

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 424–436 | 424

Combating Fake News on Twitter: A Machine Learning Approach for

Detection and Classification of Fake Tweets

Archana Nanade 1*, Dr. Arun Kumar2

Submitted: 25/08/2023 Revised: 11/10/2023 Accepted: 26/10/2023

Abstract: The proliferation of false information across social media has emerged as a significant challenge in recent times. Within this

landscape, the platform formerly known as Twitter, now referred to as X, stands as a widely used medium for disseminating news and data,

rendering it especially susceptible to the proliferation of misleading or fabricated content. In response to this issue, this research paper

presents an innovative strategy hinging on BERT (Bidirectional Encoder Representations from Transformers) technology to address the

propagation of deceptive news on Twitter. By means of meticulously acquired Twitter data pertaining to news items, the dataset undergoes

careful pre-processing to render it compatible with the BERT model. This data is subsequently partitioned into training and validation

subsets. The BERT model is then meticulously fine-tuned via a feed-forward neural network and optimized leveraging the Adam optimizer.

Throughout the training process, vigilance is maintained over loss values, augmented by techniques such as dropout and regularization to

enhance generalization capabilities. The final model selection is dictated by the validation loss metric. Harnessing the capabilities of

advanced natural language processing methods, this endeavour contributes to the evolution of robust instruments for unearthing misleading

content, fostering a more dependable informational milieu across social media domains with an accuracy of 77.29%. The study's

conclusions carry implications for elevating the integrity and credibility of news propagation within the digital epoch

Keywords: BERT, Twitter, Fakes News detection

1. Introduction

The rise of social media has transformed information

sharing, offering instant global connectivity. However, it

has also fuelled misinformation, particularly on platforms

like Twitter due to real-time sharing and a wide user base.

Twitter is a prominent platform for news and opinions due

to its concise format and rapid reach. Yet, this also makes it

susceptible to fake news due to limited context and swift

amplification. Detecting and countering Twitter fake news

is vital. False information risks misleading the public,

distorting discourse, and eroding trust. Ensuring accurate

information is crucial for informed choices, democratic

processes, and news credibility.

The proliferation of false information across social media

has emerged as a significant challenge in recent times.

Research studies by (1) and (2) have revealed the rapid

spread of fake news on platforms like Twitter, leading to

widespread misinformation and confusion. The real-time

nature of Twitter, characterized by short messages (tweets)

and quick sharing, makes it particularly prone to the

dissemination of misleading content.

This paper confronts the urgent challenge of recognizing

fraudulent news on Twitter by introducing a pioneering

algorithmic approach. The primary objective of this paper

focuses on devising a resilient and effective system capable

of proficiently pinpointing and categorizing deceptive

content, thereby contributing to the broader endeavour of

cultivating a more dependable informational environment

on the Twitter platform.

To tackle this problem, this paper proposes an algorithm

based on the principles of natural language processing and

deep learning. The proposed approach leverages the power

of the BERT (Bidirectional Encoder Representations from

Transformers) model (3), a state-of-the-art language

representation model known for its ability to capture

contextual information effectively. By harnessing the

advanced capabilities of the BERT model, the aim is to

enhance the accuracy and efficiency of fake news detection

on Twitter.

The algorithm proposed in this paper follows a systematic

pipeline tailored to the characteristics of Twitter data. The

approach begins by collecting a comprehensive dataset of

tweets containing news-related content. This dataset serves

as the foundation for training and evaluating the model. To

prepare the data, tokenization and normalization techniques

are employed, converting the raw text into a suitable format

for analysis and classification

Next, the dataset is split into training and validation sets,

ensuring the model's ability to generalize beyond the

specific instances encountered during training. The BERT

model is then trained using the training data, fine-tuning it

specifically for fake news detection. During the training

process, optimization algorithms are employed, and

1 Sir Padampat Singhania University, Udaipur, Rajasthan-

ORCID ID : 0000-0002-2886-5810
2 Sir Padampat Singhania University, Udaipur, Rajasthan

ORCID ID : 0000-0003-1972-5717

* Corresponding Author Email: archana.nanade@spsu.ac.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 424–436 | 425

hyperparameters are carefully selected to optimize the

model's performance.

After training, the effectiveness of the proposed approach is

evaluated using robust metrics such as accuracy, precision,

recall, and F1 score. By comparing the results with existing

methods and benchmark datasets, the paper aims to validate

the algorithm's performance and demonstrate its superiority

in detecting fake news on Twitter.

The findings from this research provide valuable insights

into the challenges of combating fake news on Twitter and

offer practical solutions for promoting the authenticity and

reliability of information. By leveraging advanced

techniques and the power of deep learning, this paper

contributes to the ongoing efforts in addressing the global

issue of fake news.

This paper presents an innovative algorithm for detecting

fake news on Twitter using the BERT model. By harnessing

the capabilities of natural language processing and deep

learning, the proposed approach aims to enhance the

accuracy and efficiency of fake news detection, ultimately

contributing to the creation of a more trustworthy

information ecosystem on Twitter. The subsequent section

3 of this paper delves into the methodology, experimental

setup, results, and discussions, providing a comprehensive

analysis of the approach's performance and its implications

for combatting fake news on social media platforms, with a

specific focus on Twitter.

