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Abstract: The increasing complexity of software systems requires robust and efficient test suites to ensure software quality. In this context, 

mutation testing emerges as an invaluable method for evaluating a test suite’s the fault detection capability. Traditional approaches to test 

case generation and evaluation are often inadequate, particularly when applied to mutation testing, which aims to evaluate the quality of a 

test suite by introducing minor changes or mutations to the code. As software projects increase in scale, there is greater computational cost 

of employing exhaustive mutation testing techniques, leading to a need for more efficient approaches. Incorporating metaheuristics into 

the realm of mutation testing offers a synergistic advantage in optimizing test suites for better fault detection. Especially, combining test 

suite reduction methods with mutation testing produces a more computationally efficient approach compared to more exhaustive ones. This 

study presents a novel approach, called EvoColony, which combines intelligent search-based algorithms, specifically genetic algorithms 

and ant colony optimization, to reduce test cases and enhance the effectiveness of the test suit for mutation testing. Integrating both 

metaheuristic techniques, the research aims to optimize existing test suites, and to improve mutant detection with fewer test cases, thus 

improving the overall testing quality. The results of experiments conducted were compared with traditional methods, demonstrating the 

superior effectiveness and efficiency of the proposed hybrid approach. The findings show a significant advancement in test case reduction 

when using the hybrid algorithm with mutation testing methodologies, and thus ensure the quality of test suites. 
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1. Introduction 

Software testing is an essential part in the software 

development process with the goal of delivering a reliable 

product. To do this, the testing team needs to create an 

effective test suite that aims to catch potential flaws in all 

aspects of the program, including each statement, branching 

condition, and possible execution path. However, the 

growing complexity of functional requirements and 

program specifications makes this a time-consuming task. 

The most basic approach is to perform exhaustive testing 

that uses all possible data combinations to test the 

application. Since there may be an infinite number of test 

inputs, this approach becomes impractical. Therefore, 

deterministic properties of source code entail the necessity 

of various code coverage criteria. Two such criteria are, 

condition coverage, and statement coverage. These criteria 

can also be used to measure and evaluate the quality of the 

system. Thus, code coverage criteria are considered a more 

effective approach for assessing a software system’s 

confidence level. However, it can be challenging to achieve 

100% code coverage, not only in terms of computational 

resources, but also from the perspective of human efforts. 

Specifically, these difficulties have three causes [1]: 

• Certain coverage criteria may entail a broad spectrum of 

testing prerequisites. 

• The process of generating test cases to meet these testing 

requirements cannot be fully automated. 

• Test conditions that are not addressable through 

automation may require manual intervention. 

Mutation testing is a testing method that focuses on 

identifying faults and offers a specific metric known as the 

mutation adequacy score. This metric assesses the ability of 

a test suite to identify errors, serving as an indicator of its 

efficacy. In a study by Chekam et al. [2] they empirically 

compared mutation, statement, and branch coverage, 

concluding that the mutation testing criterion outperformed 

other coverage techniques in fault detection within the test 

suite. Furthermore, Chen et al. [3] delved into the impact of 

the size of the test set and proposed a methodology to 

manage the test size while evaluating the test adequacy 

criteria. Given these considerations, it is imperative to 

reduce the size of the test suite without losing its 

effectiveness. 

Since its introduction in 1978, mutation testing has been a 

subject of considerable academic inquiry [4]. Numerous 

studies have endeavored to transition mutation analysis 

from abstract theories into functional applications [5][6][7]. 

Recently, there has been a notable shift in research towards 

the integration of artificial intelligence techniques (AI) into 
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mutation testing. AI has the capacity to greatly enhance 

mutation testing by automating tasks such as mutant 

generation, execution, and result evaluation. Machine 

learning models, trained on extensive test datasets, can 

discern trends in the behavior of mutants and identify those 

with a higher likelihood of inducing errors [8]. Moreover, 

metaheuristics offer considerable advantages. Such 

strategies focus on test suite optimization, harnessing the 

principles of natural evolution or swarm intelligence to 

pinpoint the most effective test cases for revealing induced 

mutations. It is evident that these innovations hold promise 

for enhancing the reliability of software testing by refining 

mutation testing methodologies and software quality. 

Search-based mutation testing uses advanced metaheuristic 

optimization methods to improve mutation testing 

processes. These methods include bat algorithm, ant colony 

optimization, artificial bee colony, genetic algorithms, and 

other techniques [9]. These optimization methods are good 

at solving difficult problems by searching through many 

possible solutions quickly. One major challenge in this type 

of testing, however, is dealing with a large number of 

potential changes to the code, which can substantially slow 

the process. Therefore, it is useful to apply these techniques 

to mutation testing since the search space of the problem is 

large considering the number of mutants. Recent studies 

show that the use of these advanced methods can accelerate 

the process by reducing the number of code changes and test 

cases needed. 

The research has two primary aims, first, to propose 

EvoColony, a combination of two metaheuristic 

approaches, genetic algorithms, and ant colony optimization 

for mutation testing, and second, to evaluate the 

effectiveness of the algorithm with traditional methods. 

