

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(5s), 460–468 | 460

Developing Big Data in Computing Applications with Lambda

Architecture

M. Mohammed Thaha

1
, Aizul Nahar Harun

2
, Rafikullah Deraman

3
, T. Jackulin

4
, Vignesh. T

5

Submitted: 22/09/2023 Revised: 26/10/2023 Accepted: 10/11/2023

Abstract: The IT industry and academics have both paid close attention to big data. Information generation and collection

in the digital and computing worlds happen at a rate that quickly surpasses the limit. Globally, there are currently over 5

billion mobile phone owners and over 2 billion Internet users. There are projected to be 50 billion Internet-connected

gadgets by 2020. At this point, data generation is predicted to increase 44 times over that of 2009. This application is

distinct from hardware-centric evaluations in that it employs real-world data-intake scenarios to demonstrate the

methodology's effectiveness. This work adds to the corpus of prior research on LA while simultaneously addressing a

significant gap in the field. This work establishes a standard for further research in this field by providing a fresh,

empirically validated technique for assessing LA, a methodology that may be used in various big-data architectures. It also

advances past work that lacked empirical validation. The field's future research orientations are defined by the prospects

and various unresolved difficulties in Big Data dominance. It is simpler to research the area and develop the most effective

techniques for handling Big Data thanks to these lines of investigation.

Keywords: Big Data, Computing Applications, Lambda Architecture, empirical validation, dominance

1. Introduction

The primary cause of this is that electronic data is useless,

or unavailable. In addition, it has become challenging to

correlate data that might show patterns that are helpful in

the medical profession due to the healthcare systems that

house health-related information [1]. An additional issue is

BDA intricacy. Many operations and actions are carried

out in a pipeline style in a BDA process. A growing variety

of proprietary and open-source tools

are available to carry out each of these duties. Due to the

many different tasks that must be finished, such as data

upload, data transformation/cleaning, statistical evaluation,

interaction between back-end and front-end GUIs, and

multiple analytics and visualization activities, there is a

shortage of qualified BDA pipeline developers. Each

device has a learning curve, and the challenge gets

bigger when BDA engineers have to integrate multiple

technologies into one pipeline. Additionally, because the

BDA pipeline must operate continuously until the

analytical need is met, basic procedures like ETL and

machine learning must be automated.

 1Assistant Professor (Sr.Grade), B.S.Abdur Rahman Crescent

Institute of Science and Technology, GST Road, Vandalur,

Chennai - 600 048, Tamilnadu, INDIA.

Email: mohammedthaha@crescent.education
2YU-MJIIT International Joint Intellectual Property Lab (YU-

MJIIT IJIPL), Department of Management of Technology,

Malaysia-Japan International Institute of Technology (MJIIT),

Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100

Kuala Lumpur, Malaysia.
3Project and Facilities Management Research Group, Faculty of

Civil Engineering and Built Environment, Universiti Tun Hussein

Onn Malaysia, Batu Pahat, Malaysia.

Email: rafikullah@uthm.edu.my
4Associate Professor, Panimalar Engineering College, Chennai,

India.

Email: karthijackulin@gmail.com, Orcid: 0000-0003-4015-7718
5Department of Computer Science and Engineering, Koneru

Lakshmaiah Education Foundation, Green Fileds, Vaddeswaram,

A.P. – 522302. Email: vigneshthangathurai@gmail.com,

ORCID: 0000-0003-2865-966X

mailto:rafikullah@uthm.edu.my

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(5s), 460–468 | 461

Fig. 1.1. Examples of Big Data

The utilization of data from many easily accessible sensors

and the absence of people from the decision-making

procedure are two more problems associated with big data

in Figure 1.1. BDA is a costly, resource-intensive, and

complicated procedure with multiple problems that

frequently outcome in large project failures across various

sectors. In 2017, up to 85% of BDA efforts were failing,

according to Gartner. Only 5% of the 273

telecommunication companies engaged in BDA are

receiving more than 10% of the rewards, according to a

McKinsey report that evaluated the impact of telecom

companies' expenditures in BDA projects on the actual

benefits. Furthermore, the implementation of BDA

generated losses for 75–80% of the businesses [2]. As a

result, development happens much quicker than

acceptance. Since most of these technologies are open-

source projects, utilizing them in an operational setting

immediately calls for specific expertise and skills. The

majority of firms are discouraged from making

investments in BDA and adoption is slowed down during

this learning time.

