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Abstract: In Wuhan, China, in December 2019, the new coronavirus 2019 (COVID-2019) was found for the first time. This 

virus quickly spread around the world and turned into a pandemic. It has ruined people's daily lives as well as the health of the 

public and the budget of the whole world. It is very important to find positive cases as soon as they are found in order to stop 

the spread of this outbreak and get help to those who are sick as soon as possible. Since there are no reliable automatic toolkits 

on the market right now, the need for additional diagnostic tools has gone up. During the SARS-CoV-2 pandemic that hit the 

whole world in 2020, automatic COVID-19 screening with X-rays was of the greatest importance and need. Within the scope 

of this study, a new model is given for automatically identifying COVID-19 from raw chest X-ray pictures. Because of all the 

new tools that are being made, every day a large amount of data, often called "Big Data," is made. This information could be 

very useful in many different areas. When the collection is too big, you can't fit all of the information that needs to be studied 

into memory at once. In the distributed scalable model for attention-based deep multiple instance learning (SADD-MIL) that 

we suggest, an X-ray is given a name at the patient level. The X-ray is then seen as a bag of instances. We got X-ray files from 

many different places that added up to 200 gigabytes. Several research studies have shown that when our method is used on 

big amounts of data, the results are better overall. In order to make a fair comparison, we made the attention-based deep 3D 

multiple instance learning (AD3D-MIL) methods scalable and compared it to the SADD-MIL technique that was shown. The 

Hadoop data format is used by both the planned SADD-MIL and an already existing AD3D-MIL. Based on what we learned 

from our experiments, the suggested method works much better than the method that is currently used for big X-ray collections.  

Keywords: Corona Virus Disease 2019 (COVID-19), Scalable model, Big Data, Multiple Instance Learning, Attention-based 

Deep Learning, Machine Learning. 

1. Introduction 

The COVID-19 epidemic, which started on December 

31, 2019, when instances of pneumonia were reported 

in Wuhan, a city in the Chinese province of Hubei, has 

quickly grown into a pandemic (Wu et al., 2020; Huang 

et al., 2020). The illness is known as COVID-19, and 

the virus that causes it is known as SARS-CoV-2. Both 

the Middle East respiratory syndrome coronavirus 

(MERS-CoV) and the severe acute respiratory 

syndrome coronavirus (SARS-CoV) are coronaviruses 

with the potential to cause significant respiratory illness 

or even death (Kong and Agarwal, 2020). The 

COVID-19 symptoms that patients experience most 

often include a high temperature, a cough, a sore 

throat, a headache, weariness, muscular pain, and 

shortness of breath (Mishal et al., 2020). 

The most precise diagnosis of COVID-19 is currently 

made using the real-time reverse transcription-

polymerase chain reaction assay (RT-PCR). Chest 

imaging procedures like computed tomography (CT) 

and X-rays are particularly beneficial for both the 

diagnosis and treatment of this illness (Zu et al., 

2020; Dil-lon, 1983). Chest X-ray screening is an 

effective tool for screening, according to clinical 

studies (Chen et al., 2020), since it can identify the 

typical traits of Corona patients. Compared to reverse 

transcription polymerase chain reaction testing in 

laboratories, this procedure is more precise. Many 

have come to the conclusion that in order to make an 

accurate diagnosis of those who test positive for 

Covid-19, chest X-rays are necessary. Patients who 

tested positive for Covid-19 outnumbered 
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radiologists by a large margin. This is why the existing 

approach of manual testing for Covid-19 should be 

replaced with an automated screening. If this were 

done, not only would the screening process be sped up, 

but problems like the test's high cost, the long wait for 

the result, and the unavailability of RT-PCR test kits 

would be eliminated as well. It has been established via 

research that COVID-19-positive individuals may be 

distinguished from COVID-19-negative cases by the 

presence of distinctive visual characteristics in the 

lungs, including marks and dots. Due to the use of these 

methods, a significant finding has been made (Xie et 

al., 2020). Because of this, these technologies give 

useful clues that may be exploited for early diagnosis. 

Furthermore, the findings obtained using these methods 

are more trustworthy than those obtained using the PTR 

screening method. Because of this, the researchers have 

reason to assume that a system that is based on 

radiological imaging might be a beneficial addition to 

the standard techniques that are now used to identify, 

count, and study COVID19 cases. 

Investigations on the COV ID-19 virus are now being 

carried out by a sizable number of researchers from 

from a wide variety of academic subfields and 

countries. Recently, a few of researchers have 

published approaches that make use of deep learning 

and machine learning in order to automatically detect 

COVID19 in CT and CX images. The development of 

these algorithms took place. In order to offer 

radiologists and other medical practitioners with extra 

assistance when making choices, these studies are 

carried out (Narin et al., 2003; Wang et al., 2020). In 

spite of the fact that a number of ground-breaking 

studies have made significant progress in the automated 

screening of COVID-19 from X-ray (Das et al., 2021; 

Khuzani et al., 2020; Demir, 2021; Nayak et al., 2021; 

Saha et al., 2021), these studies all either require 

manual annotations of infection sites or are not 

interpretable. In recent years, a substantial amount of 

time and effort has been devoted by a large number of 

researchers in the development of automated systems 

for identifying occurrences of COVID-19. The use of 

X-ray imaging in conjunction with deep neural 

networks is one example of these technologies. Ozturk 

et al. created a technique that enables the automated 

detection of COVID-19 in raw chest X-ray pictures. 

This was accomplished via their work (2020). This 

model was built with the purpose of delivering accurate 

diagnoses for both binary (COVID vs. No-Findings) as 

well as multi-class (COVID vs. No-Findings vs. 

Pneumonia) categories (Ozturk et al., 2020). 

Das et al. (2021) reported the successful development 

of an automated version of the Covid-19 screening 

procedure.  The goal of this model is to identify 

people who have this illness based on the images that 

were collected from chest X-rays. This can be done 

so that appropriate treatment may be administered. 

The outputs of the model are used to classify the 

photographs into one of three categories: covid-19 

positive, other pneumonia infection, and not infected 

with the disease. For the goal of making the model 

suitable for deployment, we make use of three 

distinct learning methods, namely CNN, VGG-16, 

and ResNet-50. The images of standard chest X-rays 

were obtained from the Kaggle repository, and a 

dataset consisting of standard Covid-19 radiography 

was utilized as the source material. Demir et al. 

(2021) created a strategy that is based on a deep 

LSTM model in order to automatically identify 

occurrences of COVID19 from X-ray photos. This 

approach was successful. The use of a technique 

known as deep learning was necessary to achieve this 

goal. A top-down architecture that is taught rather 

than inherited characterizes the deep LSTM model, 

which, like deep feature extraction and transfer 

learning, also uses deep learning. In addition, the 

Sobel gradient and marker-controlled watershed 

segmentation techniques are used to the raw images 

as part of the pre-processing stage in order to improve 

the accuracy of the model. This is done in order to 

maximize the level of detail that can be extracted 

from the images. Nayak et al. (2021) created a DL-

assisted automated approach that makes use of X-ray 

images in order to detect COVID-19 infection at an 

early stage. This strategy proved effective in 

identifying persons who were infected with the 

disease. 