Genetic algorithms can provide a good initial solution, but 

ant colony optimization can further refine it and escape local 

optima. The ant colony maintains a balance between 

exploring new paths and exploiting known good paths, 

potentially alleviating the premature convergence problem 

seen in genetic algorithms. Fusing two methods allows each 

to complement the disadvantages of the other, thus finding 

an optimal solution. The validation of the proposed 

approach is compared to a random search algorithm, two 

variants of a genetic algorithm using single and double 

crossovers, and traditional ant colony optimization. The 

results show that EvoColony successfully achieves better 

solutions than traditional approaches. 

The rest of the paper is organized as follows. Section 2 

presents preliminaries of mutation analysis, search-based 

mutation testing, genetic algorithms, ant colony 

optimization, and a review of the literature. Section 3 

outlines research questions and elaborates the proposed 

method. Section 4 discusses experimental design 

preparation including the configuration of the test 

environment, the test data employed, and the benchmark 

algorithms considered. Section 5 shows and evaluates the 

experimental results. Finally, Section 6 concludes the article 

and discusses future work. 

2. Related Work 

This section offers an overview of mutation analysis and its 

procedures, introduces foundational ideas related to search-

based mutation testing, discusses genetic algorithms and ant 

colony optimization, and provides a literature review based 

on earlier research on the topic. 

2.1. Mutation Analysis 

The concept of mutation analysis first came to light in 1971 

[10]. Early shaping of the research area of mutation testing 

was largely influenced by the contributions of DeMillo et al. 

[4] and Hamlet [11] during the late 1970s. Mutation testing 

is characterized by the application of mutation analysis in 

formulating new test scenarios to scrutinize existing 

software evaluations. Primarily used in the context of unit 

testing, this white-box testing approach involves syntactic 

alterations to specific statements within the source code. 

The aim is to gauge the efficacy of the test suite by 

ascertaining its ability to detect faults in the program. 

Fundamentally, mutation testing serves as a tool for 

evaluating the adequacy of a testing strategy to ensure that 

the software meets quality standards. 

Formally, given an original program P, mutation testing 

uses mutation operators to generate a set of mutants M for 

P. Mutation operators are used to apply syntactical 

transformation rules to generate mutants. These operators 

usually correspond to regular programmer mistakes. Each 

mutant m ∈ M is identical to the original program P, with 

the sole exception that an altered program statement using a 

specific mutation operator. Then, all mutants in the set of M 

are executed using the test suite T of P. At the end of this 

procedure, the effectiveness of T is evaluated using a 

mutation adequacy score, comparing the results of 

execution between the mutants and the original program. A 

mutant m is killed by the test case t ∈ T in P if its outcome 

is different; otherwise, m survives [12][13]. 

Mutation testing is a reliable method for identifying suitable 

test cases that can detect actual faults, however, due to the 

vast numbers involved, it is not feasible to generate 

mutations for all potential faults in a program. 

Consequently, mutation testing typically focuses on a subset 

of faults that are closest to the correct version of the 

program, under the assumption that this subset is able to 

provide an adequate representation of all faults. 

The traditional mutation analysis process in which the 

mutants are generated, executed, and evaluated with the test 

suite involves the following six steps: 

1) The original program P is modified using mutation 
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operators to generate a range of mutants M. A mutant is 

a changed and faulty version of the original program. 

Table 1 shows an example of a simple mutation. 

Generated mutants can contain one or more faults, such 

as changed operators, operand position changes, or 

deletion of statements. This phase can be fully 

automated through tools that employ designated 

mutation operators on P. 

Table 1: Original Program and Mutant 

Original 

Program 

Mutant 

m 

Read v1, 

v2 

Read v1, 

v2 

   if v1 !=  

v2 

   if v1 

!= v2 

       v1 = 

v1 * v2 

       v1 = 

v1 + v2 

   end if    end if 

end end 

 

2) The original program P and the mutants M are 

executed against test suite T. 

3) To verify the accuracy of the output, the original 

program P is run using the test suite T. If the output is 

incorrect, corrections must be made to P before 

proceeding. 

4) When the output of the original program is correct, the 

test suite T is executed with each living mutant. Then, 

its output is compared to the original program output 

to identify which mutants should be killed. The mutant 

survives if the original program and the mutant give 

the same results, otherwise it is killed [14] and 

eliminated from the process. 

5) Following the execution of a mutant, the mutation 

adequacy score is calculated using formula (1) which 

represents the proportion of mutants killed to the total 

number of mutants that can be killed. The procedure 

ends when all mutants have been killed. 

6) If any mutants survive, they must be inspected 

manually to decide if they are equivalent, or if the test 

cases are not adequate to kill them. Equivalent mutants 

yield identical outcomes to the original program and 

are invincible; that is, while they differ in syntax, they 

are functionally identical to the original program. If 

equivalent mutants are detected, they are eliminated. If 

there are no equivalent mutants that remain 

undetected, additional test cases should be added to 

test suite T, and the procedure resumes at step 4. 

Mutation analysis assesses the test suite’s quality through 

the use of a calculated metric called the mutation adequacy 

score [5]. The final objective for the tester would be to 

elevate the mutation adequacy score to 1, ensuring that the 

test suite T is capable of identifying all errors as indicated 

by the mutants. Thus, mutation testing provides a structured 

and effective way to measure the adequacy of the test 

adequacy [15]. 

