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Abstract: The proliferation of false information across social media has emerged as a significant challenge in recent times. Within this 

landscape, the platform formerly known as Twitter, now referred to as X, stands as a widely used medium for disseminating news and data, 

rendering it especially susceptible to the proliferation of misleading or fabricated content. In response to this issue, this research paper 

presents an innovative strategy hinging on BERT (Bidirectional Encoder Representations from Transformers) technology to address the 

propagation of deceptive news on Twitter. By means of meticulously acquired Twitter data pertaining to news items, the dataset undergoes 

careful pre-processing to render it compatible with the BERT model. This data is subsequently partitioned into training and validation 

subsets. The BERT model is then meticulously fine-tuned via a feed-forward neural network and optimized leveraging the Adam optimizer. 

Throughout the training process, vigilance is maintained over loss values, augmented by techniques such as dropout and regularization to 

enhance generalization capabilities. The final model selection is dictated by the validation loss metric. Harnessing the capabilities of 

advanced natural language processing methods, this endeavour contributes to the evolution of robust instruments for unearthing misleading 

content, fostering a more dependable informational milieu across social media domains with an accuracy of 77.29%. The study's 

conclusions carry implications for elevating the integrity and credibility of news propagation within the digital epoch 

Keywords: BERT, Twitter, Fakes News detection 

1. Introduction 

The rise of social media has transformed information 

sharing, offering instant global connectivity. However, it 

has also fuelled misinformation, particularly on platforms 

like Twitter due to real-time sharing and a wide user base. 

Twitter is a prominent platform for news and opinions due 

to its concise format and rapid reach. Yet, this also makes it 

susceptible to fake news due to limited context and swift 

amplification. Detecting and countering Twitter fake news 

is vital. False information risks misleading the public, 

distorting discourse, and eroding trust. Ensuring accurate 

information is crucial for informed choices, democratic 

processes, and news credibility. 

The proliferation of false information across social media 

has emerged as a significant challenge in recent times. 

Research studies by (1) and (2) have revealed the rapid 

spread of fake news on platforms like Twitter, leading to 

widespread misinformation and confusion. The real-time 

nature of Twitter, characterized by short messages (tweets) 

and quick sharing, makes it particularly prone to the 

dissemination of misleading content. 

This paper confronts the urgent challenge of recognizing 

fraudulent news on Twitter by introducing a pioneering 

algorithmic approach. The primary objective of this paper 

focuses on devising a resilient and effective system capable 

of proficiently pinpointing and categorizing deceptive 

content, thereby contributing to the broader endeavour of 

cultivating a more dependable informational environment 

on the Twitter platform. 

To tackle this problem, this paper proposes an algorithm 

based on the principles of natural language processing and 

deep learning. The proposed approach leverages the power 

of the BERT (Bidirectional Encoder Representations from 

Transformers) model (3), a state-of-the-art language 

representation model known for its ability to capture 

contextual information effectively. By harnessing the 

advanced capabilities of the BERT model, the aim is to 

enhance the accuracy and efficiency of fake news detection 

on Twitter. 

The algorithm proposed in this paper follows a systematic 

pipeline tailored to the characteristics of Twitter data. The 

approach begins by collecting a comprehensive dataset of 

tweets containing news-related content. This dataset serves 

as the foundation for training and evaluating the model. To 

prepare the data, tokenization and normalization techniques 

are employed, converting the raw text into a suitable format 

for analysis and classification 

Next, the dataset is split into training and validation sets, 

ensuring the model's ability to generalize beyond the 

specific instances encountered during training. The BERT 

model is then trained using the training data, fine-tuning it 

specifically for fake news detection. During the training 

process, optimization algorithms are employed, and 
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hyperparameters are carefully selected to optimize the 

model's performance. 

After training, the effectiveness of the proposed approach is 

evaluated using robust metrics such as accuracy, precision, 

recall, and F1 score. By comparing the results with existing 

methods and benchmark datasets, the paper aims to validate 

the algorithm's performance and demonstrate its superiority 

in detecting fake news on Twitter. 

The findings from this research provide valuable insights 

into the challenges of combating fake news on Twitter and 

offer practical solutions for promoting the authenticity and 

reliability of information. By leveraging advanced 

techniques and the power of deep learning, this paper 

contributes to the ongoing efforts in addressing the global 

issue of fake news. 

This paper presents an innovative algorithm for detecting 

fake news on Twitter using the BERT model. By harnessing 

the capabilities of natural language processing and deep 

learning, the proposed approach aims to enhance the 

accuracy and efficiency of fake news detection, ultimately 

contributing to the creation of a more trustworthy 

information ecosystem on Twitter. The subsequent section 

3 of this paper delves into the methodology, experimental 

setup, results, and discussions, providing a comprehensive 

analysis of the approach's performance and its implications 

for combatting fake news on social media platforms, with a 

specific focus on Twitter. 

2. Literature Survey 

The detection and mitigation of fake news on social media 

platforms, particularly Twitter, have garnered significant 

attention from researchers and practitioners in recent years. 

Several studies have explored various approaches and 

techniques to address this critical issue. In this literature 

survey, we present a summary of the existing research 

related to fake news detection on Twitter, focusing on the 

use of advanced algorithms and models. 

The widespread dissemination of fake news on social media 

platforms, particularly on Twitter, has raised concerns about 

the credibility and reliability of the information shared. 

Researchers have been actively working on developing 

effective approaches to detect and combat fake news in 

order to promote accurate information and informed 

decision-making. 

