision, or active 

sensing technologies like LiDAR(Light Detection and Ranging) 

[5]. Unfortunately, LiDAR sensors tend to be expensive, and many 

depth cameras face limitations in real-world environments, such as 

synchronization issues between optical and imaging elements [6]. 

However, recent advancements in deep learning have led to the 

development of depth estimation models based on monocular 

images, allowing for depth map generation from a single image. 

Deep learning-based monocular depth estimation methods can be 

by self-supervised [7]-[9] or unsupervised [10]-[12] learning 

techniques. Supervised methods tend to achieve higher accuracy 

by utilizing depth-maps for training. However, obtaining accurate 

depth-maps in real-world scenarios can be challenging. Whereas, 

unsupervised methods do not rely on original depth-maps for 

training, but this lack of supervision leads to a slight degradation 

in performance. 

We present a novel framework for estimating the relative depth of 

objects in hazy images by combining a supervised deep-learning 

object-detection model with a self-supervised depth estimation 
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model. By leveraging the synergy between object detection and 

depth estimation, we aim to contribute to the advancement of 

image enhancement techniques and enable applications that rely 

on depth perception in hazy conditions. The key phases of this 

study are (1) Implementation of the deep learning object-detection 

model based on YOLOv5 architecture. (2) Implementation of the 

self-supervised deep-learning model for mono-depth estimation. 

(3) Combining both models into a cohesive framework to 

determine the relative distances of objects in the image. In Section 

2, We provide an overview of the relevant prior works in the field. 

Section 3 outlines the methodology we have proposed, detailing 

our approach. Finally, in Section 4, we present the experiments we 

conducted and describe the outcomes and results obtained. 

2. Background Literature 

The most sophisticated techniques and approaches for object-

detection and depth-map estimation are thoroughly outlined in this 

section. 

2.1. Object detection Model 

Object detection is an essential component of computer vision, and 

it entails finding and pinpointing specific objects in images or 

videos. By establishing bounding boxes around objects, the 

objective is to precisely locate them in addition to identifying their 

vicinity. Autonomous driving, surveillance systems, image 

interpretation, robotics, and human-computer interaction are just 

few of many fields where object detection is vital. It provides a 

way for machines to understand their surroundings and act 

responsibly. In recent years, deep learning-based approaches have 

emerged as the dominant paradigm for object detection. 

Convolutional Neural Networks (CNNs) [2] are at the core of these 

methods, which learn hierarchical representations of visual 

features directly from the data. Notable deep-learning models for 

object detection include Faster R-CNN [3], YOLO(You Only 

Look Once) [4], SSD(Single Shot MultiBox Detector) [13], and 

RetinaNet [14].  

The object detection mechanism employed in this work is the 

YOLO model. The YOLO (You Only Look Once) object detection 

model is a widely recognized and influential approach in the field 

of computer vision. Unlike traditional object detection methods 

that involve multiple stages, such as region proposals and 

subsequent classification, YOLO takes an unified approach. 

YOLO takes an input image, grids it, and makes class and 

bounding box predictions directly for each cell. The key 

advantages of the YOLO model include its speed and efficiency. 

YOLO’s real-time processing is made possible by its single-pass 

detection, making it ideal for time-sensitive uses. Several iterations 

of the YOLO model have been developed, with each version 

introducing enhancements to improve performance. Notably, 

YOLOv5 [15] is a recent iteration that focuses on both accuracy 

and simplicity. It utilizes a two-stage architecture with a 

lightweight backbone network called CSPDarknet, along with a 

head network for object detection. YOLOv5 has demonstrated 

state-of-the-art performance on various benchmark datasets.  