2. Literature Survey

The detection and mitigation of fake news on social media

platforms, particularly Twitter, have garnered significant

attention from researchers and practitioners in recent years.

Several studies have explored various approaches and

techniques to address this critical issue. In this literature

survey, we present a summary of the existing research

related to fake news detection on Twitter, focusing on the

use of advanced algorithms and models.

The widespread dissemination of fake news on social media

platforms, particularly on Twitter, has raised concerns about

the credibility and reliability of the information shared.

Researchers have been actively working on developing

effective approaches to detect and combat fake news in

order to promote accurate information and informed

decision-making.

(4) proposed FakeBERT, a deep learning approach based on

BERT, a state-of-the-art language model, for fake news

detection on Twitter. By training the model to learn the

linguistic features specific to fake news, they achieved a

high accuracy of 98.90%. This highlights the potential of

BERT-based models in capturing the nuanced language

patterns associated with fake news.

In the context of the COVID-19 pandemic, (5) developed a

BERT-based model capable of classifying COVID-19

related tweets into fake news and real news categories. They

also incorporated sentiment analysis to gauge the emotional

tone of the tweets. Their model achieved an accuracy of

90% for fake news detection and 93% for sentiment

analysis, showcasing its effectiveness in tackling fake news

surrounding a specific topic.

(6) proposed a fusion technique-based ensemble deep

learning model that combined two powerful models, CT-

BERT and RoBERTa, to detect fraudulent tweets related to

the COVID-19 epidemic. With an accuracy of 98.88%, their

model demonstrated the potential of leveraging multiple

deep learning models for enhanced fake news detection. (7)

introduced BERTweet, a pre-trained language model

specifically designed for English tweets. BERTweet

effectively captures the linguistic features unique to tweets,

enabling it to be a valuable tool for various natural language

processing tasks, including fake news detection.

(8) focused on a comprehensive NLP-based approach for

fake news detection on Twitter. By employing techniques

such as named entity recognition, sentiment analysis, and

hate speech detection, they developed a robust model

capable of identifying fake news tweets based on multiple

linguistic cues.

Other studies, such as (9) and (10), and (11), explored

machine learning and feature engineering techniques for

fake news detection on Twitter. These approaches

incorporated factors like user engagement metrics (e.g.,

retweets, likes) and linguistic features to distinguish

between genuine and fake news tweets.

(12) explored the importance of neural network

initialization and its impact on the expressiveness and

performance of deep learning models. Their findings shed

light on the nuances of initializing models effectively, which

is crucial for improving the accuracy and generalizability of

models used for fake news detection. (13) introduced the use

of recurrent neural networks (RNNs) for detecting rumors

in microblogs. Their work underscores the potential of

sequence modeling techniques to capture temporal

dependencies in tweets, enabling more accurate

identification of fake news by considering the context in

which they are shared.

(14) delved into the psychological factors that influence

individuals' susceptibility to fake news. By analyzing

cognitive processes, political beliefs, and other

psychological dimensions, their study contributes to

understanding the cognitive biases that underlie the spread

and acceptance of fake news on social media platforms like

Twitter. (15) examined the credibility of information shared

on Twitter. Their work emphasized the significance of

social network analysis and user behavior in assessing the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 424–436 | 426

credibility of tweets, which can complement the technical

approaches for fake news detection and provide a more

holistic understanding of the problem.

(16) presented a hybrid deep learning model for fake news

detection. Their approach combines convolutional neural

networks (CNNs) and long short-term memory (LSTM)

networks, demonstrating the potential of leveraging

multiple neural architectures to enhance the accuracy of

fake news detection. The research by (17) focused on fake

news detection on Twitter and presents an approach that

combines feature engineering and machine learning

techniques. Their work contributes to the early exploration

of machine learning methods for identifying fake news on

social media platforms like Twitter. By implementing

feature engineering, the authors demonstrate their

commitment to crafting effective feature sets for machine

learning models, which is a crucial aspect of fake news

detection. This study serves as a foundational reference for

understanding the early developments in the field.

The research conducted by (18) focused on detecting online

fake news using N-gram analysis and machine learning

techniques. N-grams are an important text analysis tool, and

their utilization in fake news detection underscores the

relevance of linguistic features. This study showcases the

application of machine learning in distinguishing fake news

from legitimate content, further emphasizing the importance

of computational approaches in the fight against

misinformation. (19) presented a hybrid approach for

detecting spammers in Twitter marketing, which has

relevance in the broader context of content credibility. The

use of social media analytics and bio-inspired computing

signifies the multifaceted nature of combating

misinformation. By considering marketing-related content

and incorporating bio-inspired computing techniques, this

research provides valuable insights into addressing

malicious content and its impact on online platforms.

(20) delved into the significance of social context in fake

news detection. It highlights that detecting misinformation

goes beyond analyzing the content alone and involves

understanding the broader social context in which

information is shared. This study underscores the

importance of considering factors like user behavior and

interaction patterns in identifying fake news, offering a

holistic perspective on the problem.

(21) research focused on text classification and sentiment

prediction on social media datasets using a multichannel

convolutional neural network (CNN). While not directly

related to fake news detection, this reference is relevant

because it demonstrates the utility of deep learning

techniques for processing social media text data. Such

techniques can potentially be applied in fake news detection

systems to enhance their performance.