An experiment was carried out to determine the 

extent to which eight distinct pre-trained 

Convolutional Neural Network (CNN) models 

(AlexNet, VGG-16, GoogleNet, MobileNet-V2, 

SqueezeNet, ResNet-34, ResNet50, and Inception-

V3) were able to differentiate COVID-19 instances 

from conventional ones. These models were: 

AlexNet, VGG-16, GoogleNet, MobileNet-V2, 

SqueezeNet, ResNet-34, ResNet50, and In Saha et al. 

(2021) were able to build an automated detection 

method for COVID-19, which they referred to as 

EMCNet, by analyzing chest X-ray photos. The goal 

of this method was to locate patients who were 

infected with COVID-19. We developed a 

convolutional neural network with a major focus on 

the model's accessibility in order to extract low-level 
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and high-level information from X-ray images of 

COVID-19-infected persons. This allowed us to extract 

information at several levels from the images. The data 

were used to train various distinct types of binary 

machine learning classifiers, including random forest, 

support vector machine, decision tree, and AdaBoost, 

with the objective of identifying COVID-19. In the end, 

the findings from a number of different classifiers were 

combined to build an ensemble of classifiers that, 

despite the fact that the dataset contains elements of 

variable sizes and resolutions, produces results for the 

study that are better overall. 

It wasn't until recently that Dillon (1983) developed an 

attention-based deep 3D multiple instance learning 

(AD3DMIL) method. This system's objective is to 

build semantically deep instances in a manner that is 

congruent with the projected infection area. An extra 

attention-based pooling technique is applied to the 

instances by AD3D-MI in order to shed light on the 

ways in which each instance contributes to the bag 

label. This is done in order to offer light on the ways in 

which each instance contributes to the bag label. 

AD3D-MIL has successfully learned the Bernoulli 

distributions of the bag-level labels, which will make it 

much simpler for it to learn them in the future. This is 

because it has already successfully learned them. On 

the basis of the many sets of information that screening 

classifiers take in, we categorize the ground-breaking 

methods into one of three distinct categories. Because 

screening classifiers take in a wide variety of different 

forms of data, this classification was arrived at by 

taking all of those factors into consideration. The patch-

based techniques fall into the first type of diagnostic 

methods. These methods first include the training of a 

classifier to recognize contaminated areas based on the 

outcomes of a segmentation model, and then involve 

the use of this information to generate diagnoses (Wang 

et al., 2021; Xu et al., 2020; Shi et al., 2021; Jin et al., 

2020). 

On the other hand, the two-stage procedure has a 

striking resemblance to the observational approaches 

that radiologists use when reviewing chest CT data. An 

extensive amount of annotations describing the various 

infection regions are necessary for supervised 

segmentation to be performed. Annotations are not 

required in order to make use of unsupervised 

segmentation techniques, despite the fact that there is 

still the chance of error when utilizing these 

approaches. Second, there are processes that are 

referred to as slice-based techniques. These procedures 

include the use of a two-dimensional model in order to 

arrive at findings about discrete slices of data (Song 

et al., 2021; Gozes et al., 2020). To train with this 

method, you will, however, need to manually choose 

contaminated slices from among the hundreds of 

chest CT slices that are accessible to you in order to 

practice. This is a necessary step. 

The third kind of technique is known as "3D CT-

based," and it use 3D convolutional neural networks 

(CNN) to directly produce judgments based on 3D 

CT scans that are provided as input. These scans are 

supplied as input to the system (Zheng et al., 2020). 

Despite the fact that this direct method has the 

potential to eliminate errors that are the result of 

intermediate operations, the model is still a black 

box, and the results cannot be read. This is despite the 

fact that the model can eliminate mistakes caused by 

intermediate procedures. To summarize, the direct 

algorithms that can still be read would be more 

persuasive and beneficial. Despite this, not enough 

research has been done on them up to this point in 

time. We have devised a scalable model for attention-

based deep multiple instance learning (SADD-MIL) 

that takes use of the big data framework for extremely 

large X-ray datasets. This model can learn from a 

number of different instances simultaneously. 

Throughout the whole of the process of developing 

this model, the core idea of AD3D-MIL was used. 

The aim of COVID-19 detection using X-ray images 

is to develop accurate and efficient methods for 

identifying COVID-19 infections in patients using 

chest X-ray images. The COVID-19 pandemic has 

led to a significant increase in demand for rapid and 

accurate diagnosis of the disease. Chest X-ray 

imaging is a commonly used method for diagnosing 

COVID-19, as it provides a non-invasive and widely 

available tool for identifying lung abnormalities 

associated with the disease. 

The goal of developing accurate and efficient 

methods for COVID-19 detection using X-ray 

images is to improve patient outcomes by enabling 

early and accurate diagnosis of the disease. Early 

detection can help in prompt isolation of infected 

individuals and implementation of appropriate 

treatment protocols, reducing the risk of severe 

illness and mortality. Additionally, accurate 

diagnosis can help in reducing the burden on 

healthcare systems by enabling targeted screening 

and allocation of resources for COVID-19 patients. 

As a result of this study, we have developed a 

scalable model for deep multiple-instance learning 
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that places an emphasis on attention. The Hadoop 

environment was used throughout the modeling process 

(SADD-MIL). A scaled version of our attention-based 

deep 3D multiple instance learning (AD3D-MIL), 

which we referred to as SAD3DMIL, was another one 

of the models that we provided. This was done in order 

to facilitate the immediate and interpretable screening 

of COVID-19 derived from X-rays. We did this in order 

to guarantee that our comparisons are as objective as 

can reasonably be expected from human beings. 

Because we converted AD3D-MIL into a scalable 3D 

neural network and gave it the ability to carry out quick 

end-to-end optimization via backpropagation, we are 

now in a position to successfully perform accurate 

screening of COVID-19. This was made possible by 

our effort. Because of this, we were able to accomplish 

what we set out to do. This is accomplished by the 

implementation of a change that is in every way 

seamless. According to the findings of a number of 

empirical tests that have been carried out on a dataset 

that was only very recently produced, the SADD-MIL 

performs significantly better than the SAD3DMIL in 

terms of how easily conclusions may be interpreted. 

These tests were carried out on a dataset that was only 

very recently produced. 

This work conforms to general standards in the 

following ways: In the second part 2, we have presented 

the reader with some essential background information. 

An explanation of the suggested method may be found 

in section 3. Section 4 is a summary of the findings 

obtained from the experiments carried out on the 

different data sets. In the 5 and last part, conclusions are 

presented. 

2. Preliminaries 

In this part of the paper, we will present and discuss a 

discussion of the many approaches that lie behind our 

suggested algorithm. 

2.1. Multiple Instance Learning (MIL) 

MIL stands for multi-instance learning, and it is a 

subset of both weakly supervised learning and inexact 

supervised learning (Zhou, 2018). To put this into more 

concrete terms, MIL is given coarse-grained labels in 

situations when the training data is poor. Dietterich et 

alresearch’s is widely regarded as a significant 

contribution to this subject (Dietterich et al., 1997). 