2.2. Depth-map Estimation model 

By applying a depth-map estimation model to an image or scene, 

we can learn about the scene’s spatial structure and the relative 

positions of objects. Depth estimation models leverage different 

techniques and data sources to infer depth information. Some 

common approaches are as follows: 

• Monocular Depth Estimation: This approach estimates depth 

using a single input image. It is challenging since depth 

information is inherently ambiguous in a 2D image. Monocular 

depth estimation models often employ deep learning techniques, 

such as recurrent neural networks (RNNs) [3], convolutional 

neural networks (CNNs) [2], or encoder-decoder architectures 

like U-Net [16].  

• Stereo Depth Estimation: Stereo vision involves using a pair of 

stereo images captured from two horizontally displaced cameras 

to compute depth information. Stereo depth estimation models 

[17] leverage the disparities between corresponding pixels in the 

left and right images to infer depth. They often incorporate 

techniques like disparity mapping, cost aggregation, and 

disparity refinement algorithms. 

• LiDAR-based Depth Estimation: Light Detection and Ranging 

(LiDAR) sensors emit laser beams to measure the distances to 

objects in a scene. LiDAR-based depth estimation models [5] use 

the point cloud data generated by LiDAR sensors to estimate 

accurate depth information. These models often involve point 

cloud processing, voxel-based methods, or deep learning 

techniques combined with LiDAR data. 

For depth estimation in this work, the MIDASNet (Monocular 

Depth Estimation in Arbitrary Scenes Network) [9] a deep-

learning model has been chosen. It is possible to generate a high-

resolution depth-map from an input image by using a combination 

of a multi-scale feature extraction network (encoder network) and 

a feature upsampling network (decoder network). MIDASNet 

leverages a pre-trained ResNet-50 backbone as the encoder, which 

has been trained on a large-scale image classification dataset. The 

decoder network employs a chain of upsample and skip 

connections to integrate features from multiple scales, allowing the 

model to collect both global and local context information for 

depth estimation. A key aspect of MIDASNet is its training 

strategy. It employs a self-supervised learning approach, where 

depth supervision is obtained from the input image itself, without 

requiring ground truth depth annotations. This is achieved by 

formulating depth estimation as a relative depth regression 

problem, using a scale-invariant loss function that enforces 

consistency between predicted depths for different image regions. 

MIDASNet has demonstrated impressive results in various 

challenging scenarios and datasets, demonstrating its depth 

estimation accuracy in extensive scenarios. 

3. The proposed Relative Depth Estimation 
Methodology 

In our approach, we present a methodology that combines object-

detection and depthmaps to predict the relative depths of objects 

present in a dehazed image. Here, the input to our method is a hazy 

image. The dehazing is done using the "wavelet-based Color 

Attenuation Prior" method as proposed in [18]. To begin, we use a 

state-of-the-art object identification model called YOLOv5 to find 

and precisely locate objects in the dehazed image and extract their 

bounding box coordinates. Parallely, we leverage MIDASNet, a 

robust deep-learning network optimized for monochromatic depth 

estimation. We next calculate the average value of pixels for each 

object in its mono-depth using the object’s bounding box 

coordinates. With this average pixel value, we are able to estimate 

the relative distances of the objects. Fig. 1 provides an illustration 

of the comprehensive framework employed in our method. Below, 

we break out each stage of the prediction process in detail:  
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3.1. Dehazing 

Dehazing techniques aim to remove or reduce the effects of haze 

in an image, restoring its true colors, details, and overall visibility. 

By enhancing hazy images, dehazing algorithms can improve the 

interpretability, accuracy, and performance of computer vision 

systems. They enable better object detection, recognition, tracking, 

and scene understanding in challenging outdoor environments with 

haze or fog. An efficient and effective approach for dehazing is 

through "Wavelet-based dehazing using Color Attenuation 

Prior(CAP)" [18]. This method involves applying a multilevel 

discrete wavelet transform [19] to the image, which partitions it 

into two distinct frequency domains: the low-frequency domain 

and the high-frequency domain. Following this, dehazing 

exclusively takes place in the low-frequency domain through the 

utilization of the Color Attenuation Prior (CAP) [20]. The 

estimated transmission map is employed to improve texture detail, 

and a soft-thresholding procedure [21] is implemented in the high-

frequency domain to eliminate any leftover noise. Lastly, the two 

domains are reconstructed to obtain a clear and haze-free image. 

