

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 437–449 | 437

EvoColony: A Hybrid Approach to Search-Based Mutation Test Suite

Reduction Using Genetic Algorithm and Ant Colony Optimization

Serhat Uzunbayir1*, Kaan Kurtel2

Submitted: 26/08/2023 Revised: 12/10/2023 Accepted: 25/10/2023

Abstract: The increasing complexity of software systems requires robust and efficient test suites to ensure software quality. In this context,

mutation testing emerges as an invaluable method for evaluating a test suite’s the fault detection capability. Traditional approaches to test

case generation and evaluation are often inadequate, particularly when applied to mutation testing, which aims to evaluate the quality of a

test suite by introducing minor changes or mutations to the code. As software projects increase in scale, there is greater computational cost

of employing exhaustive mutation testing techniques, leading to a need for more efficient approaches. Incorporating metaheuristics into

the realm of mutation testing offers a synergistic advantage in optimizing test suites for better fault detection. Especially, combining test

suite reduction methods with mutation testing produces a more computationally efficient approach compared to more exhaustive ones. This

study presents a novel approach, called EvoColony, which combines intelligent search-based algorithms, specifically genetic algorithms

and ant colony optimization, to reduce test cases and enhance the effectiveness of the test suit for mutation testing. Integrating both

metaheuristic techniques, the research aims to optimize existing test suites, and to improve mutant detection with fewer test cases, thus

improving the overall testing quality. The results of experiments conducted were compared with traditional methods, demonstrating the

superior effectiveness and efficiency of the proposed hybrid approach. The findings show a significant advancement in test case reduction

when using the hybrid algorithm with mutation testing methodologies, and thus ensure the quality of test suites.

Keywords: software testing, mutation testing, search-based mutation, genetic algorithms, ant colony optimization, metaheuristics

1. Introduction

Software testing is an essential part in the software

development process with the goal of delivering a reliable

product. To do this, the testing team needs to create an

effective test suite that aims to catch potential flaws in all

aspects of the program, including each statement, branching

condition, and possible execution path. However, the

growing complexity of functional requirements and

program specifications makes this a time-consuming task.

The most basic approach is to perform exhaustive testing

that uses all possible data combinations to test the

application. Since there may be an infinite number of test

inputs, this approach becomes impractical. Therefore,

deterministic properties of source code entail the necessity

of various code coverage criteria. Two such criteria are,

condition coverage, and statement coverage. These criteria

can also be used to measure and evaluate the quality of the

system. Thus, code coverage criteria are considered a more

effective approach for assessing a software system’s

confidence level. However, it can be challenging to achieve

100% code coverage, not only in terms of computational

resources, but also from the perspective of human efforts.

Specifically, these difficulties have three causes [1]:

• Certain coverage criteria may entail a broad spectrum of

testing prerequisites.

• The process of generating test cases to meet these testing

requirements cannot be fully automated.

• Test conditions that are not addressable through

automation may require manual intervention.

Mutation testing is a testing method that focuses on

identifying faults and offers a specific metric known as the

mutation adequacy score. This metric assesses the ability of

a test suite to identify errors, serving as an indicator of its

efficacy. In a study by Chekam et al. [2] they empirically

compared mutation, statement, and branch coverage,

concluding that the mutation testing criterion outperformed

other coverage techniques in fault detection within the test

suite. Furthermore, Chen et al. [3] delved into the impact of

the size of the test set and proposed a methodology to

manage the test size while evaluating the test adequacy

criteria. Given these considerations, it is imperative to

reduce the size of the test suite without losing its

effectiveness.

Since its introduction in 1978, mutation testing has been a

subject of considerable academic inquiry [4]. Numerous

studies have endeavored to transition mutation analysis

from abstract theories into functional applications [5][6][7].

Recently, there has been a notable shift in research towards

the integration of artificial intelligence techniques (AI) into

1 Department of Software Engineering, Izmir University of Economics

Izmir, TURKIYE

ORCID ID: 0000-0002-5139-5247
2 Department of Software Engineering, Izmir University of Economics

Izmir, TURKIYE

ORCID ID: 0000-0001-8614-0925

* Corresponding Author Email: uzunbayir.serhat@ieu.edu.tr

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 437–449 | 438

mutation testing. AI has the capacity to greatly enhance

mutation testing by automating tasks such as mutant

generation, execution, and result evaluation. Machine

learning models, trained on extensive test datasets, can

discern trends in the behavior of mutants and identify those

with a higher likelihood of inducing errors [8]. Moreover,

metaheuristics offer considerable advantages. Such

strategies focus on test suite optimization, harnessing the

principles of natural evolution or swarm intelligence to

pinpoint the most effective test cases for revealing induced

mutations. It is evident that these innovations hold promise

for enhancing the reliability of software testing by refining

mutation testing methodologies and software quality.

Search-based mutation testing uses advanced metaheuristic

optimization methods to improve mutation testing

processes. These methods include bat algorithm, ant colony

optimization, artificial bee colony, genetic algorithms, and

other techniques [9]. These optimization methods are good

at solving difficult problems by searching through many

possible solutions quickly. One major challenge in this type

of testing, however, is dealing with a large number of

potential changes to the code, which can substantially slow

the process. Therefore, it is useful to apply these techniques

to mutation testing since the search space of the problem is

large considering the number of mutants. Recent studies

show that the use of these advanced methods can accelerate

the process by reducing the number of code changes and test

cases needed.

The research has two primary aims, first, to propose

EvoColony, a combination of two metaheuristic

approaches, genetic algorithms, and ant colony optimization

for mutation testing, and second, to evaluate the

effectiveness of the algorithm with traditional methods.

Genetic algorithms can provide a good initial solution, but

ant colony optimization can further refine it and escape local

optima. The ant colony maintains a balance between

exploring new paths and exploiting known good paths,

potentially alleviating the premature convergence problem

seen in genetic algorithms. Fusing two methods allows each

to complement the disadvantages of the other, thus finding

an optimal solution. The validation of the proposed

approach is compared to a random search algorithm, two

variants of a genetic algorithm using single and double

crossovers, and traditional ant colony optimization. The

results show that EvoColony successfully achieves better

solutions than traditional approaches.