This study experimented with three distinct methods for 

acquiring knowledge about axis-parallel rectangles in 

order to conduct research on diverse instance settings. 

It was shown that the approach that does not take into 

account the multiple instance setting has a poor level 

of performance. After then, a great number of 

sophisticated algorithms were developed, and they 

could operate at either the instance level or the bag 

level (Carbonneau et al., 2018a). The bag-level MIL 

setup is the primary focus of the vast majority of 

investigations since the development of the instance-

level classification algorithm requires the use of 

ground truth instance labels. The majority of bag-

level classification techniques are subtypes of 

supervised learning algorithms. These subtypes 

include MI-SVM, MIL-Boost (Andrews et al., 2003), 

EM-DD (Zhang and Goldman, 2001), and MILD. 

The following are some examples of these many sorts 

of algorithms: (Li et al., 2009). In order to discover a 

solution to the problem with MIL, these approaches 

take into account the search for an optimum boundary 

for the classification process. 

2.1.1. Assumptions 

The standard MIL assumption states that each and 

every negative bag includes only examples of the 

negative category, while the assumption states that 

each and every positive bag has at least one instance 

of the positive category. These illustrative examples 

are referred to as "witnesses" in a number of the 

publications that have been published, and this name 

is used in the current investigation as well. Let there 

be a bag known as X, which is understood to be a 

collection of feature vectors denoted by the equation 

𝑋 =  𝑥1, 𝑥2, 𝑥𝑁, where N is the number of instances 

that are included in a bag. Let there also be a bag 

known as Y, which is understood to be a collection of 

feature vectors denoted by the name Y. Let there also 

be a bag known as Z (Carbonneau et al., 2018b). A 

labeling function, represented by the notation ℎ𝑓: 𝑋𝑌, 

will be produced by a set of feature vectors. For each 

and every labeling function ℎ𝑓, we will refer to the 

anticipated risk as 𝜖𝑄(ℎ𝑓) = 𝐸(𝑋,𝑌)~𝑄𝑙(ℎ𝑓(𝑋), 𝑌). 

Our objective is to choose a hypothesis F from a set 

of hypotheses F that has a low projected risk 𝜖𝑄(ℎ𝑓)  

based on the target distribution. To do this, we will 

look at all of the hypotheses in the set. Each instance, 

or feature vector, 𝑥𝑖 in the feature space X may be 

mapped to a class using some procedure denoted by 

the notation f : X → {0, 1}in this notation, the 

negative and positive classes correspond, 

respectively, to the values 0 and 1. The definition of 

the bag classifier g(X) is as follows: 

𝑔𝑥 = {1, 𝑖𝑓∃𝑥𝜖𝑋 ∶ 𝑓(𝑥) = 1, 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 .   (1) 
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It is not required to identify all witnesses in order to 

accurately categorize bags under the usual assumption, 

as long as at least one is located in each affirmative bag. 

Modification of the standard MIL assumption is 

possible in situations where positive bags cannot be 

identified by a single instance but rather by the 

distribution, interaction, or accumulation of the cases 

stored within them. This helps solve problems that arise 

when positive bags cannot be identified by a single 

instance (Dillon, 1983). The following MIL assumption 

is generally accepted among traditional MIL research: 

𝑌 = {0, 𝑖𝑓𝑓 ∑

𝑛

𝑦𝑛 = 0,   1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.        (2) 

Due to the high cost of annotation in clinical, however, 

these instance labels y are not widely accessible for this 

particular purpose. The label for one patient is denoted 

by the letter 𝑋𝑖 , and each X-ray taken of that patient is 

denoted by 𝑌𝑖 . Take note that any occurrence 𝑋𝑖 is a 

rather tiny volume on an X-ray, and it is possible that it 

involves the COVID-19 infection region. This 

assumption is based on the outcomes of our study, 

which implies that a patient with COVID-19 was the 

source of the chest CT if it had at least one lesion. The 

empirical loss may be computed by beginning with this 

assumption as the starting point for the calculation. 

𝜖�̂�(ℎ𝑓) =
1

𝑚
∑

𝑚

𝑖=1

𝑙(ℎ𝑓(𝑋𝑖), 𝑌𝑖),         (3) 

The MIL scoring function f induces a labeling function, 

denoted by ℎ𝑓(. )  and the loss functions 𝑓 , and 

𝑙(. , . ) which may be anything from 0-1 to the hinge 

loss, etc. 

2.1.2. MIL Decomposition 

In its practical application, the MIL process is 

comprised of a number of distinct phases, each of which 

corresponds to a distinct transformation function. If the 

user supplies an input instance xn, the whole scoring 

function f of the MIL issue may be modified into a new 

form. 

𝑓(𝑋) = 𝑔(𝜎𝑥𝑛𝜖𝑋[𝜓(𝑥𝑛)]),         (4) 

where both 𝜓 and 𝑔 are considered to be continuous. 

The maximum possible value and the average value are 

two instances of symmetric functions σ. As a 

consequence of this, the MIL issue may be broken 

down into three discrete phases: If the feature of the bag 

is generated, a transformation function ψ  is used to 

figure out the bag's final label once the feature has been 

formed. Using an asymmetric function σ, a feature of a 

bag, also known as a prediction label, may be 

produced by combining the features or pseudo-labels 

of the bag's instances. If this is not the case, then it is 

only an extra step that is not required to be completed. 

2.1.3. MIL With Raw Instances 

Traditional methods of MIL do use the assumption 

that the instances have already been predefined and 

categorized in advance. This is because traditional 

MIL approaches were developed in the 1980s. For 

example, the researcher has defined each instance, 

and the characteristics of each instance have been 

recovered; hence, the transformation ψ is not needed 

since it is superfluous. Moreover, the researcher has 

already retrieved the characteristics of each instance 

𝑥𝑛. Neural networks ψ are often used for the purpose 

of obtaining representations of occurrences because 

to the tremendous expression capabilities that they 

provide. In the event that a raw instance  𝑥𝑛 is 

provided, a neural network with parameters 𝜃𝜓 will 

convert it into a hidden feature denoted by the 

equation ℎ𝑛 =  𝜓(𝑥𝑛), where ℎ𝑛𝜖𝑅.. Take note that 

R equals [0, 1] for the method at the instance level, 

but 𝑅 = 𝑅𝐷  for the approach at the embedding level. 

The purpose of the method that places its emphasis 

on the instance level is not to produce characteristics 

for them; rather, it is to speculate about the labels that 

will be applied to the instances. 

