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Abstract: In recent years, the healthcare sector has witnessed an exponential surge in data generation from various sources. 

This data influx has opened new avenues for researchers to construct models and analytics, enhancing patient healthcare. 

While research and applications in prediction and classification have prospered, numerous challenges persist in optimizing 

healthcare comprehensively. Challenges encompass improving physician performance, curbing healthcare costs, and 

uncovering novel disease treatments. Physicians often grapple with time-consuming tasks, resulting in fatigue and occasional 

misdiagnoses. Automating such tasks can save time, enabling healthcare professionals to concentrate on elevating care 

quality. Health datasets comprise multiple modalities, such as structured sequences, unstructured text, images, ECG, and 

EEG signals. Leveraging these diverse data types necessitates effective methods. Moreover, the healthcare landscape is 

hindered by limited treatment options reaching the market, with many potential solutions failing in clinical trials. Machine 

learning models can enhance clinical trial outcomes and consequently elevate patient treatment quality. This paper addresses 

these issues through the development of a multimodal deep learning framework. It generates text reports and aids physicians 

in clinical practice, offering a multifaceted approach to address the diverse challenges in healthcare. The intended objective 

is to create a generative model capable of generating chest X-ray images and their corresponding textual reports. 
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1. Introduction

In the healthcare sector, a number of intricate data 

sources that aid in decision-making include 

embedded gadgets, detectors, mobile apps, medical 

information, and online platforms. The details 

gathered by healthcare equipment help significantly 

in the early identification of disorders and the 

management of suitable therapies. Whenever we talk 

about "big data," we normally mean a wide range of 

smoothly sized types of data from heterogeneous 

sources that have been stacked up on memory units 

[1]. These types of information can be expressed in 

both petabytes and zeta-bytes. In the last few years, 

deep learning models have been increasing 

prominence and have been discovered effective in 

multiple fields such as object detection, speech 

recognition, and image processing. The DL 

frameworks have become commonly utilized in 

recognition of their inbuilt features. The attribute 

building can be accomplished by the DL model 

automatically. Unlike specifically stating so, the DL 

model finds features in the data that match, integrates 

them, and speeds up learning. The need for AI-

powered development in the medical field is rising as 

a result of recent advancements in AI. The creation of 

data-driven models is a crucial first step in supporting 

behavioral interventions for prevention or 

rehabilitation, such as identifying and tracking risk 

variables related to chronic illnesses. Nevertheless, 

the creation of data-driven models usually requires 

access to medical information from multiple sources. 

Personal Health Records (PHRs) from individual 

smartwatches and cell phones are among these 

sources as well as Electronic Medical Records 

(EMRs).  

The development of AI technology and data-driven 

models in the healthcare sector is hampered by three 

main issues. First, the General Data Protection 

Regulation (GDPR) has made public 
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the personalized data sharing of people (data 

subjects) as a component of larger data samples. 

Time-consuming regulatory processes like ethical 

authorizations, privacy evaluations, and 

anonymization methods regulate this kind of data 

exchange, which can stifle creativity. The second 

problem is finding human volunteers who are 

available to represent the desired demographic in 

future study [2]. The third barrier is collecting data 

from these human participants, which is labor-

intensive and vulnerable to interruptions from 

unforeseen events such as pandemics, which may 

result in a postponement or cancellation of the study. 

These three obstacles are lessened when artificial 

intelligence models are developed through the 

application of fake statistics. An alternate method of 

expressing the fundamental properties of real data 

about real human individuals, like dependencies and 

distributions, is the use of synthetic data. 

Furthermore, to protect patient privacy and lessen the 

possibility of re-identification, synthetic data is also 

used. The process of designing and developing 

artificial intelligence models for collecting data in 

medical fields setting (e.g., vital signs or electronic 

health records) was the subject of previous works. 

But with the introduction of biosensors and 

contemporary assistive technologies, such 

smartwatches, came new difficulties concerning the 

unique properties of the signals produced by this new 

category of gadgets. First of all, the signals that come 

from biosensors and wearables are multimodal. This 

indicates that variables are not routinely sampled and 

that human activities—such as monitoring exercise 

during the day and sleep during the night—are the 

only means of collecting them. Additionally, there is 

an erratic schedule for the collection of physiological 

indicators like blood pressure and heart rate. 