Mutation Adequacy Score =
Killed Mutants

All Mutants - Killed Mutants
     (1) 

2.2. Search-Based Mutation Testing 

Search-based mutation testing combines the fundamentals 

of mutation testing with search-based optimization 

techniques [16]. It uses metaheuristic algorithms that can 

solve complex problems, such as genetic algorithms, ant 

colony optimization, or particle swarm optimization to 

autonomously create test cases capable of uncovering code 

mutations, thereby enhancing the overall quality of the test 

suite. The approach has two connected goals: to reduce the 

number of necessary test cases, and to boost their ability to 

detect mutants. Two other advantages are provided by this 

method: increasing the efficiency of the test process by 

reducing the time and computational resources needed to 

create and maintain a comprehensive test suite; and 

automating test case generation process, which reduces the 

manual effort required. The application of metaheuristics in 

testing procedures shows promise due to the large volume 

of inputs, specifically mutants, that need to be examined 

during the testing phase [17]. 

Various metaheuristic algorithms can be used with search-

based mutation but each has some drawbacks. For example: 

• Ant colony optimization is difficult to analyze 

theoretically. Its time of convergence is uncertain 

because of the nature of the search. 

• Genetic algorithms have limitations such as 

converging too quickly, slow processing speed, 

lengthy iteration periods, and inefficiency in 

generating test cases. 

• Particles in particle swarm optimization may get stuck 

in local minimum and the performance of the 

algorithm is sensitive to its parameters and 

coefficients.  

• Simulated annealing may be slow to convergence 

when applied on complex problems. Also, the cooling 

schedule depends on the nature of the problem, it is 

critical to select it carefully. 

• Tabu search may be computationally expensive and 

requires memory structure. 

To address the drawbacks, a multifaceted strategy is often 

required. One common approach is to use hybrid models 

that combine the strengths of different algorithms, 

enhancing both reliability and efficiency. Parameter tuning 

can also be crucial; automated methods such as grid search 
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or even dynamic adaptation during the algorithm’s run can 

help determine the most effective settings. Additionally, 

benchmarking the algorithm against both synthetic and real-

world scenarios can provide valuable insight into its 

performance.   

2.3. Genetic Algorithms 

Genetic algorithms draw inspiration from the natural 

selection processes observed in biological systems, 

grounded in Darwin's theory of evolution and Mendel’s 

contributions [18]. They are a type of problem-solving 

method used to find answers sufficient to complex search 

optimization problems with a large number of candidate 

solutions. Finding the best solution among all is often 

considered as a time-consuming task; using the concept of 

the survival of the fittest the best solution is eventually 

found [19]. 

A typical genetic algorithm starts with a population of 

randomly generated individuals called chromosomes, where 

each individual represents a possible solution to the 

problem. These individuals are then evaluated based on a 

fitness function that quantifies how well they solve the 

problem. Then, parent individuals are selected and their 

offspring are produced using crossover and mutation 

operators, which are expected to be better solutions than the 

previous generations. After performing the procedure until 

the stopping condition is reached, the solutions converge to 

the optimal one. 

One key feature of genetic algorithms involves mapping the 

problem onto chromosomes and establishing a domain-

specific fitness function. 

Chromosome:  A chromosome serves as an individual 

solution to the problem. It signifies a specific location in the 

overall solution space and consists of a sequence of “genes,” 

each of which corresponds to a particular attribute or 

parameter of the solution. The chromosome is structured in 

a way that enables its manipulation through the processes of 

the algorithm. 

Fitness Function: A fitness function evaluates the 

effectiveness of a chromosome in addressing the problem 

by assigning it a performance-based score. Higher scores 

indicate more effective solutions. This function guides the 

algorithm to determine which solutions should be retained 

and which should be modified as it seeks the optimal 

solution. 

A basic genetic algorithm is processed with six steps (Fig. 

1): 

 

 

 

 

 

Fig 1: Traditional Genetic Algorithm Steps. 

 

1) Initial population: The beginning of the algorithm 

involves randomly generated chromosomes to 

produce the initial population. The size of the 

population depends on the dataset and the problem 

domain. 

2) Fitness evaluation: The fitness of the chosen 

population is evaluated according to the pre-

defined fitness function set by the user. 

3) Selection: Individuals are chosen based on their 

fitness levels to generate subsequent generations. 

If the fitness value is high, chromosomes are 

expected to be included in the new generation; if 

not they can be eliminated. Selection can be made 

by using different methods, such as roulette-wheel, 

rank, or tournament selection. 

4) Crossover: Two parent individuals are used to 

create offspring by combining their genes. By 

combining the best traits of each parent, the 

algorithm can produce children that are potentially 

better solutions to the problem. There are possible 

different crossover methods, such as single-point, 

multi-point, uniform, or arithmetic crossover. 

5) Mutation: Mutation is applied to the new 

offspring after crossover with a low probability. By 

adding small changes to an individual, it helps to 

maintain genetic diversity and explore new areas 

of the solution space.  