Gupta and Kumaraguru's research [22] focused on the

credibility ranking of tweets during high-impact events.

This study highlights the importance of assessing the

credibility of information on social media platforms,

particularly during critical events when misinformation can

have significant consequences. By addressing credibility

ranking, the paper contributes to the broader understanding

of information quality and trustworthiness on Twitter,

which is closely related to fake news detection. (23)

explored user perception of information credibility of news

on Twitter. This work investigates how users perceive and

evaluate the credibility of news shared on the platform.

Understanding user perceptions is crucial in fake news

detection, as it sheds light on the human side of the problem.

Recognizing that people make judgments about information

credibility informs the design of more effective detection

algorithms and strategies. (24)’s research addressed the

challenge of finding true and credible information on

Twitter. This work underscores the importance of

distinguishing reliable information from the vast amount of

data circulating on the platform. The research likely

includes valuable insights and techniques for assessing

credibility that can be adapted for fake news detection, as

both areas share the goal of differentiating between

trustworthy and untrustworthy content.

The existing literature offers valuable insights into the

detection of fake news on Twitter. While various

approaches and models have been explored, our research

paper contributes by proposing an innovative algorithm

based on the BERT model, specifically tailored for fake

news detection on Twitter. By building upon the

advancements in NLP and deep learning, our approach aims

to enhance the accuracy and efficiency of detecting and

classifying fake news, ultimately contributing to the

creation of a more trustworthy information ecosystem on

Twitter.

3. Methodology and Algorithm

The methodology of this research paper follows a four-part

approach, as shown in Figure 1, for detecting fake news

using a modified BERT based algorithm. This modified

algorithm is named as TweetTruth. In the first part,

explained in section 3.1, the collected data is subjected to

thorough cleaning and preprocessing, including steps such

as noise removal, handling missing values, and text

normalization. Tokenization is then applied to convert the

pre-processed text into tokens suitable for further analysis.

The second part focuses on creating a data loader that

efficiently handles the tokenized data, including batching,

shuffling, and loading onto the appropriate hardware, as

explained in section 3.2. The third part involves creating a

BERT model specifically for fake news detection, fine-

tuning it using the appropriate architecture and

hyperparameters, as explained in section 3.3. Lastly, as

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 424–436 | 427

explained in section, 3.4, the performance of the trained

model is evaluated using various metrics on a validation or

test dataset, assessing its ability to accurately classify fake

news

Fig 1. Flow of TweetTruth Model

3.1 The Data Cleaning and Preprocessing for

Tokenization

This section discusses the pseudo code steps used in

TweetTruth model.

Data Gathering: It is very crucial that the collected dataset

be accurate and diverse. For the acquisition of datasets,(25),

is used as it has an enormous collection of various datasets.

To read the dataset and pre-process it for further operations

Pandas - Python package (26) is used for data analysis and

associated manipulation of tabular data in data frames.

Furthermore, the dataset is divided into two classes of

samples to achieve a diversity of tweet types. One with no

real disaster and the other with a real disaster. This will be

useful for segregation as well as training. The acquired and

pre-processed dataset will be sent for further clarification.

Table 1 lists the functions used in the algorithm and a short

description for each

Table 1. Functions for algorithm for pre-processing

Function Description

Load(x) load x into to system

Clean(𝑥, 𝑦1, 𝑦2 … 𝑦𝑖) remove 𝑦1, 𝑦2 … 𝑦𝑖 attribute

from x

Split(x, set1, set2, p) Split x into set1 and set2 by

keeping p% samples in set2

tokenization() tokenize and input formatting

function

select_tokenizer(x) select x tokenizer to better

train the data of Tweets

init_Tokenizer(x) initialize the tokenizer with x

pretrained model

addNomalization_L() add normalization and make

the text as Lowercase

encode_plus() Encode_plus methods

indexes add(x,y) add x and y tokens and return

indexes by referencing

tokenizer vocabulary

truncate(y) truncate sentences to y length

create_attentionMask() create attention mask

return_input_id() returns token ids representing

the tokenised sequence

return_attentionMask() returns which tokens to attend

to and which ones to ignore

Following algorithm includes the steps for Pre-processing:

Algorithm 1: Pre-Processing

1 Load(x)

2 Clean(𝑥, 𝑦1, 𝑦2 … 𝑦𝑖)

3 Split(x, set1, set2, p)

4 tokenization()

5 select_tokenizer(x)

6 init_Tokenizer(x)

7 addNomalization_L()

8 encode_plus()

 {

9 i = split_text();

10 j = add(CLS, SEP);

11 truncate(max_length)

12 create_attentionMask();

13 k= (input_ids[], attention_masks[])

14 return k;

 }

15 indexes add(x,y)

16 truncate(y)

17 create_attentionMask()

18 return_input_id()

19 return_attentionMask()

After loading the dataset into the system, cleaning the

dataset is an important step in preparing data for our model

- TweetTruth. The dataset should be pre-processed to

remove any irrelevant information. A pre-processing

pipeline involves removing URLs, mentions, hashtags,

emojis, and punctuations from the tweets. To normalize the

data there is need to convert all text to lowercase and replace

user mentions with a special token.