The flow of dehazing using the former model is illustrated in Fig. 

2 [18].  

 

3.2. The Object-Detection process 

Object-detection is a sub-field of computer vision concerned with 

the recognition and localization of certain visual elements. You 

Only Look Once (YOLO) is an advanced algorithm for detecting 

objects in real-time. YOLO is popular for object-detection because  

(1) It is extremely fast and can process images at 45 fps (Frames  

Per Second) (2) YOLO is accurate with very few background 

errors (3) provides a better generalization for new domains, hence 

it is suitable for applications relying on fast and robust object 

detection (4) Making YOLO open-source has spurred continuous 

improvement of the model. YOLO architecture [4] is illustrated in 

Fig. 3, it has overall 24 convolutional layers, 4 max-pooling layers, 

and 2 fully-connected layers. The following are some of the ways 

the architecture functions: 

• The input image is resized to a dimension of 448x448 prior to 

being processed by the convolutional network.  

• A 7x7 convolution is first used to minimize the channels 

followed by 3x3 convolution to yield cuboidal output.  

• The activation function utilized for all layers is Rectified 

Linear Units (ReLU) [22], but for the final layer, a linear 

activation function is employed.  

• Additional techniques, such as batch normalization and 

dropout [23], are employed to regularize the model and prevent 

overfitting. 

 

In our work, we have used YOLOv5 [15] for object detection. The 

YOLOv5 architecture shown in Fig. 4 is composed of three 

primary components:  

• Backbone: YOLOv5 uses a feature extraction backbone 

network called CSPDarknet53 [24] a modified version of the 

Darknet architecture. The Darknet architecture is built up of 

Fig 1. An illustration of the comprehensive framework employed in our method 

Fig. 3: YOLO Architecture [4] 

Fig. 2. Wavelet-based dehazing using Color Attenuation Prior 
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convolutional layers, which take in and extract features of an 

image. 

• Neck: YOLOv5 employs a neck module known as PANet 

(Path Aggregation Network) [25]. PANet combines data from 

many scales to improve the model’s ability to recognize 

objects of various sizes. It enhances the network’s receptive 

field and feature representation.  

• Head: The head of YOLOv5 consists of linear and 

convolutional layers that process the information gleaned from 

the neck. It is responsible for generating bounding-box 

estimations and class probabilities. 

 

YOLOv5 utilizes an anchor-based approach for object detection. It 

predefines anchor boxes at various scales and ratios, which act as 

references for predicting object locations and sizes. During 

training, the model uses these offsets to readjust these anchor 

boxes. Training YOLOv5 requires only bounding box labels 

annotated on massive datasets. During inference, the model 

processes input images by dividing them into a grid and predicts 

objects within each grid cell. Non-maximum suppression (NMS) 

[26] is then applied to filter redundant and overlapping detections, 

retaining only the most confident ones.  

3.3. Depth-map Estimation 

The technique of determining an object’s depth or distance in a 

scene is known as depth estimation. It entails figuring out how far 

away the camera or observer is from each pixel or point in a 

picture. There are different methods to estimate the depthmap, 

including Time-of-Flight (ToF) depth estimation, stereo depth 

estimation, and monocular depth estimation. In our study, we have 

employed the MidasNet [9] a deep learning model to perform 

monocular depth estimation. A summary of MidasNet architecture 

for depth-map estimation is illustrated in Fig. 5:  

• Encoder: The first step of MidasNet is an encoder module that 

reads an image as input and extracts features from it. The encoder 

typically consists of multiple convolutional layers that 

progressively capture high-level representations. 