The creation of BDA pipelines over the last ten years has

been greatly helped by the advancement and current

dominance of the Python programming language as a

pipelining language. A few technologies, such

as MongoDB, Redis, Hbase, Spark as a tool Flink, and

Hadoo, have also advanced and helped to pave the way for

the emergence of the BDA applications in the telecom

industry. These technologies are causing a rise in BDA

applications in the telecommunications sector, which is

expected to continue. As an example, BDA minimizes

processing complexity and delay from data by recognizing

traffic delay sensitivity and precisely identifying small

packet traffic.

The following is the arrangement of the essay's succeeding

sections. In Section 2, the research on the relevant earlier

work is provided. Section 3 covers the aspects of the

proposed system, including its suggested design,

implementation model, components of the graph-based

method, and data analysis. The effectiveness of the system

is assessed and the implementation environment is

described in Section 4. Section 5 presents the resolution.

2. Literature Review

Munshi, A. A., et.al [3] The primary concept behind Yarn

is to divide the two main tasks of the MapReduce

JobTracker/TaskTracker into distinct entities. For

distributed application management, Yarn primarily

comprises of a per-node slave NodeManager and a global

ResourceManager. Yarn's ApplicationMaster collaborates

with the NodeManager(s) to supervise and carry out

component task execution, negotiating resources from the

ResourceManager. It is the duty of every

ApplicationMaster to negotiate suitable resource

containers with the scheduler, keep track of their progress,

and monitor their status.

Persico, V., et.al [4] The proposal goes into further depth

on a data model, a synthetic data generator, and a

description of the associated workload. BigBench sought

to surpass earlier large data benchmarking initiatives. A

few years ago, there was insufficient information on real-

Monitor,

Manage By

Exception,

 Real-Time

Adjustments

Performance

Optimization

And

Improvement

Understanding

And serving the

customer/

Patient

Instrumentation data

(RFID, barcode, video feeds,

sensors, monitors)

Diagnostic Data

(Images, vital, sign

monitors, blood test results)

Structured data

(ERP, Transactional data,

Hospital, /Clinical info System,

prescription, payment Records)

Unstructured Data

(Consultation records and notes,

patient instruction, social media

discussion, diaries)

‘Big Data’

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(5s), 460–468 | 462

world use cases to adequately build generic solutions, so

the scientific literature recommended a careful approach to

creating "big data benchmarks" for the purpose of fairly

and appropriately evaluating big data systems.

Nonetheless, a number of big data benchmarking systems

have been put forth in more recent times.

Katkar, J. et.al [5] An easier paradigm that can logically

store and analyse vast amounts of data is suggested by

lambda architecture. In addition to working with internal

and external information sources, big data systems also

handle unstructured, semi-organized, and raw data. Unlike

traditional data warehousing systems, which are intended

for structured internal data, analytical ecosystem

architecture is a relatively new concept that was initially

put forth by Nathan Marz. Business may also need big data

frameworks with batch and real-time processing

capabilities.

Roukh, A., et.al [6] Big data is being used in agriculture

for a wide range of purposes, including sustainable

farming, farm-to-fork traceability, yield prediction, supply

chain management, risk mitigation, and loss reduction.

Furthermore, large-scale data systems for agriculture can

be classified into three primary categories: systems for

sophisticated sensor technology; (ii) systems for risk

management; and (iii) systems for agricultural control.