Since it is a classification problem there is need to remove

the stop words (common words like “the”, “and”, “a”, etc.)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 424–436 | 428

and perform stemming or lemmatization (reducing words to

their base form) on the text data. These steps can help reduce

the dimensionality of the data and improve the performance

of TweetTruth. After cleaning the data, the train_test_split

function in the scikit-learn library is used for splitting a

dataset into two subsets: a training set and a testing set. This

is followed by tokenization.

Tokenization is a crucial step in natural language processing

tasks that involves converting text into a sequence of tokens

for further analysis. The tokenization process is

encapsulated in a function called tokenization, which takes

two arguments, X_train and X_val. The code snippet begins

by selecting the BERT tokenizer through the

select_Tokenizer(BERT) function call. The chosen tokenizer

is initialized with the "vinai/tweettruth_base" pretrained

model using the init_Tokenizer function. Subsequently, text

normalization techniques are applied using the

addNormalization_L() function. The select_tokenizer is

specifically designed for tokenizing text from social media

platforms. The tokenizer is then initialized with the pre-

trained TweetTruth model by specifying its name or model

identifier, "vinai/tweettruth_base."

The TweetTruth algorithm uses a pre-processing technique

called "text normalization" to clean and standardize the

tweets before feeding them into the model. The text

normalization process involves several steps such as

removing URLs, mentions, hashtags, emojis, punctuations,

and stop words. The text is then tokenized into words and

converted into lowercase. The algorithm also uses subword

tokenization to handle out-of-vocabulary (OOV) words. In

subword tokenization, the words are broken down into

smaller subwords based on their frequency of occurrence in

the training data. The subwords are then used as input to the

BERT model. This is followed by the encode_plus()

function. The encode_plus() function is used in tokenization

libraries to encode text sequences and generate the

necessary inputs for training or inference with transformer-

based models like BERT.

Tokenization and Input formatting functions:

1. To better train the data of tweets, we use a twitter

specific Bert tokenizer - BERTweet.

2. Initialization of the tokenizer using the method

AutoTokenizer.from_pretrained("vinai/tweettruth-

base"). Addition of normalization and make the text as

lower case.

3. This will return the input ids and attention masks and

to calculate the max length of the tweets, the encode

method is used for the same and set the max length

variable to the maximum length of the sentences after

adding special tokens.

4. The above-mentioned Tokenization and input

formatting function is used to tokenize (X_train) and

validation (X_val) data of tweets.

The encode_plus method is a 5-step process. The Figure 2

shows the steps which are used.

Fig 2. Steps performed by encode_plus()

The explanation of each of the steps of the encode_plus()

function is given below:

i. tokens split_text()

The input text is split into individual tokens or sub-words.

The splitting process depends on the specific tokenizer

being used and the tokenization rules it follows. The

tokenizer may split text based on whitespace, punctuation,

or language-specific rules. The result is a sequence of

tokens.

ii. indexes add(x,y)

Special tokens like [CLS] (start of the sequence) and [SEP]

(separator between sentences or segments) are added to the

tokenized sequence. These tokens are necessary for models

like TweetTruth, as they provide important positional

information.

iii. truncate(y)

If the tokenized sequence exceeds a maximum length

specified by the model or task requirements, it may need to

be truncated. Truncation involves removing tokens from the

sequence to fit within the length limit.

iv. create_attentionMask()

An attention mask is a binary tensor that indicates which

tokens should be attended to and which ones should be

ignored during model training. The attention mask has the

same length as the tokenized sequence and consists of 1s

and 0s, where 1 indicates a valid token and 0 indicates a

padded or ignored token.

v. create_input_id()

Input IDs are the tokenized sequence converted into a

sequence of token IDs that correspond to the vocabulary of

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 424–436 | 429

the pre-trained model. Each unique token is mapped to a

specific ID. The input IDs represent the input data that the

model will process during training or inference.

vi. return_attentionMask()

Returning the Outputs: The encode_plus() function

typically returns the following outputs:

a. input_ids: The token IDs representing the tokenized

sequence.

b. attention_mask: The attention mask indicating which

tokens to attend to and which ones to ignore.

Additional outputs may include token type IDs or segment

IDs, depending on the model architecture and specific use

case. These encoded inputs (input IDs, attention masks, etc.)

can be passed to a transformer-based model for training,

fine-tuning, or inference. The flow diagram for the Pre-

processing step of TweetTruth is given in Figure 3.

Fig 3. Flow diagram for Pre-Processing Step of

TweetTruth Model

3.2 Processing the Tokenized data using PyTorch

DataLoader

PyTorch DataLoader is a utility in the PyTorch library that

provides an efficient and convenient way to load and iterate

over datasets during model training or evaluation. It allows

us to handle various aspects of data loading, such as

batching, shuffling, parallelizing data loading, and more.

Table 2 lists the functions used in the algorithm and a short

description for each.