Multimodal data presents a very strong argument 

against current methods designed for traditional time-

based electronic health records that are collected 

regularly because of these features. 

Researchers have now brought out an extensive range 

of network flow categorization approaches. These 

technologies collapse into four primary groups: 

approaches based on ports, ML, deep packet 

inspection (DPI), and DL, which are presented 

specifically for a better understanding as they vary 

from standard machine learning techniques). On the 

one hand, classical network categorization methods 

like port recognition are no longer compatible with 

present-day network segmentation due to the 

progress of the network protocol itself [3]. This 

article delivers an outline of the different machine 

learning strategies and investigates the fundamental 

deep learning methods to recommend a multimodal 

framework that enhances the model's stability while 

concurrently improving its precision in classification 

[4]. 

 

                            

 

 

Fig. 1. Deep learning model usage for analytical medicine 

A particular branch of machine learning called "deep 

learning" attempts to comprehend abstract 

information at a high level through the introduction 

of multiple processing layers with complex 

architectures or repeated nonlinear transformations. 

For cognitive schooling, it develops neural networks 

that may replicate the framework of the human brain. 

It is also frequently used in the context of clinical 

medical photographs, stimulating the brain's systems 

for analyzing data, which comprises texts, noises, and 

graphics. In the final analysis, there is a great deal of 

room for progress in the field of deep learning 
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technology and medical image processing, which has 

turned into an important study issue currently. Figure 

1 will indicate the deep learning model application in 

the computational field for clear details. 

Clinicians routinely collect data from a variety of 

sources, such as radiographic scans, histopathological 

studies, test results, body vital signs, and other 

clinical data, to obtain a deeper understanding of 

their patient's health and deliver customized medical 

care. Medicine is inherently multimodal because 

clinical decision-making depends on a variety of data 

sources. The term "data modality" refers to the type 

of data used, such as an X-ray, a histopathology 

image stained with hematoxylin and eosin (H&E), 

and patient demographic data. Due to the unique 

nature of each modality's data production, recording, 

or collection procedure, each modality in such data 

sets may have a different quality and scale. The data 

modalities may comprise the following: (i) -omics 

data from the genome, proteome, transcriptome, 

epigenome, and microbiome; (ii) radiological images 

from ultrasound machines, magnetic resonance 

imaging (MRI), computed tomography (CT), 

positron emission tomography (PET), 

immunohistochemistry, and immunofluorescence; 

(iii) digitized histopathology, immunohistochemistry, 

and immunofluorescence slides made using tissue 

samples and stored as gig pixel whole slide images 

(WSI); and (iv) electronic health record (EHR) that 

contains unstructured data like discharge notes or 

medical reports alongside structured data like 

demographics. 

A unified, deeper picture of cancer that may be more 

comprehensive and informative than the sum of the 

parts can be produced by integrating data from 

several diverse modalities. Multimodal medical data 

has enormous potential to improve our  

knowledge of intricate illnesses and support the 

creation of specialized, efficient therapies. The 

significance of gathering, organizing, and 

harmonizing multimodal data in cancer care is further 

highlighted by the recent development of machine 

learning algorithms that can learn from multimodal 

data [5]. An explosion of heterogeneous, multimodal 

data has resulted from the introduction of high-

throughput multi-omics technologies such as next-

generation sequencing (NGS), high-resolution 

imaging in radiology and histopathology, and the 

quick digitalization of medical records. The 

abundance of training data in machine learning has 

directly led to major advancements; hence this data 

flood has been beneficial. It is hoped that large-scale, 

representative, standardized multimodal datasets in 

the medical field would serve as a rich environment 

for the creation of cutting-edge translational 

machine-learning models. Large-scale, high-quality 

datasets are ideal for machine learning, but gathering 

such resources in the healthcare industry presents 

special difficulties. First, multimodal medical data, 

which includes both structured and unstructured data, 

is by nature noisy and heterogeneous. Such disparate 

data must be aggregated using a lot of manual 

processing and harmonization. Secondly, precision, 

robustness, and dependability are essential for any 

medical application. However, it can be difficult to 

create robust and trustworthy models since real-world 

clinical data is frequently scant, inaccurate, and 

missing. 