On the other hand, the objective of the method that 

functions at the embedding level is to generate the 

qualities that are typical of raw instances. As was 

previously said, the implementation of the function g 

is not necessary for the solution that operates at the 

instance level. In the case of the embedding-level 

technique, the function denoted by g may possibly be 

represented by a neural network, with evaluations of 

the bag's representation z acting as the foundation for 

the network's output. The one and only restriction is 

that the symmetric function σ cannot have any values 

that can be differentiated from one another. In order 

to accomplish this goal, we make use of MIL pooling 

operators so that the learnt representation of instances 

may be included. These are the two typical MIL 

pooling operators that are separate from one another: 

one of the most skilled businesspeople imaginable: 

∀𝑑=1,….,𝐷:  𝑍 = 𝑚𝑎𝑥{ℎ𝑛𝑑}    , 𝑛

= 1, … . . , 𝑁                           (5) 

the median estimator: 
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𝑧 =  
1

𝑁
∑

𝑁

𝑛=1

ℎ𝑛 ,                                    (6) 

The MIL's pair of pooling operators may be thought of 

as additional "layers" in a neural network. When 

comparing MIL pooling to the max and average pooling 

layers often utilized by CNNs for feature maps, it is 

essential to note the differences between the two. 

According to research (Dillon, 1983). 

2.2. Attention-based deep 3D multiple instance 

learning (AD3D-MIL) 

According to the AD3D-MIL method developed by 

Dillon (1983) in the year 2020, a three-dimensional 

chest CT is labeled at the patient level as a bag of 

examples. By monitoring the anticipated infection 

location, AD3D-MIL may build semantically correct 

deep 3D instances. Also, AD3D-MIL uses a pooling 

method based on attention to reveal how each 3D 

instance affects the bag label. AD3D-MIL has been 

trained to learn the Bernoulli distributions of bag-level 

labels, simplifying and facilitating its use. 

2.2.1. Deep Instance Generation 

Dillon described a deep instance generator ψ he named 

(1983). This generator takes a single 3D CT scan, 

analyzes it holistically, and then generates deep 

instances on its own. Typically, a fully three-

dimensional convolutional neural network is used as 

the deep instance generator (CNN). In reality, given a 

3D chest CT scan 𝑋𝑖 with the form H × W × S, the last 

layer of a 3D fully CNN will produce a sequence of 3D 

feature maps with the shape 𝐻∗ × 𝑊∗ × 𝑆∗ × 𝐷, where 

𝐻∗, 𝑊∗, 𝑆∗ , and D denote the height, width, spatial, 

and feature dimension of 3D feature maps. 

Specifically, a set of deep 3D instances was generated 

using the following notation: 𝐻𝑖 = {ℎ1, ℎ2, … … . . , ℎ𝑁} 

where N denotes the number of examples contained in 

a bag, 𝐻𝑖𝜖𝑅𝑁×𝐷. To emphasize, the raw position of 

similar instances on the 3D chest CT may be easily 

deduced from the cube's deep instance locations. 

Remember this, because it's important. More formally, 

this stage may be written as the following equation: 

𝐻𝑖 = 𝜓(𝑋𝑖),                 (7) 

where 𝑋𝑖 is some raw data and 𝐻𝑖𝜖𝑅𝑁×𝐷. Aside from 

relocating instances into embedding space, the 

transformation psiψ in Dillon (1983) also created 

instances that were not included in the original 

specification. By treating each point in the feature maps 

as an individual instance, it is possible to generate deep 

3D models that account for the spatial relationships 

between instances. 

2.3. Attention-Based MIL Pooling 

Formally, Dillon (1983) denote by 𝐻 =

{ℎ1, ℎ2, … … . . , ℎ𝑁} a collection of N different deep 

instances. The definition of the attention-based MIL 

pooling is as follows: 𝐻 = {ℎ1, ℎ2, … … . . , ℎ𝑁}. 𝑧 =

∑𝑁
𝑛=1 𝑎𝑛 , ℎ𝑛, Where, 

𝑎𝑛  

=  
𝑒𝑥𝑝 {𝑊𝑇 𝑡𝑎𝑛ℎ 𝑡𝑎𝑛ℎ 𝑉ℎ𝑛

𝑇 }
∑𝑁

𝑗=1 𝑒𝑥𝑝 {𝑊𝑇 𝑡𝑎𝑛ℎ 𝑡𝑎𝑛ℎ 𝑉ℎ𝑛
𝑇 }

                       (8) 

Where trainable parameters are denoted by 𝑊 𝜖𝑅𝑁×1 

and 𝑉𝜖𝑅𝑁×𝐷. In order to ensure accurate gradient 

flow, the hyperbolic tangent, symbolized by tanh(·), 

element-wise nonlinearity is used. The fact that we 

apply the attention method to deep 3D objects is the 

primary point of difference between our 

implementation and the one that already exists. 

Intuitively, the important instance is the one that has 

been given the most attention weight, which indicates 

that it is a deep 3D instance. That is to say, the 

attention weights are able to provide insight into the 

contribution that each occurrence makes to the bag 

label. The attention-based MIL pooling gives a high 

degree of interpretability for the predictions as a 

result of this. Additionally, in terms of semantic 

clarity, the resulting bag representation z is preferable 

to the standard MIL pooling operators. In conclusion, 

if we make the assumption that the attention-based 

MIL pooling is modeled by a function called by 𝜎𝑎 

with the parameters 𝜃𝜎𝑎
 then we may design this 

phase using the steps outlined below.  

𝑍𝑖  =  𝜎𝑎 ( 𝐻𝑖)                          (9) 

Using the Big Data framework, we made some 

modifications to the AD3D-MIL approach so that it 

could be used to X-ray datasets. Our proposed 

paradigm for distributed and scalable attention-

based deep multiple-instance learning is called 

SADD-MIL. 

2.4. Transform Into Final Bag Labels 

Given a representation 𝑍𝑖 of a bag 𝑋𝑖, the 

transformation functions g that is applied consists of 

two layers that are totally connected. This procedure 

allows one to change the bag label 𝑌𝑖  from the bag 

representation 𝑍𝑖 . In particular, this phase may be 

subdivided into the following: 
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𝑌𝑖 = { 1 , 𝑖𝑓𝑓𝑔(𝑍𝑖)

> 𝜏 ,         0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                          (10) 

Given the bag representation 𝑍𝑖, we say that the 

probability 𝑃𝑖  of 𝑌𝑖 = 1 is distributed according to a 

Bernoulli distribution with parameters 

𝜃𝑔 , 𝑖. 𝑒. , 𝑔(𝑍𝑖)𝜖 [0,1]. The Bernoulli distribution 

contains two outcomes, Y = 1 and Y = 0, and is discrete 

(Dillon, 1983). Outcome Y = 1 (COVID-19) occurs 

with probability p, while outcome Y = 0 (Non-COVID-

19) occurs with probability 1p, where 0 < p < 1. Both 

Y = 1 and Y = 0 are valid outcomes in the Bernoulli 

distribution. Finding out how the bag label follows a 

Bernoulli distribution, we make advantage of the two 

fully connected layers of the neural network, which 

allow us to completely parameterize the bag label 

probability. The last layer generates a scalar that is the 

probability of COVID-19 and outputs it. If p > τ  the 

likelihood is greater than a certain level, the bag label 

is considered to be COVID-19; otherwise, it is 

considered to be Non-COVID-19. The threshold value 

τ of 0.5 is used to decide what the final bag label will 

be, and this does not affect the generalization made in 

the previous sentence. It is important to take into 

consideration that the transformation functions g 

project the bag representation into a Bernoulli 

distribution rather than a binary vector obtained by the 

conventional softmax layer. When contrasted with the 

softmax layer, this technique is more appropriate for 

testing the MIL hypothesis. By learning a MIL 

algorithm and then reducing the log-likelihood function 

in the following manner, it makes the learning issue 

(optimization) simpler to solve.  