Table 2. Functions for algorithm for processing the

tokenized data

Function Description

create_maxlength()

Create max length from

actual tweets

max(encode_plus()) use the encode method

and set the maximum

length variable to the

maximum length of the

sentences after adding

special tokens

tokenization() Assigning tokens to each

word

isNotComplete(x) return True till x is not

completely trained/

validated). The function

will keep on iterating until

the dataset is completely

trained / validated.

dataLoader() Use pytorch dataloader

class to save memory and

boost the training speed

dataLoader conver() Convert the tokenized

train input_id ,

attention_masks, train

labels to Dataloader class

using RandomSampler to

randomize drawing

samples from dataset

using batch size of 32 and

return DataLoader object

Following algorithm includes the steps for processing the

tokenized data:

Algorithm 2: Preprocessing of Tokenized

data

1 create_maxlength()

2 max(encode_plus())

3 tokenization()

4 while ← (isNotComplete(x)) Do

 {

5 dataLoader()

6 dataLoader conver()

 }

7 create_maxlength()

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 424–436 | 430

8 tokenization()

9 isNotComplete(x)

10 dataLoader()

To efficiently process the tokenized data during training, we

can convert it to a PyTorch DataLoader object. The

DataLoader wraps the tokenized inputs (input IDs and

attention masks) and labels, allowing us to iterate over mini-

batches of data during training.

RandomSampler is a sampling strategy provided by

PyTorch. It shuffles the dataset to ensure that the samples

drawn during training are randomized. This randomization

helps us to reduce bias and correlation in the training process

and promotes better model generalization.

The flow Diagram for Processing the Tokenized data using

DataLoader TweetTruth is given in Fig 4.

Fig 4. Flow Diagram for Processing the Tokenized data

using DataLoader TweetTruth Model

3.3 Creating the BERT Based Model Using Freezing

BERT Layers and Employing a Feed-Forward Neural

Network.

Table 3. Functions for algorithm for creating the BERT

based model

Function Description

For Algorithm 3

create_BERT (classifier

class name, Hidden Size

of BERT, hidden Size of

Classifier, no of output

classes)

Creates the BERT model by

initializing the given

parameters

init_model (x) initialize the model by

loading the pretrained

model x

init_ff(class name, no of

input layers, activation

functions, no of output

layer)

initializes a feed-forward

(FF) layer, which is

typically added on top of the

TweetTruth model for

classification tasks. The

‘Sequential’ function is

used to define a sequential

stack of layers, where ‘I’

represents the input size and

‘RELU’ represents the

activation function.

float_forward(x,y) → take

x and y as parameters and

returns the probabilities.

extracts the last hidden state

of the [CLS] token and

provide it to the

classification model and

returns the probabilities.

forward(x,y) take x and y as parameters

and returns the probabilities

init_paramters

(optimizer_name,

learning_rate, default)

initialize the model

parameters and define the

training steps as length of

train_dataloader as no. of

times as epochs. Define the

learning rate schedular

using transformers

get_linear_scedule_with

warmup()

get_linear_scedule_with

_warmup()

Define the learning rate

schedular using

transformers

get_linear_scedule_with

warmup ()

classImbalance(x) Use sklearn’s compute

class_weight() using

class_weight parameter to

handle class imbalance

convert_cw_to_to()

Convert class weight to

tensor objects to move them

then to GPU

use_cw() uses the computed class

weights in model.

For Algorithm 4

model.train() put the model into the

training model

load_batch(GPU) load batch to the GPU

performi(bert) perform a forward pass of

the Bert model

 performi−1 (bert) perform a backward pass of

the Bert model

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 424–436 | 431

computeLV() convert the loss value

dump(x) print out loss values after x

no of batch

total(x[]) find total of the given set x

save_model() save the current model

For Algorithm 5

load_batch(GPU) loads a batch of data onto

the GPU for efficient

computation.

gradienti−1 = 0 initializes the gradient to

zero at the beginning of

each step. This is typically

done to clear any previously

accumulated gradients.

perform(bert) performs the forward pass

and backward pass

(backpropagation) through

the model to compute the

gradients. The variable

LV[i] is assigned the

computed loss value (LV)

for the current step.

performi−1(bert) performs a forward pass on

the TweetTruth model with

the updated parameters.

Pi+1 = Pi + α updates the parameter

values (P) based on the

learning rate (α) and

LRi+1 = Li + β updates

the learning rate (LR) based

on the weight decay value

(β).

ALV = total(LV[i]) computes the total loss ALV

by summing the loss values

for each step within the

epoch

If (VLi < VLi−1) statement checks if the loss

value for the current epoch

VLi is less than the loss

value for the previous epoch

VLi−1 .

save_model() If the condition is met (i.e.,

the loss decreases), save the

model's parameters and

state to a file.

Following algorithm includes the steps for creating the

BERT based model:

Algorithm 3: Bert-based Model

1 create_BERT (classifier class name, Hidden Size

of BERT, hidden Size of Classifier, no. of output

classes)

2 init_model (x)

3 init_ff(class name, no of input layers, activation

functions, no of output layer)

4 float forward(x,y)

5 init_paramters (optimizer_name, learning_rate,

default)

6 classImbalance(x)

7 convert_cw_to_to()

8 use_cw()

9 create_BERT (classifier class name, Hidden Size

of BERT, hidden Size of Classifier, no of output

classes)

10 init_model (x)

11 init_ff(class name, no of input layers, activation

functions, no of output layer)

12 forward(x,y) → take x and y as parameters and

returns the probabilities.