The rest of the paper is organized as follows. Section 2

presents preliminaries of mutation analysis, search-based

mutation testing, genetic algorithms, ant colony

optimization, and a review of the literature. Section 3

outlines research questions and elaborates the proposed

method. Section 4 discusses experimental design

preparation including the configuration of the test

environment, the test data employed, and the benchmark

algorithms considered. Section 5 shows and evaluates the

experimental results. Finally, Section 6 concludes the article

and discusses future work.

2. Related Work

This section offers an overview of mutation analysis and its

procedures, introduces foundational ideas related to search-

based mutation testing, discusses genetic algorithms and ant

colony optimization, and provides a literature review based

on earlier research on the topic.

2.1. Mutation Analysis

The concept of mutation analysis first came to light in 1971

[10]. Early shaping of the research area of mutation testing

was largely influenced by the contributions of DeMillo et al.

[4] and Hamlet [11] during the late 1970s. Mutation testing

is characterized by the application of mutation analysis in

formulating new test scenarios to scrutinize existing

software evaluations. Primarily used in the context of unit

testing, this white-box testing approach involves syntactic

alterations to specific statements within the source code.

The aim is to gauge the efficacy of the test suite by

ascertaining its ability to detect faults in the program.

Fundamentally, mutation testing serves as a tool for

evaluating the adequacy of a testing strategy to ensure that

the software meets quality standards.

Formally, given an original program P, mutation testing

uses mutation operators to generate a set of mutants M for

P. Mutation operators are used to apply syntactical

transformation rules to generate mutants. These operators

usually correspond to regular programmer mistakes. Each

mutant m ∈ M is identical to the original program P, with

the sole exception that an altered program statement using a

specific mutation operator. Then, all mutants in the set of M

are executed using the test suite T of P. At the end of this

procedure, the effectiveness of T is evaluated using a

mutation adequacy score, comparing the results of

execution between the mutants and the original program. A

mutant m is killed by the test case t ∈ T in P if its outcome

is different; otherwise, m survives [12][13].

Mutation testing is a reliable method for identifying suitable

test cases that can detect actual faults, however, due to the

vast numbers involved, it is not feasible to generate

mutations for all potential faults in a program.

Consequently, mutation testing typically focuses on a subset

of faults that are closest to the correct version of the

program, under the assumption that this subset is able to

provide an adequate representation of all faults.

The traditional mutation analysis process in which the

mutants are generated, executed, and evaluated with the test

suite involves the following six steps:

1) The original program P is modified using mutation

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 437–449 | 439

operators to generate a range of mutants M. A mutant is

a changed and faulty version of the original program.

Table 1 shows an example of a simple mutation.

Generated mutants can contain one or more faults, such

as changed operators, operand position changes, or

deletion of statements. This phase can be fully

automated through tools that employ designated

mutation operators on P.

Table 1: Original Program and Mutant

Original

Program

Mutant

m

Read v1,

v2

Read v1,

v2

 if v1 !=

v2

 if v1

!= v2

 v1 =

v1 * v2

 v1 =

v1 + v2

 end if end if

end end

2) The original program P and the mutants M are

executed against test suite T.

3) To verify the accuracy of the output, the original

program P is run using the test suite T. If the output is

incorrect, corrections must be made to P before

proceeding.

4) When the output of the original program is correct, the

test suite T is executed with each living mutant. Then,

its output is compared to the original program output

to identify which mutants should be killed. The mutant

survives if the original program and the mutant give

the same results, otherwise it is killed [14] and

eliminated from the process.

5) Following the execution of a mutant, the mutation

adequacy score is calculated using formula (1) which

represents the proportion of mutants killed to the total

number of mutants that can be killed. The procedure

ends when all mutants have been killed.

6) If any mutants survive, they must be inspected

manually to decide if they are equivalent, or if the test

cases are not adequate to kill them. Equivalent mutants

yield identical outcomes to the original program and

are invincible; that is, while they differ in syntax, they

are functionally identical to the original program. If

equivalent mutants are detected, they are eliminated. If

there are no equivalent mutants that remain

undetected, additional test cases should be added to

test suite T, and the procedure resumes at step 4.

Mutation analysis assesses the test suite’s quality through

the use of a calculated metric called the mutation adequacy

score [5]. The final objective for the tester would be to

elevate the mutation adequacy score to 1, ensuring that the

test suite T is capable of identifying all errors as indicated

by the mutants. Thus, mutation testing provides a structured

and effective way to measure the adequacy of the test

adequacy [15].

Mutation Adequacy Score =
Killed Mutants

All Mutants - Killed Mutants
 (1)

2.2. Search-Based Mutation Testing

Search-based mutation testing combines the fundamentals

of mutation testing with search-based optimization

techniques [16]. It uses metaheuristic algorithms that can

solve complex problems, such as genetic algorithms, ant

colony optimization, or particle swarm optimization to

autonomously create test cases capable of uncovering code

mutations, thereby enhancing the overall quality of the test

suite. The approach has two connected goals: to reduce the

number of necessary test cases, and to boost their ability to

detect mutants. Two other advantages are provided by this

method: increasing the efficiency of the test process by

reducing the time and computational resources needed to

create and maintain a comprehensive test suite; and

automating test case generation process, which reduces the

manual effort required. The application of metaheuristics in

testing procedures shows promise due to the large volume

of inputs, specifically mutants, that need to be examined

during the testing phase [17].

Various metaheuristic algorithms can be used with search-

based mutation but each has some drawbacks. For example:

• Ant colony optimization is difficult to analyze

theoretically. Its time of convergence is uncertain

because of the nature of the search.

• Genetic algorithms have limitations such as

converging too quickly, slow processing speed,

lengthy iteration periods, and inefficiency in

generating test cases.

• Particles in particle swarm optimization may get stuck

in local minimum and the performance of the

algorithm is sensitive to its parameters and

coefficients.