6) Terminate: The algorithm is terminated when the 

best solution is found and returned. The 

termination condition is critical when controlling 

the computation time of the algorithm. There are 

different possible options to set as termination 
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conditions, such as fitness threshold, where either 

the maximum level of fitness is reached, or a 

predefined number of generations is produced. 

Genetic algorithms offer a powerful approach to optimizing 

software testing processes, improving test effectiveness, and 

providing flexibility to introduce new genetic operators or 

mutation operators for specific testing scenarios. 

2.4. Ant Colony Optimization 

Ant colony optimization was introduced by Marco Dorigo 

[20] and inspired by the behavior of ants. In a natural 

habitat, ants can find the shortest route from a food source 

to their nest through a self-organized mechanism. When ants 

are released to an environment that contains a food source, 

they create trails to find food, and release a chemical called 

pheromone on the way back to the nest. Ants can sense this 

chemical and start to follow paths that have a higher 

intensity of pheromones. At the same time, the pheromone 

evaporates on the unused ant paths. Eventually, all the ants 

start to use the path that has the most intense level of 

pheromones, which is also the shortest path between the nest 

and the food source. Since the intensity of the pheromone is 

directly related to the probability of the path followed, this 

approach is considered a probabilistic method [21]. 

The ant colony algorithm requires a graph representation to 

formalize the problem being solved. Nodes in the graph 

represent a possible state or decision point, and the edges 

between nodes represent transitions between these states. 

The graph can be directed or undirected, depending on the 

problem being addressed. 

A basic ant colony algorithm is processed with six steps 

(Fig. 2): 

 

Fig. 2: Traditional Ant Colony Algorithm Steps. 

 

 

1. Parameter initialization: At the start, the pheromone 

levels on the paths of the graph representation are 

initialized to zero to indicate that there are no 

pheromones. Ant colony optimization requires specific 

parameters to control the behavior of the algorithm. 

The common parameters can be defined as follows: 

• Number of ants: This parameter represents the number 

of artificial ants that will traverse the graph to construct 

the solutions. The greater the number, the better the 

potential solutions. However, computational resources 

and time will be increased. 

• Pheromone evaporation rate (ρ): This parameter is 

between 0 and 1, and represents the speed with which 

the pheromone markings fade. A high rate allows for 

quick adaptation, but may lead to instability. 

• Pheromone intensity (Q): This parameter sets the 

starting pheromone concentrations on the paths. 

Striking a balance is crucial, as excessive or 

insufficient initial pheromone can affect the 

effectiveness of the algorithm. 

• Pheromone influence factor (α): This parameter 

determines the weight given to the pheromone trails 

when the ants decide their routes. 

• Heuristic information (β): This parameter is optional 

and sets the significance of any heuristic data available 

to guide the ants. 

• Termination criteria: This parameter sets the total 

number of algorithm executions or other conditions 

that signal that the algorithm should stop. 

2. Path construction: Ants create random trails on the 

graph and construct solutions at the start. In the next 

iterations, the solutions are updated based on a 

probabilistic decision-making process influenced by 

the pheromone levels on the paths and optional 

heuristic information. 

3. Solution evaluation: Each ant trail is evaluated based 

on an objective function specific to the problem 

domain. For example, this would be the length of each 

path if the problem is to find the shortest path. 

4. Pheromone update: Pheromone levels are increased 

based on the quality of solutions found. Generally, 

better solutions result in more pheromone being 

deposited. In some ACO variants, only the best ant or 

a set of elite ants can update the pheromone levels. 

5. Pheromone evaporation: Pheromone levels on no-

longer-used are reduced to simulate natural 

evaporation. This is usually done by multiplying the 

current pheromone level by (1−ρ). 
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6. Terminate: The algorithm terminates after a pre-

defined stopping criteria is met. This could be a set 

number of iterations, a threshold value for the 

objective function, or some other custom condition. 

Ant colony optimization offers several advantages that 

make it useful for solving optimization problems. In the 

context of mutation testing, which involves a large number 

of mutants, the ant colony can help navigate this vast space 

efficiently. The algorithm can prioritize mutants that are 

more likely to reveal faults, thereby reducing the number of 

test cases needed. 

2.5. Literature Review 

This section presents a review of related work on search-

based mutation testing, and test case reduction using 

metaheuristics.  

Haga and Suehiro [22] proposed a genetic algorithm that 

automatically produces test cases using mutation analysis. 

Their hybrid approach combines random generation and 

refinement. They used mutation adequacy score and 

experimented with a C-based project. In this approach, test 

cases are initially produced at random and subsequently 

fine-tuned through the use of a genetic algorithm. Their 

proposed genetic algorithm produced higher quality test 

suites. This study has some drawbacks, however, the use of 

only numeric data experimentation with, three mutation 

operators, and therefore, the impossibility of generating 

complex coverage measures. Unlike this study, our 

proposed solution involves more than one metaheuristic 

algorithm.  

Sahoo and Ray [23] conducted a systematic review of the 

literature on metaheuristic search-based techniques for test 

case generation. The authors discussed the advantages and 

drawbacks of many reviewed metaheuristics techniques, 

such as genetic algorithms, bee colony optimization, tabu 

search, and ant colony optimization for software testing. 