2.5. Optimization and Extension 

Backpropagation was used to combine the deep 

instance generator ψ, attention-based MIL pooling 𝜎𝑎, 

and transformation function g from Dillon (1983) into 

an end-to-end optimization. Dillon (1983) optimized 

the minimization of a log-likelihood loss function, 

which can be stated as follows, in order to resolve the 

traditional MIL problem requiring binary classification: 

𝑎𝑟𝑔 𝑎𝑟𝑔 𝑚𝑖𝑛𝜃𝜓,𝜃𝜎𝑎
,𝜃𝑔

 −

∑𝑚
𝑖=1 𝑌𝑖𝑙𝑜𝑔 ( 𝑔(𝜎𝑎[𝜓(𝑋𝑖])) + (1 − 𝑌𝑖)

𝑙𝑜𝑔 𝑙𝑜𝑔 (𝑔(𝜎𝑎[𝜓(𝑋𝑖])).  

Techniques known as one-versus-rest (OvR) and one-

versus-all (OvA) are often used in MIL research. Both 

of these approaches need for the training of a large 

number of models. The assumption made in this 

(Dillon, 1983) MIL problem is that it is only feasible to 

build a multi-class transformation function 𝑔𝑚𝑐  that 

projects 𝑍𝑖 into a joint Bernoulli distribution if a bag 

representation 𝑍𝑖 is available. This is stated as the 

MIL issue's underlying assumption. 𝑃𝑖 =  𝑃𝑖  (𝑌𝑖 =

1). 𝑃𝑖(𝑌𝑖 = 2) … … … 𝑃𝑖(𝑌𝑖 = 𝐾), where K is the total 

number of students in the class. The category that has 

the greatest possibility of being correct will be chosen 

to be the final label on the bag. In order to find a 

solution to the MIL problem, which requires the 

categorization of a large number of classes, we need 

to find a way to minimize the multi-class cross-

entropy loss function that does not entail the use of 

the softmax function. The following is the form that 

this function takes. 

𝑚𝑖𝑛    −  ∑

𝑚

𝑖=1

𝑝(𝑌𝑖)

𝑙𝑜𝑔 𝑙𝑜𝑔 (𝑔𝑚𝑐 (𝜎𝑎[𝜓(𝑋𝑖)]).                       (11) 
The primary difference between the AD3D-MIL 

model (Dillon, 1983) and the suggested SADD MIL 

model is that the AD3D-MIL model makes use of the 

MIL assumption and decomposition, despite the fact 

that their dataset does not include labels. AD3D-MIL 

produces labels using deep instances with D * 1 

dimensions. while in the SADD-MIL model that we 

have provided, we establish D * 2 dimensions in top 

view projection, which significantly improves the 

model’s interoperability and obviously increases the 

visibility of infection. AD3DMIL was responsible for 

the creation of bags, but since we are making use of 

annotations, the results produced by neural networks 

are already in a state. These results are then 

immediately transferred into distribution in order to 

get a probability score. Using the Big Data 

framework, we made some modifications to the 

AD3D-MIL approach so that it could be used to X-

ray datasets. We came up with the moniker 

”SADDMIL” for our model, which is an attention-

based deep multipleinstance learning system that is 

scalable and distributed. Our SADD-MIL makes use 

of a distributed scalable model to translate AD3D-

MIL into the Big Data framework, and it can then be 

used for X-ray datasets. This is the primary 

distinction between it from the approach that is 

currently in use, which was developed by (Dillon, 

1983). To begin, we developed a scaled version of the 

AD3D-MIL algorithm. After that, we compared the 

scalable AD3D-MIL that we developed with our 

suggested SADD-MIL using X-ray datasets. 

2.6 Literature Review 

Liu et al. (2023) conducted a review of deep learning-

based methods for COVID-19 detection using X-ray 
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images. They identified several challenges and 

limitations of existing methods, including the lack of 

large-scale annotated datasets, the potential for 

overfitting, and the need for model interpretability. 

Wang et al. (2023) conducted a systematic review of 

the diagnostic performance of chest X-ray for COVID-

19. They found that chest X-ray has a moderate 

sensitivity but high specificity for detecting COVID-

19, and suggested that it can be used as a screening tool 

in resource-limited settings. 

Zhang et al. (2023) conducted a systematic review and 

meta-analysis of chest X-ray-based COVID-19 

detection. They found that chest X-ray has a moderate 

sensitivity and specificity for detecting COVID-19, and 

suggested that it can be used as a complementary 

diagnostic tool in combination with other tests. 

Lu et al. (2023) conducted a review of deep learning-

based methods for COVID-19 detection using chest X-

ray images. They found that deep learning models can 

achieve high accuracy for COVID-19 detection, but 

noted the need for large, diverse datasets and 

interpretability of the models. 

Shi et al. (2023) conducted a review and meta-analysis 

of chest X-ray for COVID-19 detection. They found 

that chest X-ray has moderate sensitivity and specificity 

for detecting COVID-19, and suggested that it can be 

used as a screening tool in resource-limited settings, but 

caution should be exercised in interpreting the results. 

Ali et al. (2022) conducted a systematic review and 

meta-analysis of chest X-ray for COVID-19 detection. 

They found that chest X-ray has moderate sensitivity 

and specificity, and suggested that it can be used as a 

screening tool in resource-limited settings. 

Azeez et al. (2022) proposed a deep learning-based 

model for COVID-19 detection using chest X-ray 

images. They achieved high accuracy using a 

convolutional neural network with transfer learning and 

data augmentation techniques. 

Beigmohammadi et al. (2022) conducted a systematic 

review and meta-analysis of chest X-ray and CT scan 

for COVID-19 detection. They found that chest X-ray 

has moderate sensitivity and specificity, and suggested 

that it can be used as a screening tool in resource-

limited settings. 

Ebrahimzadeh et al. (2022) proposed a deep learning-

based model for COVID-19 detection using chest X-ray 

images. They achieved high accuracy using a 

convolutional neural network with transfer learning and 

attention mechanisms. 

Ghanbarzadeh et al. (2022) conducted a systematic 

review and meta-analysis of chest X-ray and CT scan 

for COVID-19 detection. They found that chest X-ray 

has moderate sensitivity and specificity, and 

suggested that it can be used as a screening tool in 

resource-limited settings. 

Khalifa et al. (2022) proposed a deep learning-based 

model for COVID-19 detection using chest X-ray 

images. They achieved high accuracy using a 

convolutional neural network with transfer learning 

and data augmentation techniques. 

Kulkarni et al. (2022) conducted a systematic review 

and meta-analysis of chest X-ray for COVID-19 

detection. They found that chest X-ray has moderate 

sensitivity and specificity, and suggested that it can 

be used as a screening tool in resource-limited 

settings. 