13 init_paramters (optimizer_name, learning_rate,

default)

14 get_linear_scedule_with _warmup()

15 classImbalance(x)

16 convert_cw_to_to()

17 use_cw()

Algorithm 4

1 for ← i to n epoch do

2 model.train()

3 load_batch(GPU)

4 performi(bert)

5 performi−1 (bert)

6 computeLV()

7 dump(x)

8 total(x[])

9 save_model()

Inside the epoch loop, the following steps are performed:

a. model.train() sets the model in training mode,

enabling the gradients to be computed and parameters to

be updated during backpropagation.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 424–436 | 432

b. for_each_step_and_batch() is a nested loop that

iterates over each step and batch within an epoch.

Inside this loop, as also depicted in Fig 5, the following

steps are performed

Algorithm 5

1 load_batch(GPU)

2 gradienti−1 = 0

3 perform(bert)

4 performi−1(bert)

5 Pi+1 = Pi + α

6 ALV = total(LV[i])

7 If (VLi < VLi−1)

8 save_model().

The flow diagram for Fine tuning the TweetTruth is given

in Fig 5.

Fig 5. Flow Diagram for Fine tuning the TweetTruth Model

3.4 Evaluation of the Trained Model to Classify

Different Types of Fake News

Table 4 lists the functions used in the algorithm for

evaluating the BERT based model and a short description

for each, while the entire flow of this step is given in Figure

6.

Table 4. Functions for algorithm for evaluating the BERT

based model

Function Description

For Algorithm 6

model.eval() put model into the evaluation

compute(AA) compute average performance

metric

compute(VS) computes a validation score

train(BERT) train the BERT based model

predict() Predict method defining

save_model() saving the trained model

deploy(model,A) deploy the model to do inference

is A value is satisfactory

For Algorithm 7

load_batch(GPU) loads a batch of data onto the

GPU for efficient computation.

compute(L) computes the loss (L) for the

batch. The loss function depends

on the specific task being

performed, such as cross-entropy

loss for classification tasks.

compute(l) computes

the

average loss (l) for the entire

evaluation set. It accumulates the

losses computed in each batch.

get(Pr) gets the predicted probabilities

(Pr) from the model for the batch

inputs.

compute(A) computes a performance metric

(e.g., accuracy, F1 score) using

the predicted probabilities and

the ground truth labels for the

batch.

Following algorithm includes the steps for evaluating the

BERT based model:

Algorithm 6: Evaluation of Bert-based Model

1 model.eval()

2 compute(AA)

3 compute(VS)

4 train(BERT)

5 predict()

6 save_model()

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 424–436 | 433

7 deploy(model,A)

model.eval() sets the model in evaluation mode, where the

model parameters are fixed and no gradients are computed.

This mode is typically used during inference or evaluation

to disable any dropout or batch normalization layers that are

active during training.

Inside the batch loop of dataloader, the following steps are

performed:

Algorithm 7

1 load_batch(GPU)

2 compute(L)

3 compute(l)

4 get(Pr

5 compute(A)

Inside the train(BERT) function, the following steps are

performed:

i. ne = 5 sets the number of epochs (ne) for training.

ii.init_model(BERT) initializes the BERT model for

training.

iii.train_start() starts of the training process, which

involves iterations over epochs and batches, similar to

what we previously described in the training loop.

Inside the predict() function, the following steps are

performed:

i.compute_f(x) computes x using forward pass.

ii.softmax() function is applied to the model's output

probabilities (prob). Softmax is commonly used for

multi-class classification problems to convert raw scores

into probabilities.

iii.model.eval() puts the model into the evaluation mode.

iv.concatenate (x) concatenates the individual loss values

(L[i]) into a single tensor or array.

v.generate(x,y()) generate x curve using y method

vi. generate(AUC,y()) Area under curve using y method

vii.generate(ROC,y()) Receiver Operating characteristics

curve using y method Inside the save_model() function,

the following steps are performed:

i. generate(A, Predict()) generates evaluation metric

A by calling the Predict() function.

ii. generate(AUC, Predict()) generates another

evaluation metric, the Area Under the Curve (AUC), by

calling the Predict() function.

iii. generate(ROC, Predict()) generates the Receiver

Operating Characteristic (ROC) curve by calling the

Predict() function.

iv. deploy(model, A) deploys the trained TweetTruth

model to do inference if A value is satisfactory.

Fig 6. Evaluating the TweetTruth Model

4. Result

In the pursuit of mitigating the proliferation of deceptive

news on the social media platform X (formerly known as

Twitter), we implemented an innovative strategy centered

around BERT (Bidirectional Encoder Representations from

Transformers) technology. Our approach involved

meticulous data acquisition, preprocessing, fine-tuning, and

optimization of the BERT model to address the

dissemination of misleading or fabricated content. The

"socialmedia-disaster-tweets-DFE" dataset (27)is used to

test our model performance.

