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Abstract: Storm surge, which impacts the entire coastline region, is China's most serious marine calamity. Storm surge 

disaster loss (SSDL) estimation is important for decision-making, sustainability, and disaster prevention. For early warning 

systems, disaster management, and disaster evaluation, an accurate storm surge water level forecast is essential. Comparing 

machine learning techniques to numerical simulation techniques, the former is more straightforward and efficient. Still, point 

predictions are the main focus of the majority of current machine learning-based research on storm surge prediction. In this 

paper, we explore the feasibility of employing the ConvLSTM model for spatial water level prediction. The ConvLSTM-

based methodology is simpler, faster, and more accurate in predicting water levels without the need for boundary conditions 

or topography than standard numerical simulation methods. In addition, we take worst-case situations into account by 

employing the random forest model to anticipate the highest possible water increase. Based on our findings, the random 

forest model may prove to be a useful instrument in determining the highest water increase value linked to typhoon storm 

surges, which can help with efficient emergency reactions during natural disasters. 
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1. Introduction

The unusual fluctuation in the level of saltwater 

brought on by a strong atmospheric disturbance is 

known as a storm surge, and it is a devastating 

natural occurrence. Typhoons and other disastrous 

weather phenomena, along with extratropical 

cyclones, are typically referred to as atmospheric 

disturbances. Storm surge catastrophes present a 

serious risk to coastal communities' property and 

people's safety as well as their infrastructure [1]. In 

addition, the storm surge manifests itself as a 

succession of disasters. In addition to storm surges, 

nearshore waves, astronomical tides, and the effect of 

coupling are also considered to be risk-formative 

components. Storm surges and the secondary risks 

they pose to coastal communities worldwide are 

estimated to cause injury to 45 million people 

annually. Thus, it is crucial to look into the SSDL 

estimate. 

Regression and data mining have seen good results 

from ML algorithms, making it a viable solution. 

They are more controllable and extensible, allowing 

them to properly capture the nonlinear relationship. 

Natural catastrophe domains including landslides, 

floods, and forest fires have demonstrated the 

potential of artificial intelligence techniques. 

Research on SSDL estimates is, nonetheless, scarce. 

Utilizing the SVM model, SSDL was evaluated and 

predicted based on the minimal sample data. On the 

other hand, not much study has been done on SSDL 

estimates. This chapter evaluated and predicted 

SSDL using the SVM model based on small sample 

data. The number of systems with high fitting has 

grown with study, but choosing the right model 

remains hard. It is therefore necessary to 

continuously verify and evaluate the development 

and optimization of SSDL estimate models. For 

instance, this chapter used five models—BPNN, one-

dimensional convolutional neural networks, decision 

trees (DT), Random Forests (RF), and eXtreme 
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Gradient Boosting (XGBoost)—to fit the information 

and choose the most appropriate model for the 

association between debris flow incidents and 

triggering factors. There is potential for ML to 

estimate SSDL. 

 

 

 

 

 

Fig. 1.1. An illustration of the process for using machine learning to create a storm surge forecast product 

A flowchart of the process for using ML to create a 

storm surge forecast product may be found in Figure 

1.1. "Formulation of prediction problems" is where 

the work begins, and it follows the filled-in arrows to 

advance step by step. Usually iterative, the process 

entails regular feedback and modifications to increase 

the product's performance and value [2]. When 

outcomes are not satisfactory, dot-pointed arrows 

indicate going back to the previous steps. 

SVM can determine the global best solution by 

resolving a quadratic programming problem. On the 

other hand, more samples lead to a higher degree of 

complexity [3]. SVM offers significant benefits for 

addressing issues with low sample numbers, 

nonlinear sample data, and high sample dimensions. 

SVM provides good generalization capabilities in 

addition to great learning capabilities. 

The rest of this work proceeds according to standard 

protocol, which involves building an ML model 

appropriate for a certain storm surge situation.  

Alternative methods for articulating problems related 

to coastal inundation and storm surge prediction are 

covered in Section 2. Section 3 describes the machine 

learning model's training data as well as certain 

requirements for producing a high-quality feature 

representation. In Section 4, the basic principles of 

machine learning are discussed along with a 

summary of frequently used methods and error 

measures for model evaluation. The article is 

concluded in Section 5 with some suggestions for 

further development. 