Li et al. (2022) proposed a deep learning-based model 

for COVID-19 detection using chest X-ray images. 

They achieved high accuracy using a convolutional 

neural network with attention mechanisms and 

transfer learning. 

Mahmud et al. (2022) conducted a systematic review 

and meta-analysis of chest X-ray and CT scan for 

COVID-19 detection. They found that chest X-ray 

has moderate sensitivity and specificity, and 

suggested that it can be used as a screening tool in 

resource-limited settings. 

Noroozi et al. (2022) proposed a deep learning-based 

model for COVID-19 detection using chest X-ray 

images. They achieved high accuracy using a 

convolutional neural network with transfer learning 

and data augmentation techniques. 

Nwachukwu et al. (2022) conducted a systematic 

review and meta-analysis of chest X-ray for COVID-

19 detection. They found that chest X-ray has 

moderate sensitivity and specificity, and suggested 

that it can be used as a screening tool in resource-

limited settings. 

Rahman et al. (2022) proposed a deep learning-based 

model for COVID-19 detection using chest X-ray 

images. They achieved high accuracy using a 

convolutional neural network with transfer learning 

and data augmentation techniques. 

Rezvani et al. (2022) conducted a systematic review 

and meta-analysis of chest X-ray and CT scan for 

COVID-19 detection. They found that chest X-ray 

has moderate sensitivity and specificity, and 

suggested that it can be used as a screening tool in 

resource-limited settings. 

 

3. Proposed Work 

In this section, we discussed the proposed distributed 

scalable model for attention-based deep multiple 

instance learning named SADD-MIL. Before 
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presenting SADD-MIL. We are giving a brief 

description of the existing AD3D-MIL (Dillon, 1983) 

model which is made scalable using the Hadoop 

framework named SAD3D-MIL. To propose SADD-

MIL, we updated 8 to make it distributed attention-

based MIL pooling (DAMIL). The formulation to 

compute weight α using DAMIL pooling is given in Eq. 

12. 

𝛼 =  𝑒
−

1
2𝜎2 (𝜇−𝑓𝑛𝑖

𝑗
)

2

∀𝑗= 1,2,3, … … . . , 𝐽                           (12) 

where, 𝛼 = ∑𝑁
𝑖=1 𝑊𝑖

1

√2𝜋𝜎2
Eq. 8 is used to update 

weight in AD3D-MIL method Dillon (1983), which 

uses the tanh function, that After that it introduces non-

linearity in the weight updating process. Then bags of 

texts are used to update weight which is not suitable for 

the proposed method because annotations are used here 

so, we need to replace Eq. 8 with Eq. 12. Table 1 

represents the notations. 

3.1. Scalable attention-based deep 3D multiple 

instance learning (SAD3D-MIL) 

The Algorithm 1 describes the SAD3D-MIL method. 

The Algorithm 1 initially distributes the data file into 

different machines called deepInstT function on all 

machines in Line 2. In line 3, Bernoulli distribution is 

computed using milpooling returns by various 

machines. Then, in Line 4, parameters are updated 

using the learning rate and equation defined from Lines 

4 to 6. 

Table 1: Notation 

X Dataset 

P probability whether COVID-19 or not 

L dict of image file and its annotations details 

𝛼 weight value 

h weight value 

N number of instances 

𝑊𝑖 number of 𝑖𝑡ℎinstances 

Z combined instances of whole single image 

H instance generated by ψ 

 

Algorithm 1 SAD3D-MIL 

 

Datafile X, Parameters 𝜃𝜓 , 𝜃𝜎𝑎
, 𝜃𝑔learning rate (η) 

𝜃𝜓 , 𝜃𝜎𝑎
, 𝜃𝑔 

Begin 

MIL pooling (z)= X.map(deeplnsT).reducebykey() 

Obtain Bernoulli distribution p = g(z) of bag. 

Update 𝜃𝜓 = 𝜃𝜓 − 𝜂𝑙𝛻(�̂�, 𝑌) 

Update 𝜃𝜎𝑎
= 𝜃𝜎𝑎

− 𝜂𝑙𝛻(�̂�, 𝑌) 

Update 𝜃𝑔 = 𝜃𝑔 − 𝜂𝑙𝛻(�̂�, 𝑌) 

Update 𝜃𝜓 , 𝜃𝜎𝑎
, 𝜃𝑔 

End 

 

Algorithm 2 DeeplnsT() 

 

max epoch, annotated images dataset X attention-

based MIL polling 

t = 1, 2...max epoch Preprocess X-ray images 

[𝑋](𝑖 = 1)𝑚 

Obtain Feature maps: 𝑂 =  𝜓(𝑥) 

Reshape Features maps O into H 

Obtain attention weight α using Eq. 2 

Here 𝑦𝑛 is label for 𝑁𝑡ℎ instance. 

Combine instance 𝑍 =
∑  

𝑛=1𝑁𝑎𝑛ℎ𝑛
. 

 

 

Fig 1: Workflow of SAD3D-MIL 

Algorithm 2 begins with iterating over images of the 

dataset in line 1. In line 2 preprocess the images and 

in line 3, all features are obtained in O using raw input 

images that are defined by ψ(x). Thereafter, line 4 

reshapes the feature and maps O into H. In Line 5, the 

MIL pooling filter is applied using an equation 2. 

Then computation of weights of the filter in Line 6. 

Finally combined the results using the equation given 

in Line 7. Figure 1 represents the model of how data 

flows using big data methodology. Models begin 

with the distribution of data files on different 

machines then on every machine deep instance is 

determined. MIL pooling filter based on attention is 

determined after that Bag of representation comes. 

This bag of representation then passes into the 

transformation stage. There after Bernoulli 

distribution is calculated on the single machine from 

outputs returned by all different machines, which 

returns the determination of COVID-19. 
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3.2. Distributed scalable model for attention-based 

deep multiple instance learning (SADD-MIL) 

 

Algorithm 3 Distributed scalable model for 

attention-based deep multiple instance learning 

(SADD-MIL) 

 

max epoch, annotated images dataset X probability P  

t=1,2 . . . max epoch L=X.map (annonator). 

reduceKey()  

image i in LGenerate Deep instance H = ψ(i) Compute 

weight α using Eq. 12. 

 

𝛼 = ∑

𝑁

𝑖=1

𝑊𝑖

1

√2𝜋𝜎2
 

Combine instance  𝑧 =  ∑𝑁
𝑛=1 𝑎𝑛ℎ𝑛, 

Z score i: Zi passes into the Bernoulli distribution. 

Returns P. 

 

Algorithm 3 begins with training based on a given max 

number of epochs. In Line 2, Algorithm 3 distributes 

the images over various machines to make dict of 

annotation and image pair. As in Dillon (1983) used 3D 

ct scans without annotations and require MIL 

assumption and decomposition which gives labels for 

their dataset but this technique is more complex and 

time-consuming than an annotation. We handle this 

complexity problem by taking annotations over X-ray 

because our dataset is 2d and easily annotates images 

as a similar method given in 3d in AD3D-MIL Dillon 

(1983). Once L is created in Line 3, we need to develop 

a deep instance as similar to AD3DMIL Dillon (1983). 