This article provides useful insights on many metaheuristics 

within the context of test case evaluation. 

Arora and Baghel [24] proposed a hybrid approach that 

fuses a particle swarm optimization and a genetic algorithm 

to increase the quality of the test suite by reducing the 

number of test cases. The algorithm is tested with six 

programs and randomly generated test cases. The results 

show that the number of tests can be halved using the 

proposed approach. This study used random test cases and 

was not applied in mutation testing. 

Palak [25] introduced a hybrid approach using genetic 

algorithms and ant colony optimization to choose optimal 

test cases with the aim of recognizing the development time 

and cost. This approach focused on component-based 

software projects and selected a subset of test cases from the 

test suite. The results showed that the proposed approach is 

able to find 100% faults using 33% of the test cases. This 

study shows potential, but it has not been applied to large-

scale programs involving mutation testing. 

Suri and Singhal [26] worked on the selection and 

prioritization of test cases. They showcased an execution of 

an ant colony optimization algorithm that had been 

previously described. Their proposed technique takes as 

input the fault identification data and the time required to 

run the regression test suite. In this algorithm, the time 

required to run each test case serves as its execution cost. 

The goal was to maximize the total number of faults 

detected while minimizing the overall execution cost. The 

results showed that the method produces near optimal 

solutions. This study shows that ant colony optimization can 

be used to select and prioritize test cases. 

Jatana and Suri [27] presented an improved version of the 

crow search to automate the test suite generation. Using the 

principles of mutation testing, they simulated the behaviors 

of crows and incorporated the Cauchy distribution. This was 

aimed at overcoming the shortcomings of the original crow 

search algorithm, which frequently becomes trapped in local 

searches. By using Cauchy random numbers, the 

algorithm’s ability to explore the solution space increased. 

They used mutation sensitivity testing to define the fitness 

function for this approach. The experiments showed that the 

proposed approach produces better results than other search-

based mutation testing algorithms.  

In a recent study by Tsagaris et al. [28], a genetic and ant 

colony algorithm is combined and applied to a travel 

salesman problem. Their aim was to reduce the total 

distance thus; reducing the travel time. Their solution 

achieved up to 40% path optimization compared to a 

traditional genetic algorithm. Furthermore, the authors also 

verified their approach by using a real coordinate measuring 

machine. This study shows good potential results; however, 

it is less relevant since our approach is applied in mutation 

testing rather than path optimization problem. 

According to the discussed studies above, metaheuristics 

can be used to experiment with test case problems. Our 

novel approach is applied in search-based mutation testing 

compared to others, and using a hybrid approach has been 

found effective in reducing test cases and increase the 

quality of testing procedures. 

3. Methodology 

In this section, research questions are defined and the 

proposed method is explained. 

3.1. Research Questions 

The primary objective of this study is to propose and 

evaluate the effectiveness of a hybrid approach called 

EvoColony in mutation testing. The research aims to answer 

the following questions (RQs): 
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• RQ1: Is EvoColony algorithm able to reduce test 

cases in a test suite while preserving a strong 

mutation adequacy score?  

• RQ2: How well does EvoColony perform 

compared to traditional search-based approaches 

considering random search, genetic algorithms, 

and ant colony optimization? 

By answering these research questions, our aim is to offer a 

comprehensive view of the benefits of incorporating 

metaheuristic algorithms into search-based mutation testing. 

3.2. EvoColony: A Hybrid Approach 

EvoColony combines genetic algorithm with ant colony 

optimization. The reasons for this merger are the drawbacks 

of genetic algorithms, and how ant colony optimization’s 

capacity to overcome these. For example, solutions of 

genetic algorithms may converge to local optima rather than 

continuing the search through global optima. On the other 

hand, ant colony algorithms adapt better to dynamic changes 

in the problem landscape, potentially avoiding premature 

convergence to local optima. Fine-tuning of genetic 

algorithm parameters such as crossover rate, mutation rate, 

and selection strategy can be cumbersome, compared to ant 

colony optimization, which requires fewer and easier-to-

tune parameters. Therefore, ant colony optimization can 

improve the results of the genetic algorithm by taking these 

parameters as input, and distributing the initial pheromones 

based on these while initializing the graph. 

The proposed approach can be divided into four parts (Fig. 

3): 

1) Input Preparation: The first part is the preparation of 

the inputs. EvoColony requires three inputs; a test 

program, its test suite, and the mutant programs.  

2) Genetic Algorithm: In part two, the genetic algorithm 

processes start. In the initialization, test cases from the 

test suite are encoded as chromosomes, a fitness 

function is determined using equation (3), and the 

parameters of the genetic algorithm are defined. The 

fitness function is defined as: 

 𝒇(𝒙) = 𝑴(𝒙) + (𝟏 − 𝑺(𝒙))                                      (3) 

where 𝒇(𝒙) is the fitness of test suite 𝒙, 𝑴(𝒙) represents 

mutation adequacy score for test suite 𝒙, and 𝑺(𝒙) is the 

normalized size of test suite 𝒙.  