2. Literature Review 

As deep learning networks (DNNs) outperform 

human analysts in image categorization, they are 

highly valuable in the medical domain [6]. To 

classify images into beneficial and harmful situations 

based on CXR intensity analysis, Hemdan et al. [7] 

proposed a deep learning classification system that 

made use of seven distinct CNN models. 

Apostolopoulos et al. [8] developed a highly accurate 

method for identifying lung illnesses using a deep 

learning-based mobile net system with 3905 X-ray 

images. Pre-trained approaches were implemented to 

classify COVID-19 cases; however, this pre-trained 

algorithm resulted in an imbalanced dataset impact 

on training. 

Image classification, object recognition, 

categorization, authorization, and other deep learning 

techniques have endured, according to Litjens et al.'s 

[9] analysis and study of numerous academic articles 

on deep learning techniques. The basis of multimodal 

data fusion in neuroimaging has been given by Zhang 

et al. [10]. They also described the benefits and 

drawbacks of various imaging modalities, as well as 

basic fusion guidelines, techniques for evaluating 

fusion quality, and present multimodal fusion 

difficulties. In addition, they provided an overview of 

recent advancements and uses of multimodal 

neuroimaging for neurological conditions and brain 

illnesses. The authors Bellemo et al. [11] presented a 

GAN-based classifier for creating images of the 

retinal fund which may be exploited with artificial 

datasets. 

Utilizing data from the original field to support the 

target learner in achieving enhanced efficiency is the 
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objective of transfer learning. Transfer learning may 

be accomplished more effectively the closer the 

relationship is between the source and destination 

domains. If not, it could be more challenging and 

might have unfavorable consequences. After 

demonstrating exceptional generalization efficiency 

in the source field, the previously trained system is 

further optimized by small-scale data from the target 

area [12]. Several pre-trained deep learning 

algorithms are being used for COVID-19 diagnosis 

because it is costly to obtain CT or X-ray pictures of 

COVID-19 patients. A unique domain transfer 

learning approach called feature fusion, deconstruct, 

and transfer (FFDT) is proposed by Kabe et al. [13] 

for the classification of COVID-19 cases. To improve 

features, their suggested FFDT combines distant 

features from distant domains into only one attribute 

set where the distribution mismatch is minimized. To 

extract features, they also employ modified 

convolutional neural networks (MCNNs), and class 

reconstruction is applied to reveal the local structure 

of the data distribution. Their methodology obtains 

94.5 percent classification accuracy. Since training 

the CNN algorithm from scratch is rather complex, 

characteristics from chest CT scans may be extracted 

using transfer learning. The foundation for extracting 

features from the CT images is made up of the pre-

trained ResNet-18 and ResNet-50 algorithms. 

Discriminant correlation evaluation is used for 

integrating the obtained characteristics into improved 

image characteristics. Finally, several randomized 

neural networks are developed with enhanced 

features, and their forecasts are merged to provide 

more dependable classification accuracy. 

A summary of current trends was provided by this 

article [14], which conducted an in-depth analysis of 

the literature on MML and its problems. The 

PRISMA technique was used to perform the study, 

and a detailed analysis of its selection process was 

provided. From a total of 1032 researched 

documents, 350 documents were ultimately chosen 

based on how well they addressed each study 

question that was formulated. The results of this 

review show that MML focuses on ML objectives 

and methods in addition to senses. The results of the 

research indicate that the majority of commonly used 

data sets are images and methods on the basis of 

neural networks. The various facets of multimodal 

representation, interpreting, symmetry, integration, 

and co-learning are also highlighted in the above 

article, along with any potential weaknesses. The 

various facets of multimodal participation, 

transcription, cooperation, fusion, and collaborative 

learning are also highlighted in this paper, along with 

any potential weaknesses. On the other hand, this 

SLR presented an overview of the MML research 

that has to be further developed to give academics 

interested in this multidisciplinary subject a current 

option for future work. 

3. Methodology 

Many current approaches aim to produce complete 

reports directly from the raw input but face several 

challenges. These challenges include the presence of 

errors in the generated reports, which require manual 

review and correction. Additionally, this method does 

not streamline the report-writing process when 

doctors wish to include supplementary information. 