Since our work falls under this category of systems, we

primarily address the third category in this section. There

have been recent efforts to establish farming platforms that

gather the information required by intelligent farming

decision support systems.

Basanta-Val, P. et.al [7] In order to satisfy various

applications needs complex applications need to combine

both online and offline technologies. Particularly in the

industrial big-data space, most technologies are

undergoing a consolidation process that will continue into

the upcoming years. A current trend indicates a desire for a

more efficient infrastructure: it seeks efficiency in map-

reduce interactions. Industrial systems that must deliver

faster responses to outside events even as system

performance rises are particularly interested in the trend.

Kastouni, M. Z., et.al [8] while the idea of data analytics

and its applications may seem novel to some, an

examination of the literature revealed that the notion is not

new at all, since data analytics can be summed up as the

use of data to support business choices and activities. In

fact, tales like the one about the Roman emperor Caesar,

who rejected data from analysts predicting that March

would be a "down month," or Michelangelo, who

calculated the quantity of paint required to cover the

Sistine Chapel using an intricate abacus, demonstrate the

foundations of analytical thinking in forecasting results

and assisting in business decisions.

Casado, R., et.al [9] Big Data is a broad term for large

amounts of structured, semi-structured, and/or unstructured

data that may be too large to handle and process using

conventional databases and software. The high volume,

high velocity, and variety of information found in big data

can be used to enhance decision-making, forecasting,

business analysis, customer experience and loyalty, and

process optimisation across a variety of industries,

businesses, and online social networks. As such, it calls for

new management and processing techniques. The

enormous volume, velocity, and variety (3Vs) of Big Data

make traditional software unmanageable.

3. Methods and Materials

3.1 Current Data Processing Solutions

To design and develop decision support systems that

optimize the underlying infrastructure, data analytics is a

prerequisite. This entails searching for information online

as well as digesting it. For specific occurrences, but

additionally, historical information sources could be

required to recognize data patterns that affects judgments.

In addition, managing elasticity by dynamically assigning

resources to meet growing demand presents computational

challenges.

He proposed an affordable virtual machine provisioning

solution that aimed to meet all SLA requirements while

simultaneously executing dynamic data analytics

workloads. The study emphasized how a better

infrastructure would not be considered a service level

agreement and would instead depend more on the provider

performing trials [10].

The writers present a proposal for commercial

warehousing or biological protein analysis. Image analysis

in the medical domain is a further example of a

combination. He discussed how the existing Twitter APIs

were expanded to allow other academics to use their

information analysis to enhance company processes on

Twitter feeds. Nonetheless, novel approaches that enable

multiple individuals with diverse backgrounds to develop

and implement the best data processing programs are still

needed. For online and bulk data processing, customized

solutions are nonetheless needed, and these solutions must

take into account non-functional factors like cost and

complexity of the network.

Similar data processing tools have been used in subsequent

research in applications related to smart grids where real-

time redistribution of resources and forecasting are critical.

Some of the shortcomings of the Hadoop system of

processing have been addressed by the industry's current

focus on using Spark SQL to facilitate even faster

processing.

3.2 Lambda Architecture

The lambda architecture integrates batch and online

processing into one framework and is offered as a software

development pattern. When data must be legitimate for

online use as soon as it arrives, the pattern is appropriate

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(5s), 460–468 | 463

for applications where dashboards have temporal delays in

gathering information and availability. To the needs of

users, the pattern additionally allows batch analysis of

older data sets to identify behavioral patterns.

Fig. 3.1. Basic lambda architecture for speed and batch processing

The basic structure of the lambda architecture is seen in

Figure 3.1 [11]. It meets a variety of needs. (1) Using batch

processing to precompute big data sets (2) Real-time

computing speed to reduce latency by performing

calculations in real-time as data comes in; and (3) a query

reply layer that interfaces with queries and returns the

calculation results.