(4) proposed FakeBERT, a deep learning approach based on 

BERT, a state-of-the-art language model, for fake news 

detection on Twitter. By training the model to learn the 

linguistic features specific to fake news, they achieved a 

high accuracy of 98.90%. This highlights the potential of 

BERT-based models in capturing the nuanced language 

patterns associated with fake news. 

In the context of the COVID-19 pandemic, (5) developed a 

BERT-based model capable of classifying COVID-19 

related tweets into fake news and real news categories. They 

also incorporated sentiment analysis to gauge the emotional 

tone of the tweets. Their model achieved an accuracy of 

90% for fake news detection and 93% for sentiment 

analysis, showcasing its effectiveness in tackling fake news 

surrounding a specific topic. 

(6) proposed a fusion technique-based ensemble deep 

learning model that combined two powerful models, CT-

BERT and RoBERTa, to detect fraudulent tweets related to 

the COVID-19 epidemic. With an accuracy of 98.88%, their 

model demonstrated the potential of leveraging multiple 

deep learning models for enhanced fake news detection. (7) 

introduced BERTweet, a pre-trained language model 

specifically designed for English tweets. BERTweet 

effectively captures the linguistic features unique to tweets, 

enabling it to be a valuable tool for various natural language 

processing tasks, including fake news detection. 

(8) focused on a comprehensive NLP-based approach for 

fake news detection on Twitter. By employing techniques 

such as named entity recognition, sentiment analysis, and 

hate speech detection, they developed a robust model 

capable of identifying fake news tweets based on multiple 

linguistic cues. 

Other studies, such as (9) and (10), and (11), explored 

machine learning and feature engineering techniques for 

fake news detection on Twitter. These approaches 

incorporated factors like user engagement metrics (e.g., 

retweets, likes) and linguistic features to distinguish 

between genuine and fake news tweets. 

(12) explored the importance of neural network 

initialization and its impact on the expressiveness and 

performance of deep learning models. Their findings shed 

light on the nuances of initializing models effectively, which 

is crucial for improving the accuracy and generalizability of 

models used for fake news detection. (13) introduced the use 

of recurrent neural networks (RNNs) for detecting rumors 

in microblogs. Their work underscores the potential of 

sequence modeling techniques to capture temporal 

dependencies in tweets, enabling more accurate 

identification of fake news by considering the context in 

which they are shared. 

(14) delved into the psychological factors that influence 

individuals' susceptibility to fake news. By analyzing 

cognitive processes, political beliefs, and other 

psychological dimensions, their study contributes to 

understanding the cognitive biases that underlie the spread 

and acceptance of fake news on social media platforms like 

Twitter. (15) examined the credibility of information shared 

on Twitter. Their work emphasized the significance of 

social network analysis and user behavior in assessing the 
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credibility of tweets, which can complement the technical 

approaches for fake news detection and provide a more 

holistic understanding of the problem. 

(16) presented a hybrid deep learning model for fake news 

detection. Their approach combines convolutional neural 

networks (CNNs) and long short-term memory (LSTM) 

networks, demonstrating the potential of leveraging 

multiple neural architectures to enhance the accuracy of 

fake news detection. The research by (17) focused on fake 

news detection on Twitter and presents an approach that 

combines feature engineering and machine learning 

techniques. Their work contributes to the early exploration 

of machine learning methods for identifying fake news on 

social media platforms like Twitter. By implementing 

feature engineering, the authors demonstrate their 

commitment to crafting effective feature sets for machine 

learning models, which is a crucial aspect of fake news 

detection. This study serves as a foundational reference for 

understanding the early developments in the field. 

The research conducted by (18) focused on detecting online 

fake news using N-gram analysis and machine learning 

techniques. N-grams are an important text analysis tool, and 

their utilization in fake news detection underscores the 

relevance of linguistic features. This study showcases the 

application of machine learning in distinguishing fake news 

from legitimate content, further emphasizing the importance 

of computational approaches in the fight against 

misinformation. (19) presented a hybrid approach for 

detecting spammers in Twitter marketing, which has 

relevance in the broader context of content credibility. The 

use of social media analytics and bio-inspired computing 

signifies the multifaceted nature of combating 

misinformation. By considering marketing-related content 

and incorporating bio-inspired computing techniques, this 

research provides valuable insights into addressing 

malicious content and its impact on online platforms. 

(20) delved into the significance of social context in fake 

news detection. It highlights that detecting misinformation 

goes beyond analyzing the content alone and involves 

understanding the broader social context in which 

information is shared. This study underscores the 

importance of considering factors like user behavior and 

interaction patterns in identifying fake news, offering a 

holistic perspective on the problem. 

(21) research focused on text classification and sentiment 

prediction on social media datasets using a multichannel 

convolutional neural network (CNN). While not directly 

related to fake news detection, this reference is relevant 

because it demonstrates the utility of deep learning 

techniques for processing social media text data. Such 

techniques can potentially be applied in fake news detection 

systems to enhance their performance. 

Gupta and Kumaraguru's research [22] focused on the 

credibility ranking of tweets during high-impact events. 

This study highlights the importance of assessing the 

credibility of information on social media platforms, 

particularly during critical events when misinformation can 

have significant consequences. By addressing credibility 

ranking, the paper contributes to the broader understanding 

of information quality and trustworthiness on Twitter, 

which is closely related to fake news detection. (23) 

explored user perception of information credibility of news 

on Twitter. This work investigates how users perceive and 

evaluate the credibility of news shared on the platform. 