• Simulated annealing may be slow to convergence

when applied on complex problems. Also, the cooling

schedule depends on the nature of the problem, it is

critical to select it carefully.

• Tabu search may be computationally expensive and

requires memory structure.

To address the drawbacks, a multifaceted strategy is often

required. One common approach is to use hybrid models

that combine the strengths of different algorithms,

enhancing both reliability and efficiency. Parameter tuning

can also be crucial; automated methods such as grid search

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 437–449 | 440

or even dynamic adaptation during the algorithm’s run can

help determine the most effective settings. Additionally,

benchmarking the algorithm against both synthetic and real-

world scenarios can provide valuable insight into its

performance.

2.3. Genetic Algorithms

Genetic algorithms draw inspiration from the natural

selection processes observed in biological systems,

grounded in Darwin's theory of evolution and Mendel’s

contributions [18]. They are a type of problem-solving

method used to find answers sufficient to complex search

optimization problems with a large number of candidate

solutions. Finding the best solution among all is often

considered as a time-consuming task; using the concept of

the survival of the fittest the best solution is eventually

found [19].

A typical genetic algorithm starts with a population of

randomly generated individuals called chromosomes, where

each individual represents a possible solution to the

problem. These individuals are then evaluated based on a

fitness function that quantifies how well they solve the

problem. Then, parent individuals are selected and their

offspring are produced using crossover and mutation

operators, which are expected to be better solutions than the

previous generations. After performing the procedure until

the stopping condition is reached, the solutions converge to

the optimal one.

One key feature of genetic algorithms involves mapping the

problem onto chromosomes and establishing a domain-

specific fitness function.

Chromosome: A chromosome serves as an individual

solution to the problem. It signifies a specific location in the

overall solution space and consists of a sequence of “genes,”

each of which corresponds to a particular attribute or

parameter of the solution. The chromosome is structured in

a way that enables its manipulation through the processes of

the algorithm.

Fitness Function: A fitness function evaluates the

effectiveness of a chromosome in addressing the problem

by assigning it a performance-based score. Higher scores

indicate more effective solutions. This function guides the

algorithm to determine which solutions should be retained

and which should be modified as it seeks the optimal

solution.

A basic genetic algorithm is processed with six steps (Fig.

1):

Fig 1: Traditional Genetic Algorithm Steps.

1) Initial population: The beginning of the algorithm

involves randomly generated chromosomes to

produce the initial population. The size of the

population depends on the dataset and the problem

domain.

2) Fitness evaluation: The fitness of the chosen

population is evaluated according to the pre-

defined fitness function set by the user.

3) Selection: Individuals are chosen based on their

fitness levels to generate subsequent generations.

If the fitness value is high, chromosomes are

expected to be included in the new generation; if

not they can be eliminated. Selection can be made

by using different methods, such as roulette-wheel,

rank, or tournament selection.

4) Crossover: Two parent individuals are used to

create offspring by combining their genes. By

combining the best traits of each parent, the

algorithm can produce children that are potentially

better solutions to the problem. There are possible

different crossover methods, such as single-point,

multi-point, uniform, or arithmetic crossover.

5) Mutation: Mutation is applied to the new

offspring after crossover with a low probability. By

adding small changes to an individual, it helps to

maintain genetic diversity and explore new areas

of the solution space.

6) Terminate: The algorithm is terminated when the

best solution is found and returned. The

termination condition is critical when controlling

the computation time of the algorithm. There are

different possible options to set as termination

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 437–449 | 441

conditions, such as fitness threshold, where either

the maximum level of fitness is reached, or a

predefined number of generations is produced.

Genetic algorithms offer a powerful approach to optimizing

software testing processes, improving test effectiveness, and

providing flexibility to introduce new genetic operators or

mutation operators for specific testing scenarios.

2.4. Ant Colony Optimization

Ant colony optimization was introduced by Marco Dorigo

[20] and inspired by the behavior of ants. In a natural

habitat, ants can find the shortest route from a food source

to their nest through a self-organized mechanism. When ants

are released to an environment that contains a food source,

they create trails to find food, and release a chemical called

pheromone on the way back to the nest. Ants can sense this

chemical and start to follow paths that have a higher

intensity of pheromones. At the same time, the pheromone

evaporates on the unused ant paths. Eventually, all the ants

start to use the path that has the most intense level of

pheromones, which is also the shortest path between the nest

and the food source. Since the intensity of the pheromone is

directly related to the probability of the path followed, this

approach is considered a probabilistic method [21].

The ant colony algorithm requires a graph representation to

formalize the problem being solved. Nodes in the graph

represent a possible state or decision point, and the edges

between nodes represent transitions between these states.

The graph can be directed or undirected, depending on the

problem being addressed.

A basic ant colony algorithm is processed with six steps

(Fig. 2):

Fig. 2: Traditional Ant Colony Algorithm Steps.

1. Parameter initialization: At the start, the pheromone

levels on the paths of the graph representation are

initialized to zero to indicate that there are no

pheromones. Ant colony optimization requires specific

parameters to control the behavior of the algorithm.

The common parameters can be defined as follows:

• Number of ants: This parameter represents the number

of artificial ants that will traverse the graph to construct

the solutions. The greater the number, the better the

potential solutions. However, computational resources

and time will be increased.

• Pheromone evaporation rate (ρ): This parameter is

between 0 and 1, and represents the speed with which

the pheromone markings fade. A high rate allows for

quick adaptation, but may lead to instability.

• Pheromone intensity (Q): This parameter sets the

starting pheromone concentrations on the paths.

Striking a balance is crucial, as excessive or

insufficient initial pheromone can affect the

effectiveness of the algorithm.

• Pheromone influence factor (α): This parameter

determines the weight given to the pheromone trails

when the ants decide their routes.

• Heuristic information (β): This parameter is optional

and sets the significance of any heuristic data available

to guide the ants.

• Termination criteria: This parameter sets the total

number of algorithm executions or other conditions

that signal that the algorithm should stop.

2. Path construction: Ants create random trails on the

graph and construct solutions at the start. In the next

iterations, the solutions are updated based on a

probabilistic decision-making process influenced by

the pheromone levels on the paths and optional

heuristic information.