The fitness of the initial population is evaluated. Then, the 

parents of the next generation are selected using roulette-

wheel selection. Larger fitness function values increase the 

likelihood that chromosomes will be selected. The mating 

process involves applying, single-point crossover and 

mutation based on a certain probability, and a new solution 

is created. The processes iterate until the best solution is 

found.  

3) Ant Colony Optimization Algorithm: The third 

part is the ant colony optimization. Taking the best 

solution from part two as input, the ant 

colonyparameters are initialized, the ant colony 

graph is created, and the initial pheromones are 

distributed to the paths based on the genetic 

algorithm solution. The ants start moving on the 

paths and the pheromones are updated on the trails. 

If the ants stop following a particular path, the 

pheromone evaporates. The solution is evaluated 

and the processes are repeated until the best 

solution is found.  

4) Output: In the fourth part, the best solution is 

returned. The expected output is a reduced test set 

by keeping the best mutation score. 

 

Fig. 3: The EvoColony Algorithm Steps. 
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4. Experimental Design 

In this section the test environment is explained, test data is 

presented, and benchmark algorithms are discussed. 

4.1. Test Environment 

The tests were carried out on ten distinct programs, all of 

which were coded in the C# language. Some programs were 

selected from the software testing literature [29] [30], 

whereas others are selected from frequently used mutation 

testing experiments. They are converted into C# when 

implementation was not available. To increase diversity, the 

subject program set includes various characteristics: 

mathematical calculations, array operations, and complex 

branching conditions. Each subject program differs in 

program sizes. Test suites for each program were initially 

generated using IntelliTest and later manually fine-tuned to 

confirm that the program being tested is free from errors and 

that the experiments are not influenced by any runtime 

exceptions. Mutants were generated using VisualMutator 

for each program (Fig. 4). We have selected five standard 

mutation operators that VisualMutator supports since the 

mutation adequacy score was almost identical when the rest 

operators were also selected. The selected operators for this 

study are as follows: 

 

Fig. 4: Test Data Setup. 

• Arithmetic Operator Replacement: Substitutes one 

arithmetic operator for another (+, -, *, /). 

• Relational Operator Replacement: Changes relational 

operators (<, <=, >, >=, ==, !=). 

• Logical Operator Replacement: Substitutes logical 

operators (&, |, ^). 

• Logical Connector Replacement: Substitutes logical 

connectors (&&, ||). 

• Operator Deletion: Produces two mutants from each 

operation (+, -, >, <=, %). 

Moreover, four object-oriented mutation operators are 

selected to represent object-oriented features. These are the 

following: 

• Accessor Method Change: Changes the accessor 

methods for a class’s properties or fields. 

• Accessor Modifier Change: Alters the accessibility 

level of a property or field accessor. 

• Member Variable Initialization Deletion: Removes the 

initialization of member variables. 

• Member Call from Another Inherited Class: Mutates a 

method call to a member of the current class (or a base 

class) to a call to a member of another class that shares 

the same base class. 

To perform a comparative analysis, five different algorithms 

were implemented; a random search, two variants of a 

traditional genetic algorithm with single-point crossover 

and double-point crossover, a traditional ant colony 

algorithm, and the proposed EvoColony algorithm. These 

algorithms were used to execute each subject program. The 

execution was performed on a desktop computer running 

Windows 11 Pro operating system with an Intel i7 9700k 

2.8 GHz processor. 

4.2. Test Data 

The details of the subject programs are given below (Table 

2) with their size in lines of code (LOC) and the number of 

mutants. Total number of code size is 1037 and the total 

number of mutants experimented on the study is 1227. 

Initial mutation adequacy scores for all programs are 

calculated as 1.000.  

Table 2: Subject Program Details 
 

Subject Program Size in LOC # of Mutants 

BubbleSort 93 85 

Calendar 115 114 

TriangleType 123 149 

ArrayOperations 113 176 

TemperatureConv

erter 

104 95 

QuadraticSolver 73 88 

HashTable 107 151 

BinarySearch 64 164 

BankAccount 76 110 

AutoDoor 169 195 

Total 1037 1227 

4.3. Benchmark Algorithms 

Selected benchmark algorithms for the experiments are as 

follows: 

• Random Search (RS): Random search is used to 
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reduce test cases in mutation testing by iteratively 

and randomly selecting subsets of test cases, 

evaluating their mutation adequacy scores, and 

then comparing those scores that are in an 

acceptable range. The process continues until a 

stop target mutation adequacy score is reached.  

• Traditional Genetic Algorithm with Single-Point 

Crossover (GA-SP): A genetic algorithm is 

employed for test case reduction by initializing a 

population with random subsets of test cases and 

then applying a single-point crossover and 

mutation to create new generations. The fitness 

function based on the mutation adequacy score is 

used to evaluate each subset of test cases. The 

algorithm iteratively refines the population to 

optimize the fitness while reducing the number of 

test cases, ending when a maximum generation is 

reached. 

• Traditional Genetic Algorithm with Double-Point 

Crossover (GA-DP): In this version of a genetic 

algorithm, two crossover points are selected within 

the test case sequence, and portions of parent 

sequences between these points are swapped to 

produce offspring. The fitness of each offspring is 

then evaluated using the mutation adequacy score. 