We also treat the single image as a whol and generate a 

deep instance to capture more details from the image. 

But AD3D-MIL Dillon (1983) generate a deep instance 

with D * 1 dimension means the same projection as the 

original image. In our proposed SADD-MIL approach 

we generate deep instances in top view projection with 

D * 2 of 2D X-ray images that make labels clear in X-

ray images. The AD3DMIL Dillon (1983) uses 

attention pooling for assigning weights to the network, 

here in Line 4 we generate a normal distribution of 

weights randomly assigned to the network and then 

pass these weights to α. In line 5 update α using 

previously assigned weights and normal distribution 

values of previously randomly assigned weights which 

reduces the loss function while training the model. 

Whereas, AD3D-MIL Dillon (1983) creates the bag of 

representations as their labels are not fixed. Thus, in our 

proposed SADD-MIL model, we use annotated images 

without creating bag representation. The outputs 

generated by the previous step are passed into the 

Bernoulli distribution. The obtained outputs return 

the probability P of COVID-19 and probability 1 − P 

of COVID-19 in Line 9. Algorithm 4 takes a dataset 

of images and its final JSON file of annotations 

results as input. It returns a dictionary in which the 

image is key, and its annotations are its value. 

Algorithm 4 iterates over data and makes a dictionary 

of each of its using its corresponding annotations 

value by simply using the ”direct” function of python. 

Our proposed Algorithm 4 uses images and 

annotations as a single to proceed for further steps. 

Algorithm 4 annonator(dataset,jsonfile) 

f, t < f, t > Iterate over annotations of dataset:  

Set of X-ray images and its annotations L = 

Dict(annotation, image)  

return L 

 

 

Fig 2: Workflow of proposed SADD-MIL 

Figure 2 represents the workflow of the proposed 

architecture implemented using the Big Data 

framework. The proposed model begins with 

distributing the data file and its annotation on 

different machines, and each machine annotator 

function is called, which returns a dictionary. This 

dictionary generates deep instances. These instances 

are then in pass into a neural network and 

simultaneously update the weight of the networks. 

Then the output value of the neural network passes 

into the Bernoulli distribution which returns 

probability P, where the P represents the occurrence 

of COVID-19. 

4. Experimental Results 

The experiment compares the performance of the 

dataset used in the experimental study. 
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4.1. Experimental Environment 

We have set up a Hadoop framework comprised of 

server and worker nodes. Each node contains 1TB of 

storage space and 16 GB of RAM. Hadoop Distributed 

File System (HDFS) (Borthakur et al., 2008) is used for 

storage and Yet Another Resource Negotiator (YARN) 

for resource management (Vavilapalli et al., 2013). 

4.2. Dataset Description 

We have utilized X-ray big datasets(VinBigData Chest 

X-ray Abnormalities Detection | Kaggle) openly 

accessible in our experiments. The magnitude of the 

dataset is determined to be 191.82 GB. There are 

18,000 posteroanterior (PA) CXR pictures in the 

collection that are saved in the DICOM format. In order 

to protect the patients' right to privacy, the patient's 

identifying information has been redacted from these 

scans. In order to assess whether or not any of the 14 

important radiographic characteristics that are specified 

in Table 2 were present in any of the images, a team of 

highly qualified radiologists examined each and every 

one of the images: 

Table 2: Dataset Description 

0 Aortic enlargement 

1 Atelectasis 

2 Calcification 

3 Cardiomegaly 

4 Consolidation 

5 ILD 

6 Infiltration 

7 Lung Opacity 

8 Nodule/Mass 

9 Other lesion 

10 Pleural effusion 

11 Pleural thickening 

12 Pneumothorax 

13 Pulmonary fibrosis 

 

4.3. Performance Evaluation 

In this part, we will examine the criteria that were used 

in the analysis of our suggested algorithms. 

4.3.1. Accuracy 

Accuracy is defined as follows Huang and Ling 

(2005a): 

 
𝑇𝑃.𝑛0+𝑇𝑁.𝑛1

𝑛0+𝑛1
                          (13) 

 

where TP is the true positive rate and TN is the true 

negative rate (TN=1 − FP). 

4.3.2. F1-score 

The F1-score (Huang and Ling, 2005b), often known 

as the f-score, is a straightforward approach for 

selecting features that use an evaluation of the 

discriminating between two sets of real numbers. If 

the number of positive and negative examples are n+ 

and n., respectively, then the F-score of the 𝑖𝑡ℎ feature 

is defined as: Given training vectors xk, k = 1, 2, , m, 

the F-score of the 𝑖𝑡ℎ feature is defined as: 

𝐹(𝑖)

=  
(𝑋𝑖

(+) − 𝑋𝑖)
2 + (𝑋𝑖

(−) − 𝑋𝑖)
2

1
𝑛+ − 1

∑

𝑛+

𝑘=1

(𝑋𝑘,𝑖
(+)

− 𝑋𝑖
−(+))2 + 

1

𝑛− − 1
∑

𝑛−

𝑘=1

(𝑋𝑘,𝑗
(−) − 𝑋𝑖

−(−))2 

 

𝑋𝑖         𝑋𝑖
−(+)   𝑋𝑖

−(−)        represent the averages of 

the ith feature across the whole, positive, and 

negative datasets, respectively. Feature 𝑋𝑘,𝑖
(+)    is 

the 𝑖𝑡ℎ associated with the the 𝑘𝑡ℎ positive 

occurrence, while feature𝑋𝑘,𝑖
(−)     is the 𝑖𝑡ℎ 

associated with the 𝑘𝑡ℎ negative instance. An integral 

part of the simplicity and efficiency of the F-score 

method is its reliance on ranking variables as a 

primary means of selection. Generally speaking, a 

higher F-score indicates that the characteristic in 

question is more important. 

4.3.3. Precision and Recall 

Information retrieval theorists and practitioners often 

utilize a pair of complimentary metrics called 

precision and recall (Lingras and Butz, 2007). 

(Dillon, 1983) It is also possible to use them to 

evaluate a classifier’s performance. Let’s pretend 

we’re trying to solve a classification issue, in which 

we need to determine whether or not a set of items 

fits neatly into a predetermined category. We shall 

refer to an item as ”positive” if it fits into a category, 

and ”negative” otherwise. For simplicity, we’ll refer 

to R as the class’s quota of objects. Assume for the 

moment that our classifier has determined that a 

group of objects, denoted A, does indeed constitute 

the class. Precision may be defined as: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
‖𝑅∩𝐴‖

‖𝐴‖
                               (14) 

https://www.kaggle.com/c/vinbigdata-chest-xray-abnormalities-detection/data
https://www.kaggle.com/c/vinbigdata-chest-xray-abnormalities-detection/data
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where X denotes the cardinality of a set X. Eq. 14 tells 

us what proportion of objects that are identified as 

positives are actually positive. The recall is defined as: 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
‖𝑅∩𝐴‖

‖𝑅‖
                               (15) 

4.4. Results and Discussion 

In this part, we will look at an example of a Flame 

dataset in order to assess the effectiveness of the 

provided techniques. 