• Decoder: A decoder module receives the encoded features and 

upsamples the image to restore it to its native resolution. The 

decoder utilizes skip connections that connect corresponding 

feature maps from the encoder to the decoder, aiding in capturing 

fine-grained details of varied scales.  

• Fusion: MidasNet includes a fusion module to merge features 

from multiple layers together. This fusion helps to incorporate both 

low-level and high-level information, enabling accurate depth 

estimation across various spatial scales.  

• Monodepth Estimation: For every pixel in the input, MidasNet 

calculates an estimated depth value to produce a depth-map as the 

final output. The depthmap provides a per-pixel understanding of 

the scene’s geometric structure and the relative distances of objects 

from the camera. 

 

3.4. Relative depth prediction 

We employ the bounding box derived from object-detection in 

conjunction with depth information derived from mono-depth 

estimate to arrive at a relative depth prediction. The Algorithm 1 

outlines the process for determining relative depth through the 

suggested approach. The relative depth prediction involves: 

• Using the bounding box details obtained from object detection, 

we extract the corresponding depth information from the mono-

depth map of the image. Bounding-Box coordinates are given as 

(x, y, w, h), and (x, y) denote the top left corner of the box, or the 

pixel location from which the box is formed. The horizontal extent 

of the bounding-box is shown by the value of w, while the vertical 

extent is indicated by the value of h.  

• By comparing the average depth values of the objects within the 

bounding boxes, to a fixed reference point, we can determine the 

relative depth of objects.  

 

  𝑀𝑒𝑎𝑛_𝐷𝑒𝑝𝑡ℎ = (1/𝑛) ∗ ∑ 𝐷𝑒𝑝𝑡ℎ_𝑖            (1) 

  

 where 𝑀𝑒𝑎𝑛_𝐷𝑒𝑝𝑡ℎ represents the mean depth value within the 

bounding-box. 𝑛 denotes the number of depth values within the 

bounding-box. ∑ 𝐷𝑒𝑝𝑡ℎ_𝑖 represents the sum of all depth values 

within the bounding-box. The average of 𝑀𝑒𝑎𝑛_𝐷𝑒𝑝𝑡ℎ values of 

the objects encompassed within the bounding-boxes serves as the 

reference point. 

 

  𝑀𝑒𝑎𝑛 = (1/𝑁) ∗ ∑ 𝑀𝑒𝑎𝑛_𝐷𝑒𝑝𝑡ℎ_𝑖         (2) 

 

 where 𝑀𝑒𝑎𝑛 represents the average of Mean depths of detected 

objects. 𝑁 is the number of objects detected. 

∑ 𝑀𝑒𝑎𝑛_𝐷𝑒𝑝𝑡ℎ_𝑖  represents the sum of Mean depths of the 

objects. 

 • Subsequently, we classify the relative depths of the objects 

captured in the image into four distinct levels: L1 = VERY 

CLOSE, L2 = CLOSE, L3 = SAFE DISTANCE, and L4 = FAR 

AWAY. This categorization is determined by the proximity or 

distance of the objects with respect to the reference point. 

Fig. 4: Overview of YOLOv5 Architecture [15] 

Fig. 5: Overview of MidasNet Architecture 
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3.5. Hyper-parameter selection for Relative Depth Prediction 

The method is evaluated by estimating the relative depth of objects 

found in the input image using the RESIDE Dataset [27]. Fig. 6 

depicts an example of a prediction. The scatter plot in Fig.6(a) 

illustrates the mean depths of objects detected in a selected sample 

image from the RESIDE dataset [27]. The mean depths of the 

objects change depending on whether they are close to or far from 

the camera, as seen by the plot. After examining the scatter plots 

for each image in the RESIDE dataset, we have classified the 

object’s distances into four levels. A level 1 object is one that is 

relatively close to the camera and is located above the red line. 

Objects at Level 2 are close enough to the camera, with mean 

depths between the blue and red lines. Objects with mean depths 

between the green and blue lines are classified as Level 3. Level 4  

objects are the farthest away and are located past the green line. 