Double-point crossover can encourage greater 

diversity in the test case subsets and potentially 

result in a more efficient and effective reduced set. 

The algorithm iteratively applies double-point 

crossover, along with other operations such as 

mutation, to evolve the population until it reaches 

a (near) optimal fitness level. 

• Traditional Ant Colony Optimization Algorithm 

(ACO): Each test case is represented as a node in a 

graph. Then, the process of selecting a set of test 

cases as a path through this graph is specified. 

Initially, pheromones are evenly distributed across 

all paths. During each iteration, several artificial 

ants construct solutions by navigating the graph 

based on a probabilistic function influenced by 

pheromone levels. After completing a path, each 

ant evaluates the fitness of its selected test case 

subset based on the mutation adequacy score. 

Pheromones are then updated: paths that lead to 

higher fitness values are reinforced, while others 

evaporate. The algorithm iterates until a maximum 

number of iterations is met. 

• EvoColony: The proposed algorithm from Section 

3.2 is implemented, and its results are compared 

with other algorithms to evaluate the effectiveness 

of the test suite. 

Genetic Algorithm 

Specific Parameters 

Selection 

type: 

Roulette

-wheel 

selection 

Crossover 

probabilit

y: 

0.8 

Mutation 

probabilit

y: 

0.06 

Populatio

n size: 

Twice 

the 

number 

of initial 

test 

cases 

Chromoso

me size: 

Number 

of test 

cases 

Maximum 

iteration: 

200 

generati

ons 

Ant Colony 

Algorithm Specific 

Parameters 

α: 2 

β: 2 

ρ: 0.02 

Q: 

Based 

on the 

genetic 

algorith

m results 

Number of 

ants: 
100 

Maximum 

iteration: 
1000 

Table 3: Genetic and Ant Colony Parameters of 

EvoColony 

5. Results and Evaluation 

In this section, experimental results are presented and 

evaluated. Experiments were conducted based on the 

research questions in Section 3.1.  

RQ1: Is EvoColony algorithm able to reduce test cases in a 

test suite while preserving a strong mutation adequacy 

score?  

This research question aims to answer whether the 

EvoColony algorithm can minimize the number of tests 

without sacrificing the quality or effectiveness of those tests 

in detecting defects.  

Table 3 shows the parameters of genetic and ant colony 

algorithm parts of EvoColony. These parameters were 
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selected based on a combination of experimentation, 

empirical evidence, computational efficiency 

considerations.  

Subject  Initial Reduced  Reduction  

Program 

# of 

Test 

Cases 

Test 

Suite 

Size 

Ratio 

BubbleSort 105 52 50.48% 

Calendar 130 70 46.15% 

TriangleType 126 89 29.37% 

ArrayOperations 149 81 45.64% 

TemperatureConverter 115 63 45.22% 

QuadraticSolver 108 72 33.33% 

HashTable 119 65 45.38% 

BinarySearch 123 69 43.90% 

BankAccount 152 94 38.16% 

AutoDoor 165 102 38.18% 

Total 1192 757 36.49% 

Table 4: EvoColony Results

Table 4 provides a comprehensive view of test results of 

EvoColony across subject programs. The comparative 

results have the following information: initial number of test 

cases, reduced test suite size, and reduction ratio. Mutation 

adequacy score calculated for all experiments still remain 

perfect even after the reduction. Reduction ratio is 

calculated by using the following formula (3): 

Reduc. Ratio =
Initial # of test cases - Reduced # of test cases

Initial number of test cases
x100 (3) 

One of the standout observations is the significant reduction 

in the number of test cases across the board. For instance, 

BubbleSort saw its test cases drop by a substantial 50.48%, 

while maintaining a perfect mutation adequacy score. This 

implies that not only were the test cases reduced, but they 

were optimized so that they were still able to cover the 

necessary conditions and branches for effective mutation 

testing. However, it is important to note the variation in 

reduction percentages. TriangleType had the smallest 

reduction at 29.37%, suggesting room for improvement. 

Despite these reductions, the mutation adequacy scores 

remain perfect for all programs. This high level of mutation 

adequacy indicates that the sets of test cases, although 

reduced, are nevertheless of high quality, and effective in 

identifying potential faults.  

The summary statistics at the bottom of the table offer a 

macro-level view, showing that 1192 initial test cases were 

reduced to 757, a considerable overall reduction of 36.49%. 

Yet, despite this number of reduced test cases, the mutation 

adequacy score for all subject programs remains perfect at 

1.000. This demonstrates that the reduction in test cases 

does not mean sacrificing test adequacy, and therefore, the 

useless test cases are removed. 

The test results successfully illustrate that EvoColony can 

be used to significantly reduce the number of test cases 

without compromising the quality of the testing, as 

evidenced by perfect mutation adequacy scores. 

RQ2: How well does EvoColony perform compared to 

traditional search-based approaches considering random 

search, genetic algorithms, and ant colony optimization? 
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This research question aims to answer how well the 

EvoColony algorithm in comparison with other common 

methods used to optimize software tests. The goal is to 

determine whether the performance of EvoColony is better, 

worse, or similar in terms of enhancing the quality of test 

suites.  