Understanding user perceptions is crucial in fake news 

detection, as it sheds light on the human side of the problem. 

Recognizing that people make judgments about information 

credibility informs the design of more effective detection 

algorithms and strategies. (24)’s research addressed the 

challenge of finding true and credible information on 

Twitter. This work underscores the importance of 

distinguishing reliable information from the vast amount of 

data circulating on the platform. The research likely 

includes valuable insights and techniques for assessing 

credibility that can be adapted for fake news detection, as 

both areas share the goal of differentiating between 

trustworthy and untrustworthy content. 

The existing literature offers valuable insights into the 

detection of fake news on Twitter. While various 

approaches and models have been explored, our research 

paper contributes by proposing an innovative algorithm 

based on the BERT model, specifically tailored for fake 

news detection on Twitter. By building upon the 

advancements in NLP and deep learning, our approach aims 

to enhance the accuracy and efficiency of detecting and 

classifying fake news, ultimately contributing to the 

creation of a more trustworthy information ecosystem on 

Twitter. 

3. Methodology and Algorithm 

The methodology of this research paper follows a four-part 

approach, as shown in Figure 1, for detecting fake news 

using a modified BERT based algorithm. This modified 

algorithm is named as TweetTruth. In the first part, 

explained in section 3.1, the collected data is subjected to 

thorough cleaning and preprocessing, including steps such 

as noise removal, handling missing values, and text 

normalization. Tokenization is then applied to convert the 

pre-processed text into tokens suitable for further analysis. 

The second part focuses on creating a data loader that 

efficiently handles the tokenized data, including batching, 

shuffling, and loading onto the appropriate hardware, as 

explained in section 3.2. The third part involves creating a 

BERT model specifically for fake news detection, fine-

tuning it using the appropriate architecture and 

hyperparameters, as explained in section 3.3. Lastly, as 
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explained in section, 3.4, the performance of the trained 

model is evaluated using various metrics on a validation or 

test dataset, assessing its ability to accurately classify fake 

news 

Fig 1. Flow of TweetTruth Model 

3.1 The Data Cleaning and Preprocessing for 

Tokenization 

This section discusses the pseudo code steps used in 

TweetTruth model. 

Data Gathering: It is very crucial that the collected dataset 

be accurate and diverse. For the acquisition of datasets,(25), 

is used as it has an enormous collection of various datasets. 

To read the dataset and pre-process it for further operations 

Pandas - Python package (26) is used for data analysis and 

associated manipulation of tabular data in data frames. 

Furthermore, the dataset is divided into two classes of 

samples to achieve a diversity of tweet types. One with no 

real disaster and the other with a real disaster. This will be 

useful for segregation as well as training. The acquired and 

pre-processed dataset will be sent for further clarification. 

Table 1 lists the functions used in the algorithm and a short 

description for each 

Table 1. Functions for algorithm for pre-processing 

Function Description 

Load(x)  load x into to system 

Clean(𝑥, 𝑦1, 𝑦2 … 𝑦𝑖)  remove 𝑦1, 𝑦2 … 𝑦𝑖  attribute 

from x 

Split(x, set1, set2, p)  Split x into set1 and set2 by 

keeping p% samples in set2 

tokenization()  tokenize and input formatting 

function 

select_tokenizer(x)   select x tokenizer to better 

train the data of Tweets 

init_Tokenizer(x)  initialize the tokenizer with x 

pretrained model 

addNomalization_L()   add normalization and make 

the text as Lowercase 

encode_plus()  Encode_plus methods    

indexes add(x,y)  add x and y tokens and return 

indexes by referencing 

tokenizer vocabulary 

truncate(y) truncate sentences to y length 

create_attentionMask()  create attention mask 

return_input_id()  returns token ids representing 

the tokenised sequence 

return_attentionMask()  returns which tokens to attend 

to and which ones to ignore 

 

Following algorithm includes the steps for Pre-processing: 

Algorithm 1: Pre-Processing 

1 Load(x) 

2 Clean(𝑥, 𝑦1, 𝑦2 … 𝑦𝑖) 

3 Split(x, set1, set2, p) 

4 tokenization() 

5 select_tokenizer(x) 

6 init_Tokenizer(x) 

7 addNomalization_L() 

8 encode_plus() 

 { 

9 i = split_text(); 

10 j = add(CLS, SEP); 

11 truncate(max_length) 

12 create_attentionMask(); 

13 k= (input_ids[], attention_masks[]) 

14 return k; 

 } 

15 indexes add(x,y) 

16 truncate(y) 

17 create_attentionMask() 

18 return_input_id() 

19 return_attentionMask() 

 

After loading the dataset into the system, cleaning the 

dataset is an important step in preparing data for our model 

- TweetTruth. The dataset should be pre-processed to 

remove any irrelevant information. A pre-processing 

pipeline involves removing URLs, mentions, hashtags, 

emojis, and punctuations from the tweets.  To normalize the 

data there is need to convert all text to lowercase and replace 

user mentions with a special token. 

Since it is a classification problem there is need to remove 

the stop words (common words like “the”, “and”, “a”, etc.) 
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and perform stemming or lemmatization (reducing words to 

their base form) on the text data. These steps can help reduce 

the dimensionality of the data and improve the performance 

of TweetTruth. After cleaning the data, the train_test_split 

function in the scikit-learn library is used for splitting a 

dataset into two subsets: a training set and a testing set. This 

is followed by tokenization. 