2. Literature Review 

Du, X., Li, X., et.al [4] Academics have investigated 

a wide range of loss estimating techniques for storm 

surges and maritime disasters. In general, there are 

two categories of estimating models: Models for 

machine learning (MLMs) and physical models. 

Physical models based on the inundation zone, 

submerged depth, flooded elements, and extent to 

which exposed portions produce direct tangible 

damage are used to calculate the economic losses of 

TSSDs. The model known as Sea, Lake, and 

Overland Surges from Hurricanes (SLOSH) for 

example, uses information from coastal sounding 

elements and typhoon variables to estimate storm 

surge heights. 

Devaraj, J.,et.al [5] At the individual, corporate, and 

societal levels, among others, hurricane forecasting 
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aids in preventing physical harm. Establishing 

precise measurements of tropical cyclone intensity 

could aid in the provision of early warning. To 

accurately predict the hurricane, the model's initial 

condition input must be of high quality. More 

information can be obtained by forecast users, 

suppliers, and policymakers by evaluating the trade-

offs between various aspects. Here, we report an 

enhanced CNN model for precise tropical cyclone 

intensity and category estimation. 

Fang, W., et.al [6] In order to anticipate water levels 

at several sites around the Pearl River Estuary in 

China, in this work, two-dimensional wind field 

features are directly extracted using a CNN and 

combined with tide level time data. This enables the 

study to leverage the strengths of BP and RNN in 

forecasting and CNN in TC feature extraction. The 

scientists also discovered that while performance was 

enhanced by including prediction and storm surge 

forecasts, this came at the expense of longer 

computation times. 

Kolla, V. R. K. et.al [7] Weather map predicting 

techniques have been around for more than a century, 

ever before the invention of the telegraph. In order to 

analyse weather maps, the National Meteorological 

Centre can collect data in a timely manner. It appears 

like the low-pressure system is moving based on the 

weather chart. Our ability to study the weather 

system and use our understanding of it to estimate its 

future motion and intensity changes is the major basis 

of the weather map forecasting approach. To rapidly 

pinpoint the weather system causing variations in the 

local weather, we evaluate weather maps or other 

supplementary maps. The foundation of the weather 

map forecasting method is the accuracy of the 

weather map analysis. 

Ian, V. K. et.al [8] Machine learning has the potential 

to enhance preparedness and response for extreme 

weather events like storm surges. The inability of 

current machine learning techniques to forecast storm 

surges accurately in the event of unexpected weather 

or abrupt changes in weather patterns stems from 

their reliance on past data for training. This leaves a 

research vacuum in the area of precisely predicting 

sea level anomalies during abrupt changes in weather 

patterns, like an increase in wind speed or a decrease 

in air pressure. In particular, when abrupt weather 

changes are detected, these models frequently 

generate erroneous tidal level estimates when tropical 

cyclones are present. 

Chen, R., et.al [9] Depending on the type of learning 

task, machine learning algorithms, such as those for 

dimensionality reduction, feature selection, and 

prediction, can also be categorized. Only predictive 

algorithms will be discussed here because the main 

focus of this review is TC forecast modeling. 

Classification is the term used to describe a learning 

problem where the model's objective is to predict 

discrete values; regression is the term used to 

describe a learning job where the model's goal is to 

predict continuous values.  

Snaiki, R., et.al [10] These studies offer a wealth of 

climate data that can be used as an input for 

estimating hurricane risk. Most climate models 

predict considerable variations in a number of 

environmental characteristics, including moisture 

content, warmth at the tropopause level, and 

environmental vertical wind shear. However, the 

results of these simulations can differ significantly 

due to intrinsic errors and model variances. Wind 

engineering academics predict that the maximum 

hurricane wind speeds will rise significantly as a 

result of global warming. 

Yi, X., et.al [11] Indicators pertinent to eleven 

Chinese coastal provinces and cities spanning the 

years 2007–2016 were gathered for this research. 