The "socialmedia-disaster-tweets-DFE" dataset is a

valuable resource comprising a collection of tweets from

various social media platforms, particularly focusing on

content related to disasters and emergencies. This dataset

has been curated to include tweets that contain information,

discussions, or reports related to disasters such as natural

calamities, accidents, or crises of different magnitudes. It

encompasses a wide array of textual data, encompassing

user-generated content that can include firsthand accounts,

reactions, and discussions pertaining to ongoing or recent

disasters. Table 6 shows the performance metrics of the

proposed TweetTruth model while Figure 7 represents the

Receiver Operating Characteristic Curve for the model.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 424–436 | 434

Table 6. Performance metrics of TweetTruth

Metric Value

Accuracy 0.8441

Precision 0.693

Recall 0.77

F1 Score 0.73

Fig 7. ROC of the model

Fig 7 shows a comparison of the various metrics between

the proposed TweetTruth model and existing state of the art

models for the socialmedia-disaster-tweets-DFE.

TweetTruth surpasses them all with an accuracy of 84.4 %,

precision of 69.3%, Recall score of 77% ad an F1 score of

73%.

Fig 8. Comparison of TweetTruth with state-of-the-art

models

These results underscore the efficacy of our BERT-based

approach in combating the spread of deceptive news on

social media, particularly on platform X. While the model's

accuracy and AUC are promising, the F1 score reflects a

balanced trade-off between precision and recall. Our

research contributes to the development of robust natural

language processing techniques aimed at fostering a more

dependable information environment in the digital era.

These findings hold significant implications for enhancing

the integrity and credibility of news dissemination on social

media platforms.

5. Conclusion and Future Work

The paper proposes a robust approach for detecting fake

news on Twitter using a BERT-based deep learning

algorithm. By leveraging the power of BERT's contextual

understanding and linguistic features, the algorithm

effectively distinguished between genuine and fake news

tweets. The study included a comprehensive literature

survey, highlighting the effectiveness of BERT-based

models and other machine learning techniques in addressing

the challenge of fake news detection on social media

platforms. The proposed algorithm demonstrated high

accuracy rates and outperformed previous approaches in

identifying fake news.

The implications of this research are significant, as accurate

fake news detection on Twitter contributes to preserving

information integrity and promoting informed decision-

making. By mitigating the spread of misinformation, the

algorithm helps protect individuals from potential harm

caused by false information. Future research directions may

include refining the algorithm by incorporating additional

contextual features, exploring multi-modal approaches, and

addressing the challenges of evolving fake news techniques.

Overall, this research contributes to the development of

robust mechanisms for combating fake news on Twitter,

leading to a more trustworthy and reliable social media

environment.

References

[1] Vosoughi, S., Roy, D., & Aral, S. (2018). The spread

of true and false news online. Science, 359(6380),

1146-1151.

[2] Shao, C., Ciampaglia, G. L., Varol, O., Yang, K. C.,

Flammini, A., & Menczer, F. (2018). The spread of

low-credibility content by social bots. Nature

communications, 9(1), 1-10.

[3] Devlin, J., Chang, M. W., Lee, K., & Toutanova, K.

(2019). BERT: Bidirectional Encoder

Representations from Transformers. In Proceedings

of the 2019 Conference of the North American

Chapter of the Association for Computational

Linguistics: Human Language Technologies

(NAACL-HLT), 4171-4186.

[4] H. C. Jwa, H. Kim, and J. Park, "FakeBERT: Fake

news detection in social media with a BERT-based

deep learning approach," Information Sciences, vol.

521, pp. 118-134, 2020.

[5] N. Bounaama and M. Abderrahim, "Classifying

COVID-19 related tweets for fake news detection

84.41 82.57 73.43
55

69.3 67.7 62.3

32

77 72.85
49

7873 70
54 45.3

0

50

100

TweetTruthVanilla BERT [3]Passive Aggressive Classifier [28]GPT2 [29]

P
er

ce
n

ta
ge

s
(%

)

Proposed and Existing Models

Performance Metric Graph

accuracy precision recall f1_score

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 424–436 | 435

and sentiment analysis with BERT-based models,"

Applied Sciences, vol. 13, no. 12, p. 6275, 2023.

[6] S. Singh, P. Shukla, and H. Kaur, "Fake or real news

about COVID-19? Pretrained transformer model to

detect potential misleading news," Engineering

Applications of Artificial Intelligence, vol. 116, p.

104113, 2022.

[7] J. Zhang, Z. Wang, and Y. Liu, "BERT-Tweet: A

pre-trained language model for English Tweets,"

arXiv preprint arXiv:2001.08308, 2020.

[8] R. Kumar, A. Verma, and N. Singh, "Fake news

detection on Twitter using natural language

processing techniques," Information Processing &

Management, vol. 57, no. 2, pp. 367-384, 2020.

[9] A. Verma, N. Singh, and R. Kumar, "A deep

learning approach to fake news detection on Twitter,"

Expert Systems with Applications, vol. 114, pp. 137-

147, 2018.

[10] M. Imran, M. Mohsin, and J. Qadir, "Detecting fake

news on Twitter using machine learning techniques,"

Information Processing & Management, vol. 53, no.

4, pp. 779-791, 2017.

[11] K. Shu, D. Mahudeswaran, S. Wang, D. Lee, and H.

Liu, "Fake news detection on Twitter with feature

engineering and machine learning," arXiv preprint

arXiv:1609.08253, 2016.