Furthermore, the generated reports lack 

customization to align with the individual preferences 

of each doctor. In this paper, a deep learning-driven 

approach for clinical report auto-completion is 

introduced. This method operates interactively, 

constructing reports one sentence at a time. It 

leverages doctors' anchor words and partially 

completed sentences to generate each sentence of the 

report. The system, known as CRAC, seeks out the 

most pertinent sentences from existing reports to 

serve as templates for the current report. These 

recovered sentences undergo sequential adjustments, 

combining them with input feature representations to 

produce the ultimate report. 

Diagnostic imaging and neural files, like X-rays and 

EEG scans, are essential for diagnosis and therapy in 

clinical settings. To detect important disease traits, 

clinical specialists have historically actively 

examined these images and signals. They then 

painstakingly craft textual reports to describe any 

anomalies and provide detailed explanations of their 

observations. However, the current process of 

composing clinical reports is arduous and time-

consuming. Furthermore, it demands a deep 

understanding of image and signal patterns, as well 

as extensive experience in correlating these patterns 

with specific medical conditions. 

Enhancing the caliber and efficiency of medical 

report composition can significantly influence 

telemedicine and web-based healthcare. In addressing 

the limitations of manual report writing, numerous 

methods for generating medical image reports have 

been put forward [15]. However, neither of the 

current methods concurrently achieves the further 

necessary requirements for the creation of medical 

reports: 
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Conformance with Disease Phenotypes: Test results 

and diagnostics obtained from medical pictures or 

brain activities are communicated through medical 

reports, which are essential. These reports must be in 

line with certain illness characteristics and relate to 

correct terminology for medical usage. 

Adaptive Report Generation: The generated reports 

must possess the capability to adapt to the 

preferences of end-users, particularly clinicians, to 

enhance their acceptance and usability. 

In response to this need, the paper introduces an 

interactive approach, referred to as DLCRAC, which 

aids in composing medical reports on a sentence-by-

sentence basis. This method relies on anchor words 

(corresponding to disease phenotypes) and half of the 

completed sentences (termed prefix text) determined 

by medical professionals. CRAC, the system behind 

DLCRAC, employs an adaptive recover-and-edit 

framework, allowing for the step-by-step generation 

of reports under the guidance of doctors. 

 

 

Fig. 2. DLCRAC Framework 

Figure 2 shows the deep learning based clinical 

report auto-completion framework that comprises 

modules M1, M2, M3 and M4. DLCRAC comprises 

an input encoder module, which learns embeddings 

from medical images and neural recordings. 

Additionally, it constructs a prototype repository by 

indexing unique sentences from various medical 

reports. Users provide anchor words and prefix text 

as queries to retrieve the most relevant sentence 

templates. These templates undergo modifications in 

the edit module using a seq2seq model, ultimately 

generating new sentences for the current report. This 

process iteratively generates all sentences within the 

report description and their associated disease 

phenotypes, enhancing the overall report-writing 

process. 

M1 serves as the Input Encoder module, responsible 

for converting medical data, like images or EEG time 

series, into compact feature representations, 

facilitating efficient data processing and analysis. 

This transformation enables the subsequent stages of 

the system to work with compressed yet informative 

data representations.  

This module serves the purpose of extracting data 

embeddings from the input, providing guidance for 

report completion. The input may consist of raw 

measurements from X-ray or EEG sources. In the 

case of images Xi or EEG time series TS represented 

as a sequence of EEG epochs TS = x1, x2, ..., xT, we 

employ a convolutional neural network (CNN) for 

encoding. This process yields image embedding 𝐸(𝑖) 

or EEG embedding 𝐸𝑛
𝑖  for each epoch t, facilitating 

subsequent report generation. 

𝐸𝑖 = 𝐶𝑁𝑁[𝑋𝑖]                                             (1) 

𝐸𝑛
(𝑖)

= 𝐶𝑁𝑁[𝑋𝑖]                                            (2) 

CNN uses the DenseNet [16] framework for X-ray 

imaging. The mean imaging for all phases in EEG is 

the overall embedding, represented as 

𝐸𝑖 =
∑ 𝐸𝑛

(𝑖)
𝑛

𝑇
                                         (3) 
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The M2 module is dedicated to Pattern Construction, 

where it creates a repository at the sentence level. 