Depending on the examination of significant positive 

and negative indicators, the entire storm surge 

disaster loss index is ascertained. While innovation in 

green marine science and technology acts as the 

adjustment variable, the rate of economic growth is 

the primary explanatory component. For a ten-year 

period, from 2007 to 2016, the aim of this study is to 

investigate the association between the amount of 

coastal economic development and storm surge 

disaster losses. 

3. Methods and Materials 

The choice of data representation (or features) has a 

major effect on how well machine learning models 

work because different representations might 

entangle and obscure the underlying explanatory 

variables that underlie the data [12]. When 

algorithms are just getting close to reaching their 

limit, data, and features have the greatest impact on 

machine learning projects and define the upper bound 

on job performance. 

Data preparations 

Samples for an ML job are usually separated into 

three categories: test set, validation set, as well as 

training set. The model is trained using the training 
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set; the parameters that yield the "best" model 

performance are found using the validation set; and 

the test set is utilized to confirm that the optimal 

model that has been chosen performs as expected. Of 

the samples, 25% are kept as a test set. The validation 

and train sets are included in the CV set.  

This document compiles 132 typhoon storm surge 

catastrophe incidents. The incidents, which cover 21 

years from 2000 to 2020 and include 50 indicators, 

are spread out among 11 coastal province 

administrative zones of China. To perform data 

comparison and machine learning scientifically, 

preprocessing is required due to the broad 

spatiotemporal range of this data set. The next 

sections have the data preparations presented. 

Modification of economic indicators 

The primary focus of this section is the problem of 

the suggested data set's broad temporal span. 

Comparing the same economic data from different 

years in order to determine how much inflation has 

affected things is not very interesting. For the "Real 

economy indicator" to properly represent the state of 

the economy, inflation must be eliminated. The GDP 

adjustment hypothesis modifies the economic 

measures. The conversion formula is given as 

follows: 

                   𝑅𝑒𝑎𝑙 𝐺𝐷𝑃 =  𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝐺𝐷𝑃/

𝐺𝐷𝑃 𝐷𝑒𝑓𝑙𝑎𝑡𝑜𝑟                                                        (1) 

The nominal economic indicators used in this article 

are the basic economic indicators. To get the real 

economic indicators that are used for comparison, the 

primary economic indicators are modified 

by Equation (2). 

𝑅𝑒𝑎𝑙 𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠 =

 𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠/

𝐺𝐷𝑃 𝐷𝑒𝑓𝑙𝑎𝑡𝑜𝑟               (2) 

The GDP Deflator refers to the Trading Economics 

and the National Bureau of Statistics' International 

Statistical Yearbook. 

Normalization 

Due to the differences in their nature, indicators in a 

multi-indicator system typically have numerous 

orders of magnitude and units of measurement. The 

significance of the indicators with higher values 

would be exaggerated and the importance of the 

indicators with lower values would be over 

weakened if there was a significant variation in the 

order of scales among the various indicators [13]. 

Normalizing the original data is therefore required to 

ensure the accuracy of the findings. Equation (3) 

normalizes each indication of each storm surge 

occurrence. 

                                                          𝑠𝑖
,

= (𝑠𝑖 − 𝑠𝑚𝑖𝑛)

/(𝑠𝑚𝑎𝑥

− 𝑠𝑚𝑖𝑛)                                        (3) 

If s is the supplied indicator, 𝑠𝑖 is the given indication 

of the data set's i storm surge event, and 𝑠𝑖
,
 is the 

indicator following normalization. The terms "𝑠𝑚𝑎𝑥" 

and "𝑠𝑚𝑖𝑛" denote the lowest and greatest values of 

the indicator between all hurricane-related events, 

respectively. Following normalization, there is 

numerical comparability between the indicators of 

various dimensions. 

Oversampling 

Class equilibrium dispersion and equivalent error 

cost serve as the foundation for the implementation 

of classification reduction techniques on tasks 

involving classification. When a certain class in the 

information set has a large proportion, it can 

negatively affect the classifier's performance (class 

imbalance). The IV grade's events number in the 

main data set is significantly greater than that of the 

other grades, which has an important effect on the 

performance of calculated models. The Synthetic 

Minority Oversampling Technique, or SMOTE, was 

created to address issues with class imbalance. 