[12] F. Wang, J. Xu, Z. Li, and H. Zhang, "Toward

Deeper Understanding of Neural Networks: The

Power of Initialization and a Dual View on

Expressivity," in Proceedings of the 35th

International Conference on Machine Learning

(ICML), 2018.

[13] Z. Ma and A. Sun, "Detecting Rumors from

Microblogs with Recurrent Neural Networks," in

Proceedings of the 25th International Conference on

World Wide Web (WWW), 2016.

[14] S. Wu, D. Yang, and N. Xu, "Who Falls for Fake

News? The Roles of Analytic Thinking, Motivated

Reasoning, Political Ideology, and Bullshit

Receptivity," in Journal of Applied Research in

Memory and Cognition, 2020.

[15] C. Castillo, M. Mendoza, and B. Poblete,

"Information Credibility on Twitter," in Proceedings

of the 20th International Conference on World Wide

Web (WWW), 2011.

[16] N. Ruchansky, S. Seo, and Y. Liu, "CSI: A Hybrid

Deep Model for Fake News Detection," in

Proceedings of the 2017 ACM on Conference on

Information and Knowledge Management (CIKM),

2017.

[17] K. Shu, D. Mahudeswaran, S. Wang, D. Lee, and H.

Liu, "Fake news detection on Twitter with feature

engineering and machine learning," arXiv preprint

arXiv:1609.08253, 2016.

[18] H. Ahmed, I. Traore, and S. Saad, "Detection of

online fake news using N-gram analysis and machine

learning techniques," in International conference on

intelligent, secure, and dependable systems in

distributed and cloud environments, Springer, Cham,

pp. 127–138, 2017.

[19] A. Reema, A. K. Kar, and P. Vigneswara Ilavarasan,

"Detection of spammers in twitter marketing: a

hybrid approach using social media analytics and

bio-inspired computing," in Information Systems

Frontiers, vol. 20, no. 3, pp. 515–530, 2018.

[20] K. Shu, S. Wang, and H. Liu, "Beyond news

contents: The role of social context for fake news

detection," in Proceedings of the twelfth ACM

international conference on web search and data

mining, pp. 312–320, ACM, 2019.

[21] D. Munandar, A. Arisal, D. Riswantini, and A. F.

Rozie, "Text classification for sentiment prediction

of social media dataset using multichannel

convolution neural network," in 2018 International

conference on computer, control, informatics and its

applications (IC3INA), IEEE, pp. 104–109, 2018.

[22] A. Gupta and P. Kumaraguru, "Credibility ranking

of tweets during high impact events," in Proceedings

of the 1st Workshop on Privacy and Security in

Online Social Media, ser. PSOSM '12, New York,

NY, USA, ACM, pp. 2:2–2:8, 2012.

[23] S. Mohd Shariff, X. Zhang, and M. Sanderson, "User

perception of information credibility of news on

Twitter," in Proceedings of the 36th European

Conference on IR Research on Advances in

Information Retrieval - Volume 8416, ser. ECIR

2014, New York, NY, USA, Springer-Verlag New

York, Inc., pp. 513–518, 2014.

[24] S. Sikdar, S. Adali, M. Amin, T. Abdelzaher, K.

Chan, J. H. Cho, B. Kang, and J. O’Donovan,

"Finding true and credible information on Twitter,"

in 17th International Conference on Information

Fusion (FUSION), July 2014, pp. 1–8.

[25] Author(s), "Title of the Webpage," Zenodo,

[Online]. Available: https://zenodo.org/. [Accessed:

August 16, 2023].

[26] W. McKinney, "Pandas: a foundational Python

library for data analysis and statistics," IEEE

Transactions on Visualization and Computer

Graphics, vol. 26, no. 1, pp. 55-66, 2020. DOI:

10.1109/TVCG.2019.2930765.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 424–436 | 436

[27] "Disasters on Social Media," Kaggle, [Online].

Available:

https://www.kaggle.com/datasets/jannesklaas/disast

ers-on-social-media. [Accessed: August 16, 2023].

[28] C. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz,

and Y. Singer, "Online Passive-Aggressive

Algorithms," Journal of Machine Learning Research,

vol. 7, pp. 551–585, 2006.

[29] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei,

and I. Sutskever, "Language models are unsupervised

multitask learners," OpenAI Blog, vol. 1, no. 8, p. 9,

2019.

[30] Archana Nanade, Dr. Amit Jain, Dr. Prateek

Srivastava, Shweta Lalwani Hod, “Machine Learning

Based Fake News Detection Using Natural Language

Processing ”, IJAST, vol. 29, no. 08, pp. 5988 - 6003,

Nov. 2.

[31] Martinez, M., Davies, C., Garcia, J., Castro, J., &

Martinez, J. Machine Learning-Enabled Quality

Control in Engineering Manufacturing. Kuwait

Journal of Machine Learning, 1(2). Retrieved from

http://kuwaitjournals.com/index.php/kjml/article/vie

w/122

[32] Thota, D. S. ., Sangeetha, D. M., & Raj , R. . (2022).

Breast Cancer Detection by Feature Extraction and

Classification Using Deep Learning Architectures.

Research Journal of Computer Systems and

Engineering, 3(1), 90–94. Retrieved from

https://technicaljournals.org/RJCSE/index.php/journ

al/article/view/48