3. Solution evaluation: Each ant trail is evaluated based

on an objective function specific to the problem

domain. For example, this would be the length of each

path if the problem is to find the shortest path.

4. Pheromone update: Pheromone levels are increased

based on the quality of solutions found. Generally,

better solutions result in more pheromone being

deposited. In some ACO variants, only the best ant or

a set of elite ants can update the pheromone levels.

5. Pheromone evaporation: Pheromone levels on no-

longer-used are reduced to simulate natural

evaporation. This is usually done by multiplying the

current pheromone level by (1−ρ).

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 437–449 | 442

6. Terminate: The algorithm terminates after a pre-

defined stopping criteria is met. This could be a set

number of iterations, a threshold value for the

objective function, or some other custom condition.

Ant colony optimization offers several advantages that

make it useful for solving optimization problems. In the

context of mutation testing, which involves a large number

of mutants, the ant colony can help navigate this vast space

efficiently. The algorithm can prioritize mutants that are

more likely to reveal faults, thereby reducing the number of

test cases needed.

2.5. Literature Review

This section presents a review of related work on search-

based mutation testing, and test case reduction using

metaheuristics.

Haga and Suehiro [22] proposed a genetic algorithm that

automatically produces test cases using mutation analysis.

Their hybrid approach combines random generation and

refinement. They used mutation adequacy score and

experimented with a C-based project. In this approach, test

cases are initially produced at random and subsequently

fine-tuned through the use of a genetic algorithm. Their

proposed genetic algorithm produced higher quality test

suites. This study has some drawbacks, however, the use of

only numeric data experimentation with, three mutation

operators, and therefore, the impossibility of generating

complex coverage measures. Unlike this study, our

proposed solution involves more than one metaheuristic

algorithm.

Sahoo and Ray [23] conducted a systematic review of the

literature on metaheuristic search-based techniques for test

case generation. The authors discussed the advantages and

drawbacks of many reviewed metaheuristics techniques,

such as genetic algorithms, bee colony optimization, tabu

search, and ant colony optimization for software testing.

This article provides useful insights on many metaheuristics

within the context of test case evaluation.

Arora and Baghel [24] proposed a hybrid approach that

fuses a particle swarm optimization and a genetic algorithm

to increase the quality of the test suite by reducing the

number of test cases. The algorithm is tested with six

programs and randomly generated test cases. The results

show that the number of tests can be halved using the

proposed approach. This study used random test cases and

was not applied in mutation testing.

Palak [25] introduced a hybrid approach using genetic

algorithms and ant colony optimization to choose optimal

test cases with the aim of recognizing the development time

and cost. This approach focused on component-based

software projects and selected a subset of test cases from the

test suite. The results showed that the proposed approach is

able to find 100% faults using 33% of the test cases. This

study shows potential, but it has not been applied to large-

scale programs involving mutation testing.

Suri and Singhal [26] worked on the selection and

prioritization of test cases. They showcased an execution of

an ant colony optimization algorithm that had been

previously described. Their proposed technique takes as

input the fault identification data and the time required to

run the regression test suite. In this algorithm, the time

required to run each test case serves as its execution cost.

The goal was to maximize the total number of faults

detected while minimizing the overall execution cost. The

results showed that the method produces near optimal

solutions. This study shows that ant colony optimization can

be used to select and prioritize test cases.

Jatana and Suri [27] presented an improved version of the

crow search to automate the test suite generation. Using the

principles of mutation testing, they simulated the behaviors

of crows and incorporated the Cauchy distribution. This was

aimed at overcoming the shortcomings of the original crow

search algorithm, which frequently becomes trapped in local

searches. By using Cauchy random numbers, the

algorithm’s ability to explore the solution space increased.

They used mutation sensitivity testing to define the fitness

function for this approach. The experiments showed that the

proposed approach produces better results than other search-

based mutation testing algorithms.

In a recent study by Tsagaris et al. [28], a genetic and ant

colony algorithm is combined and applied to a travel

salesman problem. Their aim was to reduce the total

distance thus; reducing the travel time. Their solution

achieved up to 40% path optimization compared to a

traditional genetic algorithm. Furthermore, the authors also

verified their approach by using a real coordinate measuring

machine. This study shows good potential results; however,

it is less relevant since our approach is applied in mutation

testing rather than path optimization problem.

According to the discussed studies above, metaheuristics

can be used to experiment with test case problems. Our

novel approach is applied in search-based mutation testing

compared to others, and using a hybrid approach has been

found effective in reducing test cases and increase the

quality of testing procedures.

3. Methodology

In this section, research questions are defined and the

proposed method is explained.

3.1. Research Questions

The primary objective of this study is to propose and

evaluate the effectiveness of a hybrid approach called

EvoColony in mutation testing. The research aims to answer

the following questions (RQs):

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 437–449 | 443

• RQ1: Is EvoColony algorithm able to reduce test

cases in a test suite while preserving a strong

mutation adequacy score?

• RQ2: How well does EvoColony perform

compared to traditional search-based approaches

considering random search, genetic algorithms,

and ant colony optimization?

By answering these research questions, our aim is to offer a

comprehensive view of the benefits of incorporating

metaheuristic algorithms into search-based mutation testing.

3.2. EvoColony: A Hybrid Approach

EvoColony combines genetic algorithm with ant colony

optimization. The reasons for this merger are the drawbacks

of genetic algorithms, and how ant colony optimization’s

capacity to overcome these. For example, solutions of

genetic algorithms may converge to local optima rather than

continuing the search through global optima. On the other

hand, ant colony algorithms adapt better to dynamic changes

in the problem landscape, potentially avoiding premature

convergence to local optima. Fine-tuning of genetic

algorithm parameters such as crossover rate, mutation rate,

and selection strategy can be cumbersome, compared to ant

colony optimization, which requires fewer and easier-to-

tune parameters. Therefore, ant colony optimization can

improve the results of the genetic algorithm by taking these

parameters as input, and distributing the initial pheromones

based on these while initializing the graph.