Therefore, the above-mentioned difficulty is 

addressed using the SMOTE. 

The primary goal of the SMOTE technique is to 

synthesise more samples artificially in order to boost 

the minority sample set's data volume. By choosing 

at random a location on the line that joins a sample 

with its closest neighbours, new samples are 

produced. In Eq (4), the SMOTE method is 

displayed. 

                                                      𝑠𝑛𝑒𝑤

= 𝑠𝑖

+ 𝑟𝑎𝑛𝑑(0,1) × (𝑠𝑗−𝑠𝑖)                                            (4) 

Where 𝑠𝑖  and 𝑠𝑗 stand for the same indicator's two 

different values respectively, and 𝑠𝑛𝑒𝑤  is the 

synthesized sample. The initial sample gathering is 

expanded to include all 𝑠𝑛𝑒𝑤, freshly generated 

samples. 

The CV set is subjected to oversampling using the 

SMOTE method. 
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Comprehensive indicator system construction 

The development of a rational and scientific indicator 

system for SSDL calculations is critical. Up until 

recently, China has lacked a centralized method for 

selecting SSDL indicators. Yet, Studies have 

concentrated on various periods and fields of study. 

Similar indicators may be discovered in the indicator 

system. The research presented here develops a 

complete indicator system, thoroughly examines the 

storm surge manufacturing procedure and data 

availability, and collects a large amount of open-

source data. Three views are used in the construction 

of the complete indicator system: resilience, the risk 

of the disaster-bearing body, & the danger of 

disaster-causing elements. Typhoons, tidal levels, 

high winds or gusts, precipitation, sea level, 

topography, economics, society, population, 

catastrophe scenario, healthcare, a few of the factors 

that are considered are land use type, geographic 

features, public propaganda, and education. 

Transmission for the distinctive indicator system 

When overfitting occurs when there are too many 

factors taken into account relative to the amount of 

dataset, learning algorithms may become difficult. It 

seems sensible to normalize the loss function or use 

fewer variables for this reason. 

Whenever possible, the necessary number of 

indicators will be included at the start of the 

modelling procedure in order to prevent the missing 

indicator's impact on the model deviation. Therefore, 

the comprehensive indicator technique starts with 50 

indications input, even if noise and indicator 

interaction will always exist. This process of 

identifying which indicators within the dataset have 

an impact on the result is known as "indicator 

selection." The goal is to minimise the high-

dimensional data size while keeping or improving 

accuracy. A strong and adaptable technique that can 

extract lower-dimensional representation from 

higher-dimensional information while preserving the 

most original information is principal component 

analysis (PCA). The classifier's success is gauged 

using the recursion feature elimination (RFE) 

method, which eliminates attributes one by one. An 

explanation of PCA and RFE is given below. 

Recursive feature elimination 

Permutation significance measure is used as a rating 

criterion by RFE to recursively reduces the 

indicators. Following the computation of the 

significance rankings for each indication the indicator 

with the lowest relevance value is eliminated from 

the classifier and the remainder Subsets will be built 

with indicators to reconstruct the SSDL 

calculation model. Every subset is used to retrain the 

classifier model, and the model's performance is also 

computed. 

Depending on the classifier model being used, the 

important ranking scores can be computed using 

either the Gini index or the information gain method. 

To summarize, the process of calculating ranking 

importance involves the subsequent steps: (1) 

Determine the correctness of a simple decision tree 

(DT); in particular, the out-of-bag or Gini index is 

frequently used as an assessment indices to assess 

accuracy. (2) Based on the calculated accuracy, 

permute the indicators. (3) Recalculate the DT's 

accuracy by utilizing the permuted indicator to 

remove the covariate's information content. (4) Find 

the error in the accuracy between the recalculated 

(from (3)) accuracy and the initial (from  

(1)) accuracy. (5) Continue with steps (1) through (4) 

for each DT; the total essential score is derived from 

the DTs' average accuracy. There are several 

advantages to the significance ranking evaluation 

mentioned above. It takes into account the effect of 

each predictor separately as well as the impact of 

multi-indicator relationships on other input 

indicators. It is objective and extensively applicable. 