Fig. 3.2. Main lambda architecture implemented on Amazon web services

By identifying which aspects of the data require batch or

online processing, lambda architecture enables users to

reduce their data processing expenses in Figure 3.2 [12].

Before further processing, the live stream may be used to

identify data anomalies and verify its precision. Once data

has been verified, it may be put into databases and

analyzed over time utilizing batch scripts that execute once

a day or once a month. Breaking the issue down into

absorbed phases can assist users in reducing expenses

associated with executing these scripts on bigger data sets.

Respons

e

Quires

Quires

Respons

Monthly

Calculation

Sensor

Data

Minute-wise

calculation

Output to

Dashboard

Router 1

Router 2

Router 3

Kinesis

Stream

Process stream

And output to a

new stream
Plot

derivatives

5 minute

Calculation

Speed

Write to S3
S3

Queue

(Multiple mappers/

Reducers for different

outputs)

Read and process job

(Once a day)

Elastic Map Reduce Output (S3)

Output

Dash Board

Submit MR

Jobs to Queue

Batch

Data Source

(Message

queues)

Speed (Real-time

processing)

Batch Processing

(Hadoop)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(5s), 460–468 | 464

They may also modify the data analysis algorithms to meet

their specific needs. A great deal of data may be processed

efficiently via this architecture for collecting and analyzing

real-time sensor data.

3.3 Lambda Architecture-Based Big-Data

Organization

While batch processing and analytics are done offline,

real-time data processing & analytics are done on the

speed layer. A conceptual depiction of the LA is displayed

in Figure 3.3 [13].

Fig. 3.3. Conceptual diagram of Lambda Architecture Common Technologies for Lambda Architecture Coatings

An effective substitute for conventional relational

database management systems (RDBMS) is offered by

the NoSQL storage of data. Organizations, however, can

find it challenging to decide on the best course to take fast.

Understanding the unique needs of the program that a

relational

database system is unable to meet is crucial to choosing the

best NoSQL database. It might not be required to use a

NoSQL storage platform if an RDBMS can handle the data

well. MongoDB, Redis, Apache HBase, and Apache

Cassandra may all be used as speed layer databases. These

databases have the capability of random writing and

reading operations in addition to real-time data drinking.

MongoDB, CouchbaseDB, and SploutSQL may all be

utilized as batch-layer database records. Large volumes of

data may be imported into these databases to generate and

offer batch views.

3.4 Description of the Approach

The balance between complexity and latency is the main

trade-off in lambda architecture. Batch processing is

renowned for producing outcomes that are correct and

trustworthy. It does, however, come at the price of more

storage and maintenance needs as well as lengthier

execution times. Although stream processing produces

results fast and in real-time, the addition of partial or out-

of-order data may cause it to be less accurate and reliable.

To balance these trade-offs, the Lambda Architecture

makes use of each level and merges them into the service

layer. However, including these additional components

in the data pipeline also makes it more complex and

wasteful. Using each level and integrating it into the

service layer, the Lambda Architecture achieves a

compromise between these problems. The data pipeline is

made more ineffective and convoluted by adding these

additional components, though. Developers can streamline

and get rid of redundancies in the data flow by using this

method. This implies that the only set of information and

logical structures that developers require to concentrate on

creating, testing, and maintaining is that particular set.

Without the need for separate implementations, group and

stream processing may be changed with ease when using

one platform. By doing this, development time decreases

and consistent data processing throughout the architecture's

levels is guaranteed. Moreover, since developers are

simply able to monitor the movement of data and shifts

inside a single codebase, having a unified framework

makes debugging and troubleshooting simpler.

3.5 An Explanation of Lambda Architecture's

Coordinated Operation of its Various Layers

Certain statistics, particularly those that depend on the rate

of bulk operation and the length of the data gathering, must

be expressly deleted by the batch operation. The

"incomplete/lost statistics" stated before can be included

in the streaming layer [14]. Equation (1) can be utilized for

modeling this operation.