The proposed approach can be divided into four parts (Fig.

3):

1) Input Preparation: The first part is the preparation of

the inputs. EvoColony requires three inputs; a test

program, its test suite, and the mutant programs.

2) Genetic Algorithm: In part two, the genetic algorithm

processes start. In the initialization, test cases from the

test suite are encoded as chromosomes, a fitness

function is determined using equation (3), and the

parameters of the genetic algorithm are defined. The

fitness function is defined as:

 𝒇(𝒙) = 𝑴(𝒙) + (𝟏 − 𝑺(𝒙)) (3)

where 𝒇(𝒙) is the fitness of test suite 𝒙, 𝑴(𝒙) represents

mutation adequacy score for test suite 𝒙, and 𝑺(𝒙) is the

normalized size of test suite 𝒙.

The fitness of the initial population is evaluated. Then, the

parents of the next generation are selected using roulette-

wheel selection. Larger fitness function values increase the

likelihood that chromosomes will be selected. The mating

process involves applying, single-point crossover and

mutation based on a certain probability, and a new solution

is created. The processes iterate until the best solution is

found.

3) Ant Colony Optimization Algorithm: The third

part is the ant colony optimization. Taking the best

solution from part two as input, the ant

colonyparameters are initialized, the ant colony

graph is created, and the initial pheromones are

distributed to the paths based on the genetic

algorithm solution. The ants start moving on the

paths and the pheromones are updated on the trails.

If the ants stop following a particular path, the

pheromone evaporates. The solution is evaluated

and the processes are repeated until the best

solution is found.

4) Output: In the fourth part, the best solution is

returned. The expected output is a reduced test set

by keeping the best mutation score.

Fig. 3: The EvoColony Algorithm Steps.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 437–449 | 444

4. Experimental Design

In this section the test environment is explained, test data is

presented, and benchmark algorithms are discussed.

4.1. Test Environment

The tests were carried out on ten distinct programs, all of

which were coded in the C# language. Some programs were

selected from the software testing literature [29] [30],

whereas others are selected from frequently used mutation

testing experiments. They are converted into C# when

implementation was not available. To increase diversity, the

subject program set includes various characteristics:

mathematical calculations, array operations, and complex

branching conditions. Each subject program differs in

program sizes. Test suites for each program were initially

generated using IntelliTest and later manually fine-tuned to

confirm that the program being tested is free from errors and

that the experiments are not influenced by any runtime

exceptions. Mutants were generated using VisualMutator

for each program (Fig. 4). We have selected five standard

mutation operators that VisualMutator supports since the

mutation adequacy score was almost identical when the rest

operators were also selected. The selected operators for this

study are as follows:

Fig. 4: Test Data Setup.

• Arithmetic Operator Replacement: Substitutes one

arithmetic operator for another (+, -, *, /).

• Relational Operator Replacement: Changes relational

operators (<, <=, >, >=, ==, !=).

• Logical Operator Replacement: Substitutes logical

operators (&, |, ^).

• Logical Connector Replacement: Substitutes logical

connectors (&&, ||).

• Operator Deletion: Produces two mutants from each

operation (+, -, >, <=, %).

Moreover, four object-oriented mutation operators are

selected to represent object-oriented features. These are the

following:

• Accessor Method Change: Changes the accessor

methods for a class’s properties or fields.

• Accessor Modifier Change: Alters the accessibility

level of a property or field accessor.

• Member Variable Initialization Deletion: Removes the

initialization of member variables.

• Member Call from Another Inherited Class: Mutates a

method call to a member of the current class (or a base

class) to a call to a member of another class that shares

the same base class.

To perform a comparative analysis, five different algorithms

were implemented; a random search, two variants of a

traditional genetic algorithm with single-point crossover

and double-point crossover, a traditional ant colony

algorithm, and the proposed EvoColony algorithm. These

algorithms were used to execute each subject program. The

execution was performed on a desktop computer running

Windows 11 Pro operating system with an Intel i7 9700k

2.8 GHz processor.

4.2. Test Data

The details of the subject programs are given below (Table

2) with their size in lines of code (LOC) and the number of

mutants. Total number of code size is 1037 and the total

number of mutants experimented on the study is 1227.

Initial mutation adequacy scores for all programs are

calculated as 1.000.

Table 2: Subject Program Details

Subject Program Size in LOC # of Mutants

BubbleSort 93 85

Calendar 115 114

TriangleType 123 149

ArrayOperations 113 176

TemperatureConv

erter

104 95

QuadraticSolver 73 88

HashTable 107 151

BinarySearch 64 164

BankAccount 76 110

AutoDoor 169 195

Total 1037 1227

4.3. Benchmark Algorithms

Selected benchmark algorithms for the experiments are as

follows:

• Random Search (RS): Random search is used to

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 437–449 | 445

reduce test cases in mutation testing by iteratively

and randomly selecting subsets of test cases,

evaluating their mutation adequacy scores, and

then comparing those scores that are in an

acceptable range. The process continues until a

stop target mutation adequacy score is reached.

• Traditional Genetic Algorithm with Single-Point

Crossover (GA-SP): A genetic algorithm is

employed for test case reduction by initializing a

population with random subsets of test cases and

then applying a single-point crossover and

mutation to create new generations. The fitness

function based on the mutation adequacy score is

used to evaluate each subset of test cases. The

algorithm iteratively refines the population to

optimize the fitness while reducing the number of

test cases, ending when a maximum generation is

reached.

• Traditional Genetic Algorithm with Double-Point

Crossover (GA-DP): In this version of a genetic

algorithm, two crossover points are selected within

the test case sequence, and portions of parent

sequences between these points are swapped to

produce offspring. The fitness of each offspring is

then evaluated using the mutation adequacy score.

Double-point crossover can encourage greater

diversity in the test case subsets and potentially

result in a more efficient and effective reduced set.

The algorithm iteratively applies double-point

crossover, along with other operations such as

mutation, to evolve the population until it reaches

a (near) optimal fitness level.

• Traditional Ant Colony Optimization Algorithm

(ACO): Each test case is represented as a node in a

graph. Then, the process of selecting a set of test

cases as a path through this graph is specified.