The range for these levels is obtained by comparing the mean depth 

of each object with the average of the mean depths of all objects 

and considering the standard deviation [28] of the mean_depths. 

Fig.6(b) displays the statistics of the twelve objects detected in the 

sample image using the YOLOv5 model, with their bounding-box 

values utilized to calculate the mean depths in their respective 

depth maps. Fig.6(c) demonstrates the final outcome of the relative 

depth prediction, where objects with red-colored boundary boxes 

correspond to level L1, purple-colored boundary boxes correspond 

to level L2, green-colored boundary boxes correspond to level L3, 

and blue-colored boundary boxes correspond to level L4.  

The variability metric, standard deviation [29], is utilized to 

ascertain the range for each level. This makes it conceivable for us 

to measure how dispersed a dataset is. The normal distribution or 

Gaussian distribution [30] with the mean(µ) and standard deviation 

(σ) shown in Fig. 7 provides a benchmark for comparing different  

 

levels of distribution. Under the bell curve, the area between µ ± σ 

is about 68% of the entire area. This area is quite wide to set the 

relative depth levels. To narrow it down we have chosen µ ± σ/2 

with the area reduced to 34%. But narrowing it further at µ ± σ/3 

(a) Relative depth prediction plot of the Sample figure. 

(b) Statistics from the object- detection model YOLOv5 

(c) Relative depth prediction using boundary box of object detected 

Fig. 6: Sample prediction of relative depths in an image 

Fig. 7. The normal distribution with µ and σ 
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or µ ± σ/4 will reduce the area under the bell curve drastically to 

less than 20%, which will be inappropriate to set different levels of 

relative depths. The relative depth prediction for images from 

RESIDE dataset was tested with σ and σ/2 chosen as benchmarks 

for comparing different levels of distribution. Fig. 8 depicts an 

example of the obtained data. According to the results, the relative 

depth prediction is more accurate for the σ/2 metric than for the 

metric σ itself. With the σ parameter the objects that are actually 

closer to the camera are wrongly categorized under L2 (pink 

boxes) instead of L1 (red boxes) and some objects are categorized 

under L3 (green boxes) instead of L4 (blue boxes). With σ/2 

parameter the objects are correctly categorized at appropriate 

levels.  

4. Experiment and Results 

The Relative Depth Prediction model is implemented in Python. 

We have implemented MiDasNet to capture the mono-depth of 

images chosen from RESIDE dataset and from our own dataset. 

Simultaneously, we have implemented YOLOv5 to capture the 

boundary box parameter of the objects detected in the test images. 

To train and evaluate these models, we use the following data sets. 

4.1. Dataset 

Popular in the field of computer vision, the KITTI dataset [31] is 

used for tasks like object-detection and depth estimation. The 

collection has 7481 training images with 3D bounding boxes added 

to them. In this datadet, 423 for validation, 711 for testing and 6347 

images are for training. All input images are 320 pixels wide and 

1024 pixels tall.  

The NYU-Depth V2 dataset [32] comprises video sequences 

captured within various indoor scenes, using both the RGB and 

Depth cameras of the Microsoft Kinect device. It has 1449 densely 

labeled pairs of aligned RGB with depth-map of images and more 

than four million unlabelled frames. For testing, 10% of the labeled 

pairs are used, 10% for validation and the remaining for training. 

                       (e) Relative distance for σ                                                      (f) Relative distance for σ/2 

                 (a) Object Detection               (b) Statistics from YOLOv5 model for Object Detection 

                            (c) Levels of distribution for σ                                      (d) levels of distribution for σ/2 

Fig. 8. The relative depth prediction for σ and σ/2 
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The CocoDataset [33], short for Common Objects in Context 

Dataset, is a widely recognized dataset for object detection because 

of its versatility, large-scale annotations, and diverse imagery.The 

dataset has an incredible 2.5 million annotated instances across 

328,000 images, and it contains a diverse collection of 80 different 

object classes. Using the original partitioning of the dataset, we 

conducted our research, setting aside 81,434 photos for testing and 

reserving 81,482 for training.  