Tokenization is a crucial step in natural language processing 

tasks that involves converting text into a sequence of tokens 

for further analysis. The tokenization process is 

encapsulated in a function called tokenization, which takes 

two arguments, X_train and X_val. The code snippet begins 

by selecting the BERT tokenizer through the 

select_Tokenizer(BERT) function call. The chosen tokenizer 

is initialized with the "vinai/tweettruth_base" pretrained 

model using the init_Tokenizer function. Subsequently, text 

normalization techniques are applied using the 

addNormalization_L() function. The select_tokenizer is 

specifically designed for tokenizing text from social media 

platforms. The tokenizer is then initialized with the pre-

trained TweetTruth model by specifying its name or model 

identifier, "vinai/tweettruth_base." 

The TweetTruth algorithm uses a pre-processing technique 

called "text normalization" to clean and standardize the 

tweets before feeding them into the model. The text 

normalization process involves several steps such as 

removing URLs, mentions, hashtags, emojis, punctuations, 

and stop words. The text is then tokenized into words and 

converted into lowercase. The algorithm also uses subword 

tokenization to handle out-of-vocabulary (OOV) words. In 

subword tokenization, the words are broken down into 

smaller subwords based on their frequency of occurrence in 

the training data. The subwords are then used as input to the 

BERT model. This is followed by the encode_plus() 

function. The encode_plus() function is used in tokenization 

libraries to encode text sequences and generate the 

necessary inputs for training or inference with transformer-

based models like BERT. 

Tokenization and Input formatting functions: 

1.  To better train the data of tweets, we use a twitter 

specific Bert tokenizer - BERTweet. 

2. Initialization of the tokenizer using the method 

AutoTokenizer.from_pretrained("vinai/tweettruth-

base"). Addition of normalization and make the text as 

lower case. 

3. This will return the input ids and attention masks and 

to calculate the max length of the tweets, the encode 

method is used for the same and set the max length 

variable to the maximum length of the sentences after 

adding special tokens. 

4. The above-mentioned Tokenization and input 

formatting function is used to tokenize (X_train) and 

validation (X_val) data of tweets. 

The encode_plus method is a 5-step process. The Figure 2 

shows the steps which are used. 

 

Fig 2. Steps performed by encode_plus() 

The explanation of each of the steps of the encode_plus() 

function is given below: 

i. tokens split_text()  

The input text is split into individual tokens or sub-words. 

The splitting process depends on the specific tokenizer 

being used and the tokenization rules it follows. The 

tokenizer may split text based on whitespace, punctuation, 

or language-specific rules. The result is a sequence of 

tokens. 

ii. indexes add(x,y)  

Special tokens like [CLS] (start of the sequence) and [SEP] 

(separator between sentences or segments) are added to the 

tokenized sequence. These tokens are necessary for models 

like TweetTruth, as they provide important positional 

information. 

iii. truncate(y)  

If the tokenized sequence exceeds a maximum length 

specified by the model or task requirements, it may need to 

be truncated. Truncation involves removing tokens from the 

sequence to fit within the length limit. 

iv. create_attentionMask()  

An attention mask is a binary tensor that indicates which 

tokens should be attended to and which ones should be 

ignored during model training. The attention mask has the 

same length as the tokenized sequence and consists of 1s 

and 0s, where 1 indicates a valid token and 0 indicates a 

padded or ignored token. 

v. create_input_id()  

Input IDs are the tokenized sequence converted into a 

sequence of token IDs that correspond to the vocabulary of 
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the pre-trained model. Each unique token is mapped to a 

specific ID. The input IDs represent the input data that the 

model will process during training or inference. 

vi. return_attentionMask()  

Returning the Outputs: The encode_plus() function 

typically returns the following outputs: 

a. input_ids: The token IDs representing the tokenized 

sequence. 

b. attention_mask: The attention mask indicating which 

tokens to attend to and which ones to ignore. 

Additional outputs may include token type IDs or segment 

IDs, depending on the model architecture and specific use 

case. These encoded inputs (input IDs, attention masks, etc.) 

can be passed to a transformer-based model for training, 

fine-tuning, or inference. The flow diagram for the Pre-

processing step of TweetTruth is given in Figure 3. 

 

Fig 3. Flow diagram for Pre-Processing Step of 

TweetTruth Model 

3.2 Processing the Tokenized data using PyTorch 

DataLoader  

PyTorch DataLoader is a utility in the PyTorch library that 

provides an efficient and convenient way to load and iterate 

over datasets during model training or evaluation. It allows 

us to handle various aspects of data loading, such as 

batching, shuffling, parallelizing data loading, and more. 

Table 2 lists the functions used in the algorithm and a short 

description for each. 

 

Table 2. Functions for algorithm for processing the 

tokenized data 

Function Description 

create_maxlength()

  

Create max length from 

actual tweets 

max(encode_plus()) use the encode method 

and set the maximum 

length variable to the 

maximum length of the 

sentences after adding 

special tokens 

tokenization() Assigning tokens to each 

word 

isNotComplete(x)  return True till x is not 

completely trained/ 

validated). The function 

will keep on iterating until 

the dataset is completely 

trained / validated.  

dataLoader() Use pytorch dataloader 

class to save memory and 

boost the training speed 

dataLoader conver() Convert the tokenized 

train input_id , 

attention_masks, train 

labels to Dataloader class 

using RandomSampler to 

randomize drawing 

samples from dataset 

using batch size of 32 and 

return DataLoader object 

 

Following algorithm includes the steps for processing the 

tokenized data: 

Algorithm 2: Preprocessing of Tokenized 

data 

1 create_maxlength() 

2         max(encode_plus())  

3 tokenization() 

4 while ← (isNotComplete(x)) Do 

 { 

5         dataLoader() 

6         dataLoader conver()  

 } 

7 create_maxlength() 
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8 tokenization()  

9 isNotComplete(x)  

10           dataLoader() 

 

To efficiently process the tokenized data during training, we 

can convert it to a PyTorch DataLoader object. The 

DataLoader wraps the tokenized inputs (input IDs and 

attention masks) and labels, allowing us to iterate over mini-

batches of data during training. 