 λfiltered = ediscard(λraw∃(τtime − τinterval)) (1)

It is shown by the formula statement in Equation (1) when

the monitoring events should be omitted from the

calculation. The method ediscard () shows how events are

eliminated in the provided equation. Before implementing

the event selection (filter), the variable λraw indicates the

full amount of raw events. τtime Variable suggests the time

spent executing the batch. In addition, τinterval denotes the

period that events are eliminated from the batch. Last but

Data

Data

Data bus

Batch

Layer

Speed

Layer

Batch

Database

Real-time

Database

Batch View

Real-Time View

Command and control agent

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(5s), 460–468 | 465

not least, the formula τtime − τinterval denotes a time

interval τ interval subtracted from the batch's execution

time τtime. The computation establishes the time required

for event selection and emission of all events meeting the

specified need. The computation establishes the time

required for event selection and emission of all events

meeting the specified requirement.

 λbatch = λ
filtered

emap(key,value)→ereduced(key,value)
→→ ∆batch

data . (2)

Equation (2) describes how key and value pairs are created

by mapping the chosen events, represented as λfiltered, via

a mapping process, represented as emap(). The value

relates to each value of the matrices connected to the

corresponding key, whilst the key serves as an individual

identification for the statistical data. The data will next go

through the reduction procedure, known as ereduce (),

which combines the values depending on the key for each

distributed node. Following that, these uniform values are

kept in a special storage folder referred to as ∆ batch
data . The

new file produced by the batch process will be stored on

the distributed file system of Hadoop (HDER) in a

specified folder. It is essential to keep in mind that there

are choices available for replacing this storage layer.

If pre-computed statistics are available, they should be

obtained from the serving layer and used in the unified

bulk and stream layers. Equation (3) may be used to

explain this operation:

λstats
storage

= eload
storage(τcurrent, τfrom)= { λfiltered

storage
=

(τinput
storage

> (τcurrent − τfrom)). (3)

The pre-computed goal statistics imported from the service

layer are expressed by the variable λτfrom
stare in Equation (3).

The current timestamp is indicated by the variableτcurrent,

and the date and time from which the data will be

downloaded is represented byτfrom.

The process of loading information into the serving layer is

done using the function eload
storage

(). When the variation

between the current timestampτcurrent and the timestamp

τfrom is greater than the input data, also referred to

asτinput
storage

, which includes every statistic transmitted from

the serving layer to the database load method, and then the

statistics λfiltered
storage

 should be selected and returned.

 λprocessed
storage

= λstats
storage

emap(k,u)
→→

∏ (4)
storage
stats

The value of λprocessed
storage

, or the statistics that have been

mapped and saved from the serving layer's τstats
storage

 into the

memory, is expressed by equation (4).

Equation (5) describes the procedure in the streaming

layer:

λprocessed
stream = etransformation

data (λsream)
emap(k,u)→ereduced(k,u)(5)

The total number of monitored incidents within the stream

is shown by the variableλsream. The events are filtered and

converted by the function etransformation
data () before being

mapped by the method emap(), which produces key/value

pairs. In the final stage, the data journey through the

reduction process freduced() to combine the values

according to the key.

Equation (6) describes the batch information reading

procedure in the batch layer:

 λloaded
batch = ebatch

load (λbatch)emap(k,u) → (6)

Equation (6) utilizes the term λloaded
batch to refer to the

statistics that are mapped from storage, and λbatch to refer

to the precomputed statistics that come from Equations (1)

and (2). The batch must be loaded utilizing the function

ebatch
load (). The function loads just the set of statistics that are

already precomputed and are regarded as "new." Upon the

successful completion of the loading procedure, the file is

designated as "old."

 λjoined = (λprocessed
storage

⋃ λloaded
batch ⋃ λprocessed

stream) (7)

The statistics acquired from the service layer are shown

as λprocessed