Initially, pheromones are evenly distributed across

all paths. During each iteration, several artificial

ants construct solutions by navigating the graph

based on a probabilistic function influenced by

pheromone levels. After completing a path, each

ant evaluates the fitness of its selected test case

subset based on the mutation adequacy score.

Pheromones are then updated: paths that lead to

higher fitness values are reinforced, while others

evaporate. The algorithm iterates until a maximum

number of iterations is met.

• EvoColony: The proposed algorithm from Section

3.2 is implemented, and its results are compared

with other algorithms to evaluate the effectiveness

of the test suite.

Genetic Algorithm

Specific Parameters

Selection

type:

Roulette

-wheel

selection

Crossover

probabilit

y:

0.8

Mutation

probabilit

y:

0.06

Populatio

n size:

Twice

the

number

of initial

test

cases

Chromoso

me size:

Number

of test

cases

Maximum

iteration:

200

generati

ons

Ant Colony

Algorithm Specific

Parameters

α: 2

β: 2

ρ: 0.02

Q:

Based

on the

genetic

algorith

m results

Number of

ants:
100

Maximum

iteration:
1000

Table 3: Genetic and Ant Colony Parameters of

EvoColony

5. Results and Evaluation

In this section, experimental results are presented and

evaluated. Experiments were conducted based on the

research questions in Section 3.1.

RQ1: Is EvoColony algorithm able to reduce test cases in a

test suite while preserving a strong mutation adequacy

score?

This research question aims to answer whether the

EvoColony algorithm can minimize the number of tests

without sacrificing the quality or effectiveness of those tests

in detecting defects.

Table 3 shows the parameters of genetic and ant colony

algorithm parts of EvoColony. These parameters were

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 437–449 | 446

selected based on a combination of experimentation,

empirical evidence, computational efficiency

considerations.

Subject Initial Reduced Reduction

Program

of

Test

Cases

Test

Suite

Size

Ratio

BubbleSort 105 52 50.48%

Calendar 130 70 46.15%

TriangleType 126 89 29.37%

ArrayOperations 149 81 45.64%

TemperatureConverter 115 63 45.22%

QuadraticSolver 108 72 33.33%

HashTable 119 65 45.38%

BinarySearch 123 69 43.90%

BankAccount 152 94 38.16%

AutoDoor 165 102 38.18%

Total 1192 757 36.49%

Table 4: EvoColony Results

Table 4 provides a comprehensive view of test results of

EvoColony across subject programs. The comparative

results have the following information: initial number of test

cases, reduced test suite size, and reduction ratio. Mutation

adequacy score calculated for all experiments still remain

perfect even after the reduction. Reduction ratio is

calculated by using the following formula (3):

Reduc. Ratio =
Initial # of test cases - Reduced # of test cases

Initial number of test cases
x100 (3)

One of the standout observations is the significant reduction

in the number of test cases across the board. For instance,

BubbleSort saw its test cases drop by a substantial 50.48%,

while maintaining a perfect mutation adequacy score. This

implies that not only were the test cases reduced, but they

were optimized so that they were still able to cover the

necessary conditions and branches for effective mutation

testing. However, it is important to note the variation in

reduction percentages. TriangleType had the smallest

reduction at 29.37%, suggesting room for improvement.

Despite these reductions, the mutation adequacy scores

remain perfect for all programs. This high level of mutation

adequacy indicates that the sets of test cases, although

reduced, are nevertheless of high quality, and effective in

identifying potential faults.

The summary statistics at the bottom of the table offer a

macro-level view, showing that 1192 initial test cases were

reduced to 757, a considerable overall reduction of 36.49%.

Yet, despite this number of reduced test cases, the mutation

adequacy score for all subject programs remains perfect at

1.000. This demonstrates that the reduction in test cases

does not mean sacrificing test adequacy, and therefore, the

useless test cases are removed.

The test results successfully illustrate that EvoColony can

be used to significantly reduce the number of test cases

without compromising the quality of the testing, as

evidenced by perfect mutation adequacy scores.

RQ2: How well does EvoColony perform compared to

traditional search-based approaches considering random

search, genetic algorithms, and ant colony optimization?

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 437–449 | 447

This research question aims to answer how well the

EvoColony algorithm in comparison with other common

methods used to optimize software tests. The goal is to

determine whether the performance of EvoColony is better,

worse, or similar in terms of enhancing the quality of test

suites.

According to the results in Table 5, RS consistently

produces the smallest reductions and performs worst when

compared to other approaches. The comparatively poor

performance of RS is most likely due to its inherent lack of

optimization capabilities. RS operates without an iterative

optimization process, unlike more advanced algorithms,

such as GA variants (GA-SP and GA-DP) and ACO.

Furthermore, it does not adapt or learn from previous

iterations, and its random selection process misses the

opportunity for more informed decision making, further

compromising its effectiveness. GA variants yield

moderately effective reductions compared to RS and often

produce very similar results. Their effectiveness is relatively

consistent across various subject programs, suggesting that

they are robust and reliable methods for this task. The two

variants perform similarly, with only slight differences in

their reduction percentages, depending on the specific

program under test. The efficacy of GA variants appears to

be sensitive to the specific program being tested. For

example, both algorithms perform the same amount of

reduction for the Calendar and TemperatureConverter with

36.15% and 29.57% respectively, but vary in effectiveness

for other subject programs. Additionally, GA variants not

only excel compared to RS but also hold their ground

against ACO and EvoColony.

While GA variants offer robust and reliable performance,

ACO generally shows better test case reduction for subject

programs such as BubbleSort and Calendar, for which it

achieves reductions of 42.86% and 40.77%, respectively.

Therefore, the results indicate that this is the second-best

performer.