RandomSampler is a sampling strategy provided by 

PyTorch. It shuffles the dataset to ensure that the samples 

drawn during training are randomized. This randomization 

helps us to reduce bias and correlation in the training process 

and promotes better model generalization. 

The flow Diagram for Processing the Tokenized data using 

DataLoader TweetTruth is given in Fig 4. 

 

Fig 4. Flow Diagram for Processing the Tokenized data 

using DataLoader TweetTruth Model 

3.3 Creating the BERT Based Model Using Freezing 

BERT Layers and Employing a Feed-Forward Neural 

Network. 

Table 3. Functions for algorithm for creating the BERT 

based model 

Function Description 

For Algorithm 3 

create_BERT (classifier 

class name, Hidden Size 

of BERT, hidden Size of 

Classifier, no of output 

classes) 

Creates the BERT model by 

initializing the given 

parameters 

init_model (x) initialize the model by 

loading the pretrained 

model x 

 

init_ff(class name, no of 

input layers, activation 

functions, no of output 

layer) 

initializes a feed-forward 

(FF) layer, which is 

typically added on top of the 

TweetTruth model for 

classification tasks. The 

‘Sequential’ function is 

used to define a sequential 

stack of layers, where ‘I’ 

represents the input size and 

‘RELU’ represents the 

activation function. 

float_forward(x,y) → take 

x and y as parameters and 

returns the probabilities. 

extracts the last hidden state 

of the [CLS] token and 

provide it to the 

classification model and 

returns the probabilities. 

forward(x,y)  take x and y as parameters 

and returns the probabilities 

init_paramters 

(optimizer_name, 

learning_rate, default) 

initialize the model 

parameters and define the 

training steps as length of 

train_dataloader as no. of 

times as epochs. Define the 

learning rate schedular 

using transformers 

get_linear_scedule_with 

warmup() 

get_linear_scedule_with 

_warmup() 

Define the learning rate 

schedular using 

transformers 

get_linear_scedule_with 

warmup () 

classImbalance(x) Use sklearn’s compute 

class_weight() using 

class_weight parameter to 

handle class imbalance 

convert_cw_to_to()  

 

Convert class weight to 

tensor objects to move them 

then to GPU 

use_cw() uses the computed class 

weights in model. 

 

For Algorithm 4 

model.train()   put the model into the 

training model 

load_batch(GPU)  load batch to the GPU 

performi(bert)  perform a forward pass of 

the Bert model 

 performi−1 (bert)  perform a backward pass of 

the Bert model 
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computeLV()   convert the loss value 

dump(x)   print out loss values after x 

no of batch 

total(x[ ])  find total of the given set x 

save_model()  save the current model 

For Algorithm 5 

load_batch(GPU)  loads a batch of data onto 

the GPU for efficient 

computation. 

gradienti−1 = 0  initializes the gradient to 

zero at the beginning of 

each step. This is typically 

done to clear any previously 

accumulated gradients. 

perform(bert) performs the forward pass 

and backward pass 

(backpropagation) through 

the model to compute the 

gradients. The variable 

LV[i] is assigned the 

computed loss value (LV) 

for the current step. 

performi−1(bert)  performs a forward pass on 

the TweetTruth model with 

the updated parameters. 

Pi+1 =  Pi +  α  updates the parameter 

values (P) based on the 

learning rate (α) and 

LRi+1 =  Li +  β updates 

the learning rate (LR) based 

on the weight decay value 

(β). 

ALV = total(LV[i])  computes the total loss ALV 

by summing the loss values 

for each step within the 

epoch 

If ( VLi <   VLi−1 ) statement checks if the loss 

value for the current epoch 

VLi is less than the loss 

value for the previous epoch 

VLi−1 . 

save_model()  If the condition is met (i.e., 

the loss decreases), save the 

model's parameters and 

state to a file. 

 

Following algorithm includes the steps for creating the 

BERT based model: 

Algorithm 3: Bert-based Model 

1 create_BERT (classifier class name, Hidden Size 

of BERT, hidden Size of Classifier, no. of output 

classes) 

2 init_model (x) 

3 init_ff(class name, no of input layers, activation 

functions, no of output layer) 

4  float forward(x,y) 

5 init_paramters (optimizer_name, learning_rate, 

default) 

6 classImbalance(x) 

7 convert_cw_to_to() 

8 use_cw() 

9 create_BERT (classifier class name, Hidden Size 

of BERT, hidden Size of Classifier, no of output 

classes) 

10 init_model (x) 

11 init_ff(class name, no of input layers, activation 

functions, no of output layer) 

12 forward(x,y) → take x and y as parameters and 

returns the probabilities. 