This repository contains distinctive sentences, along 

with their representations, author details, and 

frequency statistics. This valuable resource is derived 

from an extensive medical report database. It serves 

as a dynamic search repository, offering initial 

sentence structures for the generation of sentences 

within new reports, enhancing the efficiency and 

consistency of report writing. 

Pattern learning [17] and memory networks [18] 

offer distinct approaches for integrating data 

instances into neural networks.  

Both methods share a fundamental concept, which 

involves the creation of a collection of patterns. 

𝑋𝑝 = [𝑋𝑝1, 𝑋𝑝2, … … 𝑋𝑝𝑛]                        (4) 

It is represented as, 

{𝑓(𝑝)|𝑝 ∈  𝑋𝑝                               (5) 

M3, the Query module, offers clinicians greater 

control in the interactive creation of personalized 

medical reports. This module accommodates 

clinician queries in two distinct forms: anchor words, 

representing the global context and serving as 

phenotype keywords relevant to the entire report, and 

optional prefix text, which includes partially 

composed sentences entered by users during the 

interactive editing process. This approach empowers 

clinicians to tailor reports to their specific needs, 

combining both global and local context cues for 

precise report customization.  

The Query Component provides interactive report 

generation easier, enabling consumers to quickly and 

effectively create reports phrase by phrase. It offers 

two modes of interaction: 

Anchor words (A): The aforementioned terms that 

gives the report's high-level context. Anchor words in 

EEG reports may contain terminology such as focal 

slowing, epi-leptiform, typical rest, and seizures. As 

shown in [19], anchor terms in X-ray findings might 

also include “Pneumonia, Cardiomegaly, Lung 

Lesion, Airspace Opacity, Edoema, Pleural Effusion, 

and Fracture”. 

Prefix text (𝑃𝑛
(𝑚)

): This specifies a partial sentence 

for sentence n in report m. Prefix text allows users to 

customize and exercise control. It's important to note 

that the use of prefix text is entirely optional in 

DLCRAC. Both anchor words and prefix text play a 

role in the Recover module when seeking relevant 

sentences from the pattern repository. 

M4, the Recover and Edit module, actively engages 

users in report generation, drawing upon data 

representations, anchor words, and prefix text to 

guide the process. This module follows a sequential 

approach to report creation. Initially, the retrieval 

module extracts the most pertinent sentences from 

the pattern repository. Subsequently, the edit module 

employs a phrase-to-phrase framework [20] to refine 

the recovered sentences, incorporating input from the 

data representation, anchor words, and prefix text. 

This dynamic interaction ensures the production of 

tailored and context-aware medical reports. 

During the retrieval phase, an information retrieval 

system is employed to locate the most pertinent 

sentences within the pattern repository. This process 

emulates a doctor referencing their prior reports to 

pinpoint sentences that require modification. With an 

anchor word, 𝐴𝑙
(𝑖)

, and the possibility of including 

prefix text, this module recovers a template sentence, 

𝑆𝑙, from the pattern repository. 

In the absence of anchor words, DLCRAC employs 

an initial prediction of anchor words. This is 

achieved by training a classifier using data 

embeddings 𝐸(𝑖) to generate anchor words 𝐴𝑖. In 

contrast to alternative retrieval methods, this 

proposed approach is characterized by increased 

flexibility and scalability, harnessing the capabilities 

of retrieval systems. 

During the editing phase, the obtained sentence 

undergoes modifications to yield the final sentence 

for the current report. A sequence-to-sequence model 

was employed, comprising an encoder and a decoder. 

The encoder maps the input, combining the sentence 

template 𝑆𝑙 and data embedding 𝐸(𝑖), into 

compressed representations. The decoder, in turn, 

reconstructs the output, resulting in the revised 

sentence as the output sequence. 

4. Results and Discussion  

DLCRAC's capability to enhance clinical report 

quality is evident in this research. A comparison was 

conducted between DLCRAC and state-of-the-art 

baseline techniques, encompassing report-level auto-

completion with predefined anchor words, report-

level auto-completion without predefined anchor 

words, and sentence-level auto-completion. The 

summary of report-level performance on X-ray and 

EEG datasets is presented in Table 1. DLCRAC 
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outperforms the leading baseline models, achieving a 

remarkable 30% improvement in the CIDEr score. 