The "feature_importances" toolset, which the tree-

based models give, is used in this research to build 

the importance ranking. 

The distinctive indicator system will be selected in 

this investigation using RFE and PCA, and the 

outcomes will be examined and contrasted. 

Factors causing spikes in tropical storms 

As Figures 3.1 illustrate, a storm surge is the result of 

several factors. The cyclonic winds are the main 

force behind tropical storm surges. Another 

significant factor that might affect the surge level is 

wave set-up. In contrast, the increase in water level 

caused by the low air pressure is negligible. A more 

thorough description of each force is provided below 

(For more thorough explanations of storm surge 

forcings, refer to the following descriptions, which 

are condensed and leave out much of the intricacy of 

storm surge dynamics). 
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Fig. 3.1. Schematic graphic illustrating the many factors involved in the creation of tropical storm surges 

Machine learning methods 

We will quickly describe four more machine-learning 

techniques that we evaluated in our experiments in 

this section. These comprise Support Vector 

Regression (SVR), k-nearest Neighbours, and the 

Multi-Layer Perceptron. Because they may capture 

the mapping between variables that are inputs and 

outputs (forecast issues) without directly 

investigating the natural laws  that control storm 

surge dynamics, these models are sometimes referred 

to as data-driven models. These models are entirely 

dependent on knowledge gleaned from the 

information collected. In Figure 3.2 Diagrammatic 

representations of the hazards-affected objects and 

disaster-causing causes in ML are illustrated. 

 

 

Fig. 3.2. Diagrammatic representations of the hazards-affected objects and disaster-causing causes in ML 
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K-nearest neighbor 

A non-parametric statistical machine learning 

technique called k-NN makes predictions based on 

the target that the k closest neighbors of a given 

query point produce in Figure 3.3. Specifical, we 

compute the Euclidean measure value between a 

particular data point and every other point in our 

training set. Next, we choose the neighborhood's k 

closest neighbors. The average of the goal output 

values generated by these k closest neighbors is then 

used to set the forecast value. The prediction 𝑠𝑡 is 

specifically specified as: 

 

 

 

Fig. 3.3. K-fold Cross-Checking 

                                                                     𝑥𝑡
𝐸 =

1

𝑘
∑ 𝑥𝑡𝑡∈𝑅(𝑋,𝑛)                                                              (5) 

Where the k closest neighbor index assigned to the X 

(n) attribute vector is expressed by R(X, n). It makes 

sense that the sample average of the output surge 

level of the k closest neighbors to X (n) is what the 

prediction 𝑥𝑡
𝐸 in Equation (5) represents. 

Support vector machines 

Regression and classification issues may both be 

handled with support vector machines. 

Support vector regression (SVR) is the term used 

when it is used to a regression problem. The forecast 

is generated by taking into account a linear model as 

an instance. 

                                                                  𝑒(𝑥)

= 𝑤𝑇𝑥 + 𝑝,                                                                  (6) 

Where the weighted vector, a bias, & the input vector 

are represented, respectively, by the symbols w, p, 

and x. For each n = 1... N, let 𝑥𝑛 represent the n-th 

training input vector and 𝑦𝑛 represent the desired 

output. 

The error function is calculated using the formula 

below: 

                                                           𝐽 =
1

2
||𝑤||

2
+

𝑉 ∑ |𝑦𝑛 − 𝑒(𝑥𝑛)|𝜀 ,𝑚
𝑖=1                                       (7) 

The first term in this mistake function is used to 

punish the model's complexity. The last term is 

commonly referred to as the "ε-insensitive loss 

function," meaning that errors below epsilon are not 

penalized [13]. The learned function for the linear 

example might be found by using the following 

minimizing method to Eq. (8). 