13  init_paramters (optimizer_name, learning_rate, 

default) 

14 get_linear_scedule_with _warmup() 

15 classImbalance(x) 

16 convert_cw_to_to() 

17 use_cw() 

 

Algorithm 4 

1 for ← i to n epoch do 

2 model.train()   

3 load_batch(GPU)  

4 performi(bert)  

5  performi−1 (bert)  

6 computeLV()  

7 dump(x)  

8 total(x[ ])  

9 save_model() 

 

 

Inside the epoch loop, the following steps are performed: 

a. model.train() sets the model in training mode, 

enabling the gradients to be computed and parameters to 

be updated during backpropagation. 
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b. for_each_step_and_batch() is a nested loop that 

iterates over each step and batch within an epoch. 

Inside this loop, as also depicted in Fig 5, the following 

steps are performed 

Algorithm 5 

1 load_batch(GPU)  

2 gradienti−1 = 0  

3 perform(bert) 

4 performi−1(bert)  

5 Pi+1 =  Pi +  α  

6 ALV = total(LV[i])  

7 If ( VLi <   VLi−1 )  

8 save_model(). 

 

The flow diagram for Fine tuning the TweetTruth is given 

in Fig 5. 

Fig 5. Flow Diagram for Fine tuning the TweetTruth Model 

3.4 Evaluation of the Trained Model to Classify 

Different Types of Fake News 

Table 4 lists the functions used in the algorithm for 

evaluating the BERT based model and a short description 

for each, while the entire flow of this step is given in Figure 

6. 

 

Table 4. Functions for algorithm for evaluating the BERT 

based model 

Function Description 

For Algorithm 6 

model.eval() put model into the evaluation 

compute(AA) compute average performance 

metric 

compute(VS) computes a validation score 

train(BERT) train the BERT based model 

predict() Predict method defining 

save_model() saving the trained model 

deploy(model,A) deploy the model to do inference 

is A value is satisfactory 

For Algorithm 7 

load_batch(GPU)  loads a batch of data onto the 

GPU for efficient computation. 

compute(L)  computes the loss (L) for the 

batch. The loss function depends 

on the specific task being 

performed, such as cross-entropy 

loss for classification tasks. 

compute(l) computes 

the  

average loss (l) for the entire 

evaluation set. It accumulates the 

losses computed in each batch. 

get(Pr)  gets the predicted probabilities 

(Pr) from the model for the batch 

inputs. 

compute(A)  computes a performance metric 

(e.g., accuracy, F1 score) using 

the predicted probabilities and 

the ground truth labels for the 

batch. 

 

Following algorithm includes the steps for evaluating the 

BERT based model: 

Algorithm 6: Evaluation of Bert-based Model 

1 model.eval() 

2 compute(AA) 

3 compute(VS) 

4 train(BERT) 

5 predict() 

6 save_model() 
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7 deploy(model,A) 

model.eval() sets the model in evaluation mode, where the 

model parameters are fixed and no gradients are computed. 

This mode is typically used during inference or evaluation 

to disable any dropout or batch normalization layers that are 

active during training. 

Inside the batch loop of dataloader, the following steps are 

performed: 

Algorithm 7 

1 load_batch(GPU) 

2 compute(L)  

3 compute(l)  

4 get(Pr 

5 compute(A)  

 

Inside the train(BERT) function, the following steps are 

performed: 

i. ne = 5 sets the number of epochs (ne) for training. 

ii.init_model(BERT) initializes the BERT model for 

training. 

iii.train_start() starts of the training process, which 

involves iterations over epochs and batches, similar to 

what we previously described in the training loop. 

Inside the predict() function, the following steps are 

performed: 

i.compute_f(x) computes x using forward pass. 

ii.softmax() function is applied to the model's output 

probabilities (prob). Softmax is commonly used for 

multi-class classification problems to convert raw scores 

into probabilities. 

iii.model.eval() puts the model into the evaluation mode. 

iv.concatenate (x) concatenates the individual loss values 

(L[i]) into a single tensor or array. 

v.generate(x,y()) generate x curve using y method 

vi. generate(AUC,y()) Area under curve using y method 

vii.generate(ROC,y()) Receiver Operating characteristics 

curve using y method Inside the save_model() function, 

the following steps are performed: 

i. generate(A, Predict()) generates evaluation metric 

A by calling the Predict() function.  

ii. generate(AUC, Predict()) generates another 

evaluation metric, the Area Under the Curve (AUC), by 

calling the Predict() function. 

iii. generate(ROC, Predict()) generates the Receiver 

Operating Characteristic (ROC) curve by calling the 

Predict() function.  

iv. deploy(model, A) deploys the trained TweetTruth 

model to do inference if A value is satisfactory. 

Fig 6. Evaluating the TweetTruth Model 

4. Result  

In the pursuit of mitigating the proliferation of deceptive 

news on the social media platform X (formerly known as 

Twitter), we implemented an innovative strategy centered 

around BERT (Bidirectional Encoder Representations from 

Transformers) technology. Our approach involved 

meticulous data acquisition, preprocessing, fine-tuning, and 

optimization of the BERT model to address the 

dissemination of misleading or fabricated content. The 

"socialmedia-disaster-tweets-DFE" dataset (27)is used to 

test our model performance. 