The REalistic Single Image DEhazing(RESIDE) [34] dataset is an 

entirely novel, standard dataset comprised of images of both 

synthetic and actual haze. The Synthetic Objective Testing Set 

(SOTS) [27]   is a part of the RESIDE-Standard dataset consisting 

of indoor and outdoor subsets of clear and hazy images. There are 

around 500 clear and hazy image pairs in this subset. We have 

tested our method on all these images for both dehazing and depth 

estimation. We have built our own propriety dataset, which 

consists of 75 images (4032 X 3024 pixels in size) captured in hazy 

weather conditions at different locations. 

 

4.2. Evaluation 

We tested our model on the samples chosen from RESIDE dataset 

and the private dataset. The objects detected in the dehazed images 

are classified to the appropriate levels of relative depths. A few 

sample test results are shown in Fig. 9. In the figure, from left to 

right we can see the process of the suggested method, starting from 

object detection, mono-depth estimation, relative depth estimation, 

and corresponding bell curve of the normal distribution of mean 

Fig. 9: Bell Curve for different images 
 

 

(a) 

(b) 

(c) 

(d) 

(e) 
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with the standard distribution. The accuracy of the relative depths 

predicted in these images can be justified by plotting the shape of 

the Bell Curve for normal distribution [35] (with the mean and 

standard deviation) for every image. From the result of 

experiments conducted on these images, we find that the shape of 

the Bell Curve for normal distribution for every image is the same, 

as shown in the last column of Fig. 9. This leads us to infer that the 

standard deviations or variances of the images are comparable. It 

can be concluded that the degree of variability or dispersion around 

the mean is similar for all images. Hence, the categories of levels 

of relative depths hold good for every image.  

Sample test result on hazy and dehazed image pairs chosen from 

our private dataset is illustrated in Fig. 10. The figure demonstrates 

that the details of depth in the depthmaps of dehazed images is 

more detailed than that in the depth-maps of hazy images (as seen 

in Fig.10(b)). Hence, object detection is more precise in dehazed 

images than in hazy images. In Fig.10(c), it is evident that in the 

first sample input hazy image an object is wrongly predicted 

(circled red), and in the second sample input hazy image the object 

detection model fails to detect an object (circled yellow), whereas 

in respective dehazed images, the objects are detected correctly. 

Also, relative depth prediction in dehazed images is more accurate 

than that in hazy images. In Fig.10(d), it can be seen that some 

objects that are at SAFE DISTANCE are wrongly classified as 

CLOSE and those which are FAR AWAY are classified as SAFE 

DISTANCE. The accurate prediction of the dehazed images is 

shown in the 2nd and 3rd columns of Fig.10(d). 

5. Conclusion 

This study introduces a method that combines object detection and 

depth maps to predict the relative depth relationships between 

objects in a single image. By accurately detecting and localizing 

objects using an advanced object detection model, bounding box 

coordinates are obtained. Depth information is acquired through 

depth-maps generated either by monocular depth estimation 

techniques or by dehazing the im age. These depth maps provide 

per-pixel depth values, allowing for the prediction of relative depth 

between objects. By comparing the depth values within the 

bounding boxes, the method infers the relative distances between 

the objects. The proposed method demonstrates its effectiveness 

and accuracy through evaluations of benchmark datasets. It 

provides a practical approach for estimating relative depth 

relationships in computer vision applications such as scene 

understanding, augmented reality, and robotics. The integration of 

object identification models and depth-maps could be useful in 

many different areas of computer vision. 

Fig. 10. Comparison of Relative Depth prediction on hazy and dehazed images 

 

 

(a) Input Images from our dataset 

(b) Depth maps 

(c) Object Detection 

(d) Relative Depth Prediction 
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