 RS GA-SP GA-DP ACO EvoColony

Subject

Program

Initial

of Test

Cases

Reduced

Test Suite

Size

Reduction

Ratio

Reduced

Test Suite

Size

Reduction

Ratio

Reduced

Test Suite

Size

Reduction

Ratio

Reduced

Test Suite

Size

Reduction

Ratio

Reduced

Test Suite

Size

Reduction

Ratio

BubbleSort 105 84 20.00% 68 35.24% 65 38.10% 60 42.86% 52 50.48%

Calendar 130 96 26.15% 83 36.15% 83 36.15% 77 40.77% 70 46.15%

TriangleType 126 109 13.49% 100 20.63% 97 22.99% 95 24.60% 89 29.37%

ArrayOperations 149 105 29.53% 98 34.23% 90 39.60% 88 40.94% 81 45.64%

TemperatureConverter 115 90 21.74% 81 29.57% 81 29.57% 75 34.78% 63 45.22%

QuadraticSolver 108 81 25.00% 78 27.78% 77 28.70% 75 30.56% 72 33.33%

HashTable 119 92 22.69% 76 36.13% 72 39.50% 70 41.18% 65 45.38%

BinarySearch 123 92 25.20% 85 30.89% 83 32.52% 79 35.77% 69 43.90%

BankAccount 152 131 13.82% 120 21.05% 116 23.68% 105 30.92% 94 38.16%

AutoDoor 165 135 18.18% 118 28.48% 115 30.30% 112 32.12% 102 38.18%

Table 5: Comparative Test Results

0

20

40

60

80

100

120

140

R
ed

u
ce

d
 t

es
t

su
it

e
si

ze

RS GA-SP GA-DP ACO EvoColony

Fig. 5: Reduced Test Suite Size Comparison.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 437–449 | 448

EvoColony appears provide the greatest benefits in test case

reduction of other four approaches. It consistently shows

superior performance in minimizing the number of test

cases across all subject programs. Moreover, Fig. 5

illustrates the comparison of the test suite reduction with

respect to the results in Table 5. Our results indicate that

EvoColony is able to reduce, on average, one-third of all test

cases, making it the best-performing algorithm for the

experiments conducted in this research.

6. Conclusions and Future Work

Software testing is an indispensable component of the

software development lifecycle, serving as a cornerstone for

quality assurance. Mutation testing helps developers to

assess the effectiveness of the existing test suite at detecting

faults in terms of mutation adequacy score. This research

introduced EvoColony, a novel hybrid approach that

employs both genetic algorithms and ant colony

optimization for search-based mutation test suite reduction.

It is shown that the algorithm is able to reduce test cases in

a test suite by maintaining a perfect mutation score. The

effectiveness of the proposed approach was evaluated with

a comparative analysis.

Our experimental findings validate the greater efficiency of

EvoColony in comparison to four other methods: random

search, two variants of genetic algorithms, and ant colony

optimization. Notably, the proposed hybrid approach

significantly outperformed the other methods in test case

reduction, while maintaining the quality of test suites. This

achievement underscores the utility of leveraging

complementary algorithms. EvoColony offers several

advantages, most notably, its dual optimization strategy.

Using genetic algorithms for the initial search and ant

colony optimization for refinement allows the leveraging of

the strengths of both methods, circumventing their

individual weaknesses.

While this study marks a promising advancement in the

realm of mutation testing, further research is warranted.

Future work could focus on extending the capacity of

EvoColony to process more complex types of mutations or

integrating it with other machine learning techniques for

more adaptive testing strategies. The results may be

compared with other search-based methods such as particle

swarm optimization, tabu search, simulated annealing, or

hybrid approaches.

Acknowledgements

This research did not receive any specific grant from

funding agencies in the public, commercial, or not-for profit

sectors.

Author contributions

Serhat Uzunbayir: Conceptualization, Methodology,

Software, Field study, Data collection, Visualization,

Investigation, Coding, Writing-Original draft preparation,

Editing.

Kaan Kurtel: Conceptualization, Methodology,

Visualization, Supervision, Writing-Reviewing.

Conflicts of interest

The authors declare no conflicts of interest.

References

[1] M. Kintis, “Effective methods to tackle the

equivalent mutant problem when testing software with

mutation,” Ph.D. dissertation, Department of Informatics,

Athens University of Economics and Business, Athens,

Greece, 2016.

[2] T. T. Chekam, M. Papadakis, Y. Le Traon, and M.

Harman, “An empirical study on mutation, statement and

branch coverage fault revelation that avoids the unreliable

clean program assumption,” 2017 IEEE/ACM 39th

International Conference on Software Engineering, ICSE

2017, Institute of Electrical and Electronics Engineers Inc.,

Jul. 2017, pp. 597–608. doi: 10.1109/ICSE.2017.61.

[3] Y. T. Chen et al., “Revisiting the relationship

between fault detection, test adequacy criteria, and test set

size,” 2020 35th IEEE/ACM International Conference on

Automated Software Engineering, ASE 2020, Institute of

Electrical and Electronics Engineers Inc., Sep. 2020, pp.

237–249. doi: 10.1145/3324884.3416667.

[4] R. A. DeMillo, R. J. Lipton and F. G. Sayward,

“Hints on test data selection: help for the practicing

programmer,” Computer, vol. 11, no. 4, pp. 34-41, April

1978, doi: 10.1109/C-M.1978.218136.

[5] Y. Jia and M. Harman, “An analysis and survey of

the development of mutation testing,” IEEE Transactions

on Software Engineering, vol. 37, no. 5. pp. 649–678, 2011.

doi: 10.1109/TSE.2010.62.

[6] A. B. Sánchez, P. Delgado-Pérez, I. Medina-Bulo,

and S. Segura, “Mutation testing in the wild: findings from

GitHub,” Empirical Software Engineering, vol. 27, no. 6,

Nov. 2022, doi: 10.1007/s10664-022-10177-8.

[7] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. Le

Traon, and M. Harman, “Mutation testing advances: an

analysis and survey,” Advances in Computers, vol. 112, pp.

275–378, Jan. 2019, doi: 10.1016/bs.adcom.2018.03.015.

[8] A. Panichella and C. C. S. Liem, “What are we

really testing in mutation testing for machine learning? a

critical reflection,” Proceedings of the 43rd International

Conference on Software Engineering: New Ideas and

Emerging Results, pp. 66–70, May 2021,

doi:10.1109/ICSE-NIER52604.2021.00022.