The "socialmedia-disaster-tweets-DFE" dataset is a 

valuable resource comprising a collection of tweets from 

various social media platforms, particularly focusing on 

content related to disasters and emergencies. This dataset 

has been curated to include tweets that contain information, 

discussions, or reports related to disasters such as natural 

calamities, accidents, or crises of different magnitudes. It 

encompasses a wide array of textual data, encompassing 

user-generated content that can include firsthand accounts, 

reactions, and discussions pertaining to ongoing or recent 

disasters. Table 6 shows the performance metrics of the 

proposed TweetTruth model while Figure 7 represents the 

Receiver Operating Characteristic Curve for the model.  
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Table 6. Performance metrics of TweetTruth 

Metric Value 

Accuracy 0.8441 

Precision 0.693 

Recall 0.77 

F1 Score 0.73 

 

Fig 7. ROC of the model 

Fig 7 shows a comparison of the various metrics between 

the proposed TweetTruth model and existing state of the art 

models for the socialmedia-disaster-tweets-DFE. 

TweetTruth surpasses them all with an accuracy of 84.4 %, 

precision of 69.3%, Recall score of 77% ad an F1 score of 

73%. 

 

Fig 8. Comparison of TweetTruth with state-of-the-art 

models 

These results underscore the efficacy of our BERT-based 

approach in combating the spread of deceptive news on 

social media, particularly on platform X. While the model's 

accuracy and AUC are promising, the F1 score reflects a 

balanced trade-off between precision and recall. Our 

research contributes to the development of robust natural 

language processing techniques aimed at fostering a more 

dependable information environment in the digital era. 

These findings hold significant implications for enhancing 

the integrity and credibility of news dissemination on social 

media platforms. 

5. Conclusion and Future Work 

The paper proposes a robust approach for detecting fake 

news on Twitter using a BERT-based deep learning 

algorithm. By leveraging the power of BERT's contextual 

understanding and linguistic features, the algorithm 

effectively distinguished between genuine and fake news 

tweets. The study included a comprehensive literature 

survey, highlighting the effectiveness of BERT-based 

models and other machine learning techniques in addressing 

the challenge of fake news detection on social media 

platforms. The proposed algorithm demonstrated high 

accuracy rates and outperformed previous approaches in 

identifying fake news. 

The implications of this research are significant, as accurate 

fake news detection on Twitter contributes to preserving 

information integrity and promoting informed decision-

making. By mitigating the spread of misinformation, the 

algorithm helps protect individuals from potential harm 

caused by false information. Future research directions may 

include refining the algorithm by incorporating additional 

contextual features, exploring multi-modal approaches, and 

addressing the challenges of evolving fake news techniques. 

Overall, this research contributes to the development of 

robust mechanisms for combating fake news on Twitter, 

leading to a more trustworthy and reliable social media 

environment. 

References 

[1] Vosoughi, S., Roy, D., & Aral, S. (2018). The spread 

of true and false news online. Science, 359(6380), 

1146-1151. 

[2] Shao, C., Ciampaglia, G. L., Varol, O., Yang, K. C., 

Flammini, A., & Menczer, F. (2018). The spread of 

low-credibility content by social bots. Nature 

communications, 9(1), 1-10. 

[3]  Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. 

(2019). BERT: Bidirectional Encoder 

Representations from Transformers. In Proceedings 

of the 2019 Conference of the North American 

Chapter of the Association for Computational 

Linguistics: Human Language Technologies 

(NAACL-HLT), 4171-4186. 

[4] H. C. Jwa, H. Kim, and J. Park, "FakeBERT: Fake 

news detection in social media with a BERT-based 

deep learning approach," Information Sciences, vol. 

521, pp. 118-134, 2020. 

[5]  N. Bounaama and M. Abderrahim, "Classifying 

COVID-19 related tweets for fake news detection 

84.41 82.57 73.43
55

69.3 67.7 62.3

32

77 72.85
49

7873 70
54 45.3

0

50

100

TweetTruthVanilla BERT [3]Passive Aggressive Classifier [28]GPT2 [29]

P
er

ce
n

ta
ge

s 
(%

)

Proposed and Existing Models

Performance Metric Graph

accuracy precision recall f1_score



International Journal of Intelligent Systems and Applications in Engineering  IJISAE, 2024, 12(1), 424–436 |  435 

and sentiment analysis with BERT-based models," 

Applied Sciences, vol. 13, no. 12, p. 6275, 2023. 

[6]  S. Singh, P. Shukla, and H. Kaur, "Fake or real news 

about COVID-19? Pretrained transformer model to 

detect potential misleading news," Engineering 

Applications of Artificial Intelligence, vol. 116, p. 

104113, 2022. 

[7]  J. Zhang, Z. Wang, and Y. Liu, "BERT-Tweet: A 

pre-trained language model for English Tweets," 

arXiv preprint arXiv:2001.08308, 2020. 

[8]  R. Kumar, A. Verma, and N. Singh, "Fake news 

detection on Twitter using natural language 

processing techniques," Information Processing & 

Management, vol. 57, no. 2, pp. 367-384, 2020. 

[9]  A. Verma, N. Singh, and R. Kumar, "A deep 

learning approach to fake news detection on Twitter," 

Expert Systems with Applications, vol. 114, pp. 137-

147, 2018. 

[10]  M. Imran, M. Mohsin, and J. Qadir, "Detecting fake 

news on Twitter using machine learning techniques," 

Information Processing & Management, vol. 53, no. 

4, pp. 779-791, 2017. 

[11]  K. Shu, D. Mahudeswaran, S. Wang, D. Lee, and H. 

Liu, "Fake news detection on Twitter with feature 

engineering and machine learning," arXiv preprint 

arXiv:1609.08253, 2016. 

[12]  F. Wang, J. Xu, Z. Li, and H. Zhang, "Toward 

Deeper Understanding of Neural Networks: The 

Power of Initialization and a Dual View on 

Expressivity," in Proceedings of the 35th 

International Conference on Machine Learning 

(ICML), 2018. 