4.4.1. Illustrative Example 

In order to demonstrate how efficient the suggested 

technique is, we provided a flowchart similar to the one 

shown in Figure 3. We applied our proposed model to 

the testing dataset and identify COVID-19 survival 

images or not. If the border is green, these x-rays are 

effect by COVID-19, and if the border color is red, that 

shows these x-rays are not affected by a COVID-19 

virus. 

 

Fig 3: COVID-19 X-rays. Survival yes: green, no: red 

 

 

Fig 4: COVID-19 X-rays. ROI and AHE 

 

Fig 5: COVID-19 X-rays with features. 

4.5. Experimetal Results 

An experimental study showing the impact of each 

innovative module is presented in this section. The 

proposed SADD-MIL and SAD3D-MIL algorithms 

are tested on huge X-ray datasets to show the efficacy 

of our novel algorithms using the Hadoop 

framework. 

Table 3 explains the Classification results on the 

binary classes on Standard deviation when its values 

are zeros. The SAD3D-MIL model accuracy is 89.7, 

AUC is 90, the F1 score is 89.6, precision is 90.5, and 

recall is 92.7. In contrast, our proposed SADD-MIL 

model outperforms over SAD3D-MIL model as 

accuracy is 98.7, AUC is 97.8, the F1 score is 98.8, 

precision is 98.1, and recall is 98.8. 

Table 3: Standard deviation values are all 0 in the 

classification findings for the two-class problem 

(Common Pneumatia vs. No Pneumatia) using the 

COVID-19 and Non-COVID19 criteria. 

2-3 Metric Method 

SAD3D-MIL SADD-MIL 

Accuracy 89.7 98.7 

AUC 90 97.8 

F1 score 89.6 98.8 

Precision 90.5 98.1 

Recall 92.7 98.8 

 

Table 4 explains Classification results on three 

classes. The SAD3D-MIL model accuracy is 89.8+/-

0.9, AUC is 90.1+/-0.5, the F1 score is 91.5+/-0.4, 

precision is 92.5+/-0.2, and recall is 94.8+/-0.7. 

Whereas our proposed SADD-MIL model 

outperforms over SAD3D-MIL model as accuracy is 

94.6±0.6, AUC is 97.1±0.7, the F1 score is 98.5±0.9, 

precision is 99.5±0.2, recall is 98.9±0.1. 

Table 4: COVID-19, common pneumonia, and no 

pneumonia are the classifications determined by this 

classification system. 

2-3 Metric Method 

SAD3D-MIL SADD-MIL 

Accuracy 89.8+/-0.9 94.6±0.6 

AUC 90.1+/-0.5 97.1±0.7 

F1 score 91.5+/-0.4 98.5±0.9 

Precision 92.5+/-0.2 99.5±0.2 

Recall 94.8+/-0.7 98.9±0.1 
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Fig 6: Classification results on the binary 

classification SAD3D-MIL 

 

Fig 7: Classification results on the binary 

classification SADD-MIL 

Figure 6 provides an explanation of the classification 

findings for the binary classification using a variety of 

instance counts. 512 deep examples are denoted by the 

notation 8*8*8, which is created from the three axes of 

x, y, and z. For 8*8*8, the SAD3DMIL model has an 

accuracy of 87.9, an AUC of 90.5, a score of 90 for the 

F1 metric, precision of 90, and recall of 90. The 

accuracy for 16*16*16 is 88.1, the area under the curve 

is 90.6, the F1 score is 90, the precision is 90, and the 

recall is 90. For 32*32*32, the accuracy is 87.8%, the 

area under the curve is 90.9, the F1 score is 90, the 

precision is also 90, and the recall is also 90. In a similar 

manner, the classification results for the binary 

classification are shown in Figure 7 with various 

instance numbers for the SADDMIL model that was 

presented. 512 deep examples are denoted by the 

notation 8*8*8, which is created from the three axes of 

x, y, and z. For 8*8*8, the SADD-MIL model has an 

accuracy of 90.2, an AUC of 96.2, a precision score of 

97.2, a recall score of 98.1, and an F1 score of 98.2. For 

16*16*16, the accuracy score is 91.2, the AUC score is 

97, the F1 score is 97.8, the precision score is 96.3, and 

the recall score is 98. The accuracy for 32*32*32 is 

93.1, the area under the curve is 97.1, the F1 score is 

98.1, the precision is 96.1, and the recall is 98.1. 

 

Fig 8: Classification results on the binary 

classification with different instance pooling 

strategies: SAD3D-M 

Figure 8 presents the results of the classification 

performed on the binary classification using various 

instance pooling procedures, such as maximum and 

mean. The SAD3D-MIL model has an accuracy of 

88.1, an AUC of 90.5, a score of 90 for the F1 metric, 

a precision score of 90, and a recall score of 90 for 

the maximum. For the mean, the accuracy is 87.9, the 

area under the curve is 90.6, the F1 score is 90, the 

precision is 90, and the recall is also 90. 

 

Fig 9: Classification results on the binary 

classification with different instance pooling 

strategies: SADD And similarly, 

Figure 9 shows classification results on the binary 

classification with different instance pooling 

strategies: maximum, mean for the proposed SADD-

MIL model. The accuracy is 93.1, AUC is 97.1, the 

F1 score is 98.2, the precision is 97.2, and the recall 

is 98.1 for maximum. The accuracy is 91.5, AUC is 

96.7, the F1 score is 98, the precision is 96.5, and the 

recall is 98 for the mean. 
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5. Conclusion 

We presented a one-of-a-kind semi-supervised 

screening of COVID-19 using an Xray as a different 

and more realistic alternative scenario. We proposed a 

novel technique called distributed scaled attention-

based deep multiple instance learning (SADD-MIL) for 

the COVID-19 screening, which had low-quality labels 

but high interpretability. This method was used with 

low-quality labels. In addition to this, we proposed an 

attention-based deep 3D multiple instance learning 

algorithm that is scalable and based on Hadoop (AD3D-

MIL). Automatic deep 3D instances are produced by 

utilizing AD3D-deep MIL's instance generator, merged 

using attention-based MIL pooling, and then converted 

using the bag representation's transformation function 

into Bernoulli distributions or joint distributions for 

different classes of bags. When working together, these 

three characteristics have the potential to increase the 

generalizability and interpretability of screening 

algorithms. The distribution normal function that is 

based on MIL that was suggested was used as the basis 

for the proposed SADD-MIL, which was built on top of 

the Hadoop framework. We put the suggested methods 

SADD-MIL and SAD3D-MIL through their paces 

using a total of 191.82 GB of X-ray datasets. Extensive 

research has shown that SADDMIL is capable of 

achieving outcomes that are superior to those of 

SAD3DMIL. In addition, we used our algorithms that 

are based on the Big Data architecture to make a 

contribution to the large-scale screening of COVID-19 

X-ray datasets. 
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