According to the results in Table 5, RS consistently 

produces the smallest reductions and performs worst when 

compared to other approaches. The comparatively poor 

performance of RS is most likely due to its inherent lack of 

optimization capabilities. RS operates without an iterative 

optimization process, unlike more advanced algorithms, 

such as GA variants (GA-SP and GA-DP) and ACO.  

Furthermore, it does not adapt or learn from previous 

iterations, and its random selection process misses the 

opportunity for more informed decision making, further 

compromising its effectiveness. GA variants yield 

moderately effective reductions compared to RS and often 

produce very similar results. Their effectiveness is relatively 

consistent across various subject programs, suggesting that 

they are robust and reliable methods for this task. The two 

variants perform similarly, with only slight differences in 

their reduction percentages, depending on the specific 

program under test. The efficacy of GA variants appears to 

be sensitive to the specific program being tested. For 

example, both algorithms perform the same amount of 

reduction for the Calendar and TemperatureConverter with 

36.15% and 29.57% respectively, but vary in effectiveness 

for other subject programs. Additionally, GA variants not 

only excel compared to RS but also hold their ground 

against ACO and EvoColony. 

While GA variants offer robust and reliable performance, 

ACO generally shows better test case reduction for subject 

programs such as BubbleSort and Calendar, for which it 

achieves reductions of 42.86% and 40.77%, respectively. 

Therefore, the results indicate that this is the second-best 

performer. 

  RS GA-SP GA-DP ACO EvoColony 

Subject  

Program 

Initial 

# of Test 

Cases 

Reduced 

Test Suite 

Size 

Reduction 

Ratio  

Reduced 

Test Suite 

Size 

Reduction 

Ratio  

Reduced 

Test Suite 

Size 

Reduction 

Ratio  

Reduced 

Test Suite 

Size 

Reduction 

Ratio 

Reduced 

Test Suite 

Size 

Reduction 

Ratio 

BubbleSort 105 84 20.00% 68 35.24% 65 38.10% 60 42.86% 52 50.48% 

Calendar 130 96 26.15% 83 36.15% 83 36.15% 77 40.77% 70 46.15% 

TriangleType 126 109 13.49% 100 20.63% 97 22.99% 95 24.60% 89 29.37% 

ArrayOperations 149 105 29.53% 98 34.23% 90 39.60% 88 40.94% 81 45.64% 

TemperatureConverter 115 90 21.74% 81 29.57% 81 29.57% 75 34.78% 63 45.22% 

QuadraticSolver 108 81 25.00% 78 27.78% 77 28.70% 75 30.56% 72 33.33% 

HashTable 119 92 22.69% 76 36.13% 72 39.50% 70 41.18% 65 45.38% 

BinarySearch 123 92 25.20% 85 30.89% 83 32.52% 79 35.77% 69 43.90% 

BankAccount 152 131 13.82% 120 21.05% 116 23.68% 105 30.92% 94 38.16% 

AutoDoor 165 135 18.18% 118 28.48% 115 30.30% 112 32.12% 102 38.18% 

Table 5: Comparative Test Results 
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Fig. 5: Reduced Test Suite Size Comparison. 
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EvoColony appears provide the greatest benefits in test case 

reduction of other four approaches. It consistently shows 

superior performance in minimizing the number of test 

cases across all subject programs. Moreover, Fig. 5 

illustrates the comparison of the test suite reduction with 

respect to the results in Table 5. Our results indicate that 

EvoColony is able to reduce, on average, one-third of all test 

cases, making it the best-performing algorithm for the 

experiments conducted in this research. 

6. Conclusions and Future Work 

Software testing is an indispensable component of the 

software development lifecycle, serving as a cornerstone for 

quality assurance. Mutation testing helps developers to 

assess the effectiveness of the existing test suite at detecting 

faults in terms of mutation adequacy score. This research 

introduced EvoColony, a novel hybrid approach that 

employs both genetic algorithms and ant colony 

optimization for search-based mutation test suite reduction. 

It is shown that the algorithm is able to reduce test cases in 

a test suite by maintaining a perfect mutation score. The 

effectiveness of the proposed approach was evaluated with 

a comparative analysis. 

Our experimental findings validate the greater efficiency of 

EvoColony in comparison to four other methods: random 

search, two variants of genetic algorithms, and ant colony 

optimization. Notably, the proposed hybrid approach 

significantly outperformed the other methods in test case 

reduction, while maintaining the quality of test suites. This 

achievement underscores the utility of leveraging 

complementary algorithms. EvoColony offers several 

advantages, most notably, its dual optimization strategy. 

Using genetic algorithms for the initial search and ant 

colony optimization for refinement allows the leveraging of 

the strengths of both methods, circumventing their 

individual weaknesses. 

While this study marks a promising advancement in the 

realm of mutation testing, further research is warranted. 

Future work could focus on extending the capacity of 

EvoColony to process more complex types of mutations or 

integrating it with other machine learning techniques for 

more adaptive testing strategies. The results may be 

compared with other search-based methods such as particle 

swarm optimization, tabu search, simulated annealing, or 

hybrid approaches. 
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