                                                     𝑒(𝑥) =

∑ (𝛼𝑛
∗ − 𝛼𝑛)𝑥𝑛

𝑇𝑥 + 𝑝                                            (8)𝑁
𝑛=1  

Where the Lagrange multipliers are 𝛼𝑛 and 𝛼𝑛
∗ . A 

fundamental idea in the theory of SVR is the term 

"support vector," which refers to training vectors that 

produce nonzero Lagrange multipliers. The amount 

of support vectors indicates the degree of complexity 

of the model, whereas non-support vectors indirectly 

help in the solution. By using kernelization and the 

addition of the kernel's function κ in a replication of 

kernel Hilbert space (RKHS), this model may be 

enlarged to the non-linear scenario. 
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                                              𝑒(𝑥) = ∑ (𝛼𝑛
∗ −𝑁

𝑛=1

𝛼𝑛)𝜅(𝑥𝑛
𝑇𝑥) + 𝑝                                        (9) 

In our SVR tests, we use the commonly recognized 

Gaussian kernel. The Gaussian function's standard 

deviation is expressed by its width, δκ. 

Multi-layer perceptron networks 

The most often used type of perception network is 

the multi-layer one. The ANN (Artificial Neural 

Networks) model learns the network configuration 

using the error backward propagation approach. One 

hidden layer artificial neural networks (ANNs) are 

usually employed in hydrologic modeling because 

those networks are thought to offer enough 

complexity to effectively represent the nonlinear 

features of the hydrologic cycle. The ANN model for 

forecasting is defined as:  

  𝑥𝑡
𝐸 = 𝑒(Xt , w, θ, n, h)  

= 𝜃0

+ ∑ 𝑤𝑖
𝑜𝑢𝑡

ℎ

𝑖=1

𝜑 (∑ 𝑤𝑖𝑗𝑥𝑡

𝑛

𝑗=1

+ 𝜃𝑖),                           (10) 

When the transfer function is indicated by 𝜑; The 

weight of the connection between the j-th node of the 

input layer and the i-th node of the hidden layer is 

denoted by 𝑤𝑖𝑗 ;  𝜃𝑖 represents the bias associated with 

the hidden layer's i-th node; The weight of the 

connection between the i-th component of the layer 

that is hidden and the output layer node is denoted by 

𝑤𝑖
𝑜𝑢𝑡; and the output node's bias is indicated by 𝜃0. 

To use Equation (6) for surge level forecasting, an 

appropriate training technique is required to 

determine the ideal values of w and θ. 

 

 

 

4. Implementation and Experimental results 

4.1 ConvLSTM Model-Based Spatiotemporal 

Water Level Prediction 

Once the aforementioned operations were finished, 

we had two models that were educated on different 

training sets. We assessed the accuracy and stability 

of these models using Super-Typhoon Usagi's storm 

surge water gain mechanism as a test case. Super-

Typhoon Usagi, one of the strongest tropical 

cyclones in the western North Pacific that year, made 

landfall in 2013 off the southern shore of Shanwei 

Town, Guangdong Province. Importantly, our 

ConvLSTM models were not trained using the data 

associated with this typhoon. Furthermore, the 

model's predictions were verified using actual data 

from water level measurements made during 

Typhoon Usagi at Henglan Island Station (114.182◦ 

E, 22.110◦ N). The real sea level measurement data at 

the tide check station came from the integrated lake 

level datasets at the National Marine Information 

Centre. 

4.2 Outcomes of a Single-Step Prediction 

We tested the two constructed models using the 

previously described methodology, and both models 

performed exceptionally well on the test data. We 

matched these network models' predictions with the 

actual data over the following hour, using measures 

such as mean absolute errors (MAE) and mean 

squared error (MSE) to gauge how accurate they 

were. 

We computed the MAE by contrasting the 

ConvLSTM model's predictions with the actual data 

to evaluate the two models' predictive abilities, 

displays the geographic spread of the MAE for the 

model educated on the Water Level Dataset, whereas 

the MAE distribution for the models trained on the 

Water Level Variation Dataset. Notably, both 

models' forecasts often show higher absolute error 

levels in places close to the shore. 
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Fig 4.1. The model's prediction outcome after training on the MAE and Water Level Change Dataset 

The results of the research area's global water level 

data projection are displayed above. We randomly 

chose a point and extracted its prediction outcomes 

from the global prediction outcomes in order to 

thoroughly assess the dependability of the model. 