[9] N. Jatana, B. Suri, and S. Rani, “Systematic

literature review on search based mutation testing,” E-

Informatica Software Engineering Journal, vol. 11, no. 1.

Politechnika Wroclawska, pp. 59–76, Jan. 01, 2017. doi:

10.5277/e-Inf170103.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 437–449 | 449

[10] A. J. Offutt, “Mutation 2000: uniting the

orthogonal,” Wong, W.E. (eds) Mutation Testing for the

New Century, The Springer International Series on

Advances in Database Systems, vol 24., 2001, Springer,

Boston, MA. doi:10.1007/978-1-4757-5939-6_7.

[11] R. G. Hamlet, “Testing programs with the aid of a

compiler,” IEEE Transactions on Software Engineering,

vol. SE-3, no. 4, pp. 279-290, July 1977, doi:

10.1109/TSE.1977.231145.

[12] Y. Jia and M. Harman, “Higher order mutation

testing,” Information Software Technology, vol. 51, no. 10,

pp. 1379–1393, Oct. 2009, doi:

10.1016/j.infsof.2009.04.016.

[13] L. Chen and L. Zhang, “Speeding up mutation

testing via regression test selection: an extensive study,”

2018 IEEE 11th International Conference on Software

Testing, Verification and Validation, ICST 2018, Institute of

Electrical and Electronics Engineers Inc., May 2018, pp.

58–69. doi: 10.1109/ICST.2018.00016.

[14] I. Leontiuc, “Continuous mutation testing in

modern software development,” M.S. thesis, Department of

Software Technology, Faculty EEMCS, Delft University of

Technology, Delft, the Netherlands, 2017.

[15] Y.-S. Ma and J. Offutt, “Description of method-

level mutation operators for java,” George Mason

University, 2005.

[16] R. A. Silva, S. do R. Senger de Souza, and P. S.

Lopes de Souza, “A systematic review on search based

mutation testing,” Information Software Technology, vol.

81, pp. 19–35, Jan. 2017, doi: 10.1016/j.infsof.2016.01.017.

[17] N. Jatana, B. Suri, and S. Rani, “Systematic

literature review on search based mutation testing,” E-

Informatica Software Engineering Journal, vol. 11, no. 1.

Politechnika Wroclawska, pp. 59–76, Jan. 01, 2017. doi:

10.5277/e-Inf170103.

[18] V. Sharma, D. Rakesh Kumar, D. Sanjay Tyagi, P.

Scolar, and A. P. Dcsa, “A review of genetic algorithm and

mendelian law,” International Journal of Science

Engineering Research, vol. 7, 2016, [Online]. Available:

http://www.ijser.org

[19] S. Uzunbayir, “A genetic algorithm for the winner

determination problem in combinatorial auctions,” 2018 3rd

International Conference on Computer Science and

Engineering (UBMK), Sarajevo, Bosnia and Herzegovina,

2018, pp. 127-132, doi: 10.1109/UBMK.2018.8566446.

[20] M. Dorigo, M. Birattari and T. Stutzle, “Ant colony

optimization,” IEEE Computational Intelligence Magazine,

vol. 1, no. 4, pp. 28-39, Nov. 2006, doi:

10.1109/MCI.2006.329691.

[21] S. Uzunbayir, “Reverse ant colony optimization

for the winner determination problem in combinatorial

auctions,” International Conference on Computer Science

and Engineering, UBMK 2022, Institute of Electrical and

Electronics Engineers Inc., 2022, pp. 19–24. doi:

10.1109/UBMK55850.2022.9919488.

[22] H. Haga and A. Suehiro, “Automatic test case

generation based on genetic algorithm and mutation

analysis,” 2012 IEEE International Conference on Control

System, Computing and Engineering, Penang, Malaysia,

2012, pp. 119-123, doi: 10.1109/ICCSCE.2012.6487127.

[23] R. R. Sahoo and M. Ray, “Metaheuristic

techniques for test case generation: a review,” Research

Anthology on Agile Software, Software Development, and

Testing, vol. 2, IGI Global, 2021, pp. 1043–1058. doi:

10.4018/978-1-6684-3702-5.ch052.

[24] D. Arora and A. S. Baghel, “A hybrid meta-

heuristics technique for finding optimal path by software

test case reduction,” International Journal of Hybrid

Information Technology, vol. 8, no. 4, pp. 35–40, Apr. 2015,

doi: 10.14257/ijhit.2015.8.4.05.

[25] Palak and P. Gulia, “Hybrid swarm and ga based

approach for software test case selection,” International

Journal of Electrical and Computer Engineering, vol. 9, no.

6, pp. 4898–4903, 2019, doi: 10.11591/ijece.v9i6.pp49898-

4903.

[26] B. Suri and S. Singhal, “Implementing ant colony

optimization for test case selection and prioritization,”

International Journal on Computer Science and

Engineering, pp. 1924-1932, Nov. 2011.

[27] N. Jatana and B. Suri, “An improved crow search

algorithm for test data generation using search-based

mutation testing,” Neural Processing Letters, vol. 52, no. 1,

pp. 767–784, Aug. 2020, doi: 10.1007/s11063-020-10288-

7.

[28] A. Tsagaris, P. Kyratsis, and G. Mansour, “The

integration of genetic and ant colony algorithm in a hybrid

approach,” International Journal of Intelligent Systems and

Applications in Engineering, vol. 11, no. 2, pp. 336 –, Feb.

2023.

[29] M. B. Bashir and A. Nadeem, “Improved Genetic

Algorithm to Reduce Mutation Testing Cost,” IEEE Access,

vol. 5, pp. 3657-3674, 2017, doi:

10.1109/ACCESS.2017.2678200.

[30] F. Wedyan, A. Al-Shishani, and Y. Jararweh,

“GaSubtle: a new genetic algorithm for generating subtle

higher-order mutants,” Information (Switzerland), vol. 13,

no. 7, Jul. 2022, doi: 10.3390/info13070327.