[13]  Z. Ma and A. Sun, "Detecting Rumors from 

Microblogs with Recurrent Neural Networks," in 

Proceedings of the 25th International Conference on 

World Wide Web (WWW), 2016. 

[14]  S. Wu, D. Yang, and N. Xu, "Who Falls for Fake 

News? The Roles of Analytic Thinking, Motivated 

Reasoning, Political Ideology, and Bullshit 

Receptivity," in Journal of Applied Research in 

Memory and Cognition, 2020. 

[15]  C. Castillo, M. Mendoza, and B. Poblete, 

"Information Credibility on Twitter," in Proceedings 

of the 20th International Conference on World Wide 

Web (WWW), 2011. 

[16]  N. Ruchansky, S. Seo, and Y. Liu, "CSI: A Hybrid 

Deep Model for Fake News Detection," in 

Proceedings of the 2017 ACM on Conference on 

Information and Knowledge Management (CIKM), 

2017. 

[17]  K. Shu, D. Mahudeswaran, S. Wang, D. Lee, and H. 

Liu, "Fake news detection on Twitter with feature 

engineering and machine learning," arXiv preprint 

arXiv:1609.08253, 2016. 

[18]  H. Ahmed, I. Traore, and S. Saad, "Detection of 

online fake news using N-gram analysis and machine 

learning techniques," in International conference on 

intelligent, secure, and dependable systems in 

distributed and cloud environments, Springer, Cham, 

pp. 127–138, 2017. 

[19]  A. Reema, A. K. Kar, and P. Vigneswara Ilavarasan, 

"Detection of spammers in twitter marketing: a 

hybrid approach using social media analytics and 

bio-inspired computing," in Information Systems 

Frontiers, vol. 20, no. 3, pp. 515–530, 2018. 

[20]  K. Shu, S. Wang, and H. Liu, "Beyond news 

contents: The role of social context for fake news 

detection," in Proceedings of the twelfth ACM 

international conference on web search and data 

mining, pp. 312–320, ACM, 2019. 

[21]  D. Munandar, A. Arisal, D. Riswantini, and A. F. 

Rozie, "Text classification for sentiment prediction 

of social media dataset using multichannel 

convolution neural network," in 2018 International 

conference on computer, control, informatics and its 

applications (IC3INA), IEEE, pp. 104–109, 2018. 

[22]  A. Gupta and P. Kumaraguru, "Credibility ranking 

of tweets during high impact events," in Proceedings 

of the 1st Workshop on Privacy and Security in 

Online Social Media, ser. PSOSM '12, New York, 

NY, USA, ACM, pp. 2:2–2:8, 2012. 

[23]  S. Mohd Shariff, X. Zhang, and M. Sanderson, "User 

perception of information credibility of news on 

Twitter," in Proceedings of the 36th European 

Conference on IR Research on Advances in 

Information Retrieval - Volume 8416, ser. ECIR 

2014, New York, NY, USA, Springer-Verlag New 

York, Inc., pp. 513–518, 2014. 

[24] S. Sikdar, S. Adali, M. Amin, T. Abdelzaher, K. 

Chan, J. H. Cho, B. Kang, and J. O’Donovan, 

"Finding true and credible information on Twitter," 

in 17th International Conference on Information 

Fusion (FUSION), July 2014, pp. 1–8. 

[25]  Author(s), "Title of the Webpage," Zenodo, 

[Online]. Available: https://zenodo.org/. [Accessed: 

August 16, 2023]. 

[26] W. McKinney, "Pandas: a foundational Python 

library for data analysis and statistics," IEEE 

Transactions on Visualization and Computer 

Graphics, vol. 26, no. 1, pp. 55-66, 2020. DOI: 

10.1109/TVCG.2019.2930765. 



International Journal of Intelligent Systems and Applications in Engineering  IJISAE, 2024, 12(1), 424–436 |  436 

[27] "Disasters on Social Media," Kaggle, [Online]. 

Available: 

https://www.kaggle.com/datasets/jannesklaas/disast

ers-on-social-media. [Accessed: August 16, 2023]. 

[28] C. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, 

and Y. Singer, "Online Passive-Aggressive 

Algorithms," Journal of Machine Learning Research, 

vol. 7, pp. 551–585, 2006. 

[29] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, 

and I. Sutskever, "Language models are unsupervised 

multitask learners," OpenAI Blog, vol. 1, no. 8, p. 9, 

2019. 

[30] Archana Nanade, Dr. Amit Jain, Dr. Prateek 

Srivastava, Shweta Lalwani Hod, “Machine Learning 

Based Fake News Detection Using Natural Language 

Processing ”, IJAST, vol. 29, no. 08, pp. 5988 - 6003, 

Nov. 2. 

[31] Martinez, M., Davies, C., Garcia, J., Castro, J., & 

Martinez, J. Machine Learning-Enabled Quality 

Control in Engineering Manufacturing. Kuwait 

Journal of Machine Learning, 1(2). Retrieved from 

http://kuwaitjournals.com/index.php/kjml/article/vie

w/122 

[32] Thota, D. S. ., Sangeetha, D. M., & Raj , R. . (2022). 

Breast Cancer Detection by Feature Extraction and 

Classification Using Deep Learning Architectures. 

Research Journal of Computer Systems and 

Engineering, 3(1), 90–94. Retrieved from 

https://technicaljournals.org/RJCSE/index.php/journ

al/article/view/48 

 

 