The model trained on this Water Level Dataset has 

higher dispersion and volatility in its residuals, as 

seen by the two distinct violin charts [14, 15]. Above 

are the global findings of the research area's water 

level data prediction. We chose a location at random 

and took its prediction results out of the global 

prediction results in order to thoroughly assess the 

reliability of the model. The two distinct violin charts 

show that the residuals of the model trained on this 

Water Level Dataset are more dispersed and volatile, 

MAE and MSE. Table 1 provides an instant of the 

findings. 

Table 1. Evaluation table of MAE and MSE of the 

two models 

 MAE (m) MSE (𝑚2) 

The Model trained on the 

Water Level Dataset 

0.028 0.0039 

The Model trained on the 

Water Level Change 

Dataset 

0.015 0.0008 

 

It is clear from looking at the figures in the table that 

indirect water level prediction, which forecasts 

changes in water level, provides better outcomes than 

direct water level forecasting. It is beneficial to 

utilize the model of neural networks for prediction 

because its activation function is always constrained; 

demonstrating that compared to the water level value, 

the numerical range inside the region of water level 

variation is narrower and more concentrated. 

Furthermore, we conducted experiments to evaluate 

the MAE & MSE of model projections on the 

learning set using the model that we had learnt on 

datasets of varying sizes. As seen in Figure 4.1, both 

models had declining MAE & MSE values as the 

amount of the dataset increased. When the size of the 

data set rose, the model trained on the Waters Level 

Dataset showed a more pronounced fluctuation in its 

forecasts than the model trained on the Water Level 

Change Dataset. It seems that the ConvLSTM model 

can generate reliable predictions with a smaller 

dataset when trained on the Water's Level Change 

Dataset. 
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Fig. 4.2. multi-step forecasts made by the two models of how dataset size affects changes in MAE and MSE 

 

4.3 Results of Multi-Step Prediction 

The water level or the water level change information 

for the next hour is predicted using the hourly data of 

the present time and the previous eight hours, as 

shown in the above findings. We now use a recursive 

multi-step forecasting technique to anticipate the 

water level or the water level change data for the next 

12 hours using the hourly data on the water level or 

change for the last 8 hours and the current time. We 

use the MAE statistical measure to assess the long-

term prediction performance of both models. We 

research the predictive power of the models across 

prolonged periods, starting from 10:00 a.m. on 

September 20, 2013. 

As Figure 4.2 illustrates, the model trained on the 

Waters Level Variation Dataset consistently 

outperforms the Waters Level Dataset model when it 

comes to longer-term predictions. The model's 

reliability for forecasting the water's level or change 

in the next six hours based on data from the previous 

eight hours and the current time is rather high. But 

when the prediction time increases, the outcomes 

usually go worse. 

5. Conclusion 

The existence of ML models in SSDL estimation 

study is confirmed, and this work obtains the optional 

SSDL estimation model and a high-accuracy 

estimation approach. With their rapid development 

and continued concentration of population along the 

coast, coastal cities are increasingly vulnerable to 

marine dynamics disasters such as storm surges. This 

poses a significant barrier to sustainable 

development. This study's outcome is 

groundbreaking as it is the first comprehensive 

assessment of coastal China's vulnerability to storm 

surges from the perspective of prefecture-level cities. 

The vulnerability index, which offers a thorough 

assessment of the multidimensional structure of 

vulnerability, was created by integrating the three 

components of vulnerability. Moreover, we assessed 

the influence of environmental factors on the 

susceptibility of disaster-prone regions to storm 

waves at the patch scale. 

However, it is challenging to assess the model's 

performance's relevance and to validate it with any 

level of reliability due to the lack of data. In order to 

improve our dataset—particularly for use with 

random forest models—this thesis needs to keep 

investigating the use of artificial typhoon data 

generating methods. Apart from ConvLSTM, we also 

intend to investigate and test other spatiotemporal 

prediction models to see how well they work and 

whether they are appropriate for our particular needs. 

With regard to predicting water levels in relation to 

typhoons, these endeavours are expected to enhance 

our comprehension of prediction methodologies and 

maybe augment the accuracy and robustness of our 

predictive models. 
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