This outcome underscores the efficiency of the 

retrieval process from the pattern repository. 

 

 

Table 1. Report Level Performance 

Dataset Technique CIDEr BLEU1 BLEU2 BLEU3 

IU X-Ray 

Image 

CNN-RNN 0.254 0.291 0.192 0.100 

Adaptive 

Attention 

0.257 0.220 0.158 0.090 

DLCRAC 

(Predicted anchor 

words) 

0.378 0.332 0.345 0.195 

DLCRAC 

(Defined anchor 

words) 

0.397 0.376 0.365 0.210 

(EEG) TUH MP 0.278 0.623 0.462 0.543 

TAM 0.296 0.713 0.567 0.661 

DLCRAC 

(Predicted anchor 

words) 

0.412 0.786 0.653 0.689 

DLCRAC 

(Defined anchor 

words) 

0.479 0.798 0.660 0.712 

 

For a more in-depth analysis of individual module 

contributions, DLCRAC was assessed without the 

edit module, focusing solely on sentence retrieval 

from existing reports. Despite still surpassing 

baseline models in CIDEr  

 

 

performance, this version of DLCRAC falls short 

compared to the fully-featured DLCRAC with 

predicted anchor words, which utilizes both retrieval 

and edit modules. 

 

Fig. 3. Score for EEG Report Generation (Dataset 1) 

The plot presented figure 3, figure 4 and figure 5 

illustrates the progressive rise in CIDEr and BLEU 

scores concerning the generation of EEG and X-ray 

reports as the number of anchor words increases. 

This observed trend of growing scores with an 

expanding set of anchor words serves as compelling 

evidence that anchor words play a crucial role in 

enhancing the quality of reports generated by 

DLCRAC. The increase in anchor words effectively 

guides the DLCRAC system in selecting superior 

candidate sentences and refining them, reflecting the 
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valuable contribution of clinicians as they furnish 

more anchor words to the system. 

 

 

Fig. 4. Score for EEG Report Generation (TUH) 

To optimize the performance of DLCRAC in 

sentence-by-sentence interactive report auto-

completion using anchor words and prefix text, we 

conducted evaluations with varying numbers of 

anchor words and prefix sentences. These evaluations 

encompassed the utilization of anchor words until 5 

with DLCRAC and variable-length prefix sentences, 

allowing us to explore the effects of increasing 

anchor words on the system's performance. 

 

 

Fig. 5. Score for X-Ray Report Generation 

Creating clinical reports from raw medical recordings 

like X-rays and electroencephalogram (EEG) is a 

crucial and routine duty for medical professionals. 

Nevertheless, crafting precise and comprehensive 

reports can be a time-intensive endeavor. According 

to the result graphs, DLCRAC achieved higher score 

and accuracy as shown in above figures. Using 

DLCRAC in conjunction with various anchor words 

guarantees that important findings are included in the 

analysis. Anchor words require the analysis 

generating unit to be operationally correct because 

they are founded on facts that are medically 

important. The suggested approach for overcoming 

obstacles using multimodal deep learning techniques 

and using these to apply to significant healthcare 

issues. 
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5. Conclusion 

The process of crafting medical reports is vital but 

typically labor-intensive for human healthcare 

professionals. Existing methodologies for generating 

medical reports mainly concentrate on generating 

entire reports without close human interaction, which 

can lead to errors and doesn't align well with clinical 

workflows. In this study, DLCRAC is introduced as a 

computational solution designed to assist in the 

clinical report auto-completion task. DLCRAC 

enables doctors to compose clinical reports 

interactively, sentence by sentence. This approach 

amalgamates an information retrieval engine and 

neural networks, allowing the retrieval of pertinent 

sentences through information retrieval systems and 

their subsequent modification using neural networks. 

Empirical results from our experiments illustrate that 

DLCRAC excels in generating high-quality, 

clinically precise reports. It consistently outperforms 

various baseline methods, exhibiting remarkable 

improvements of up to 35% in CIDEr and BLEU-3 

when compared to the best-performing baseline 

techniques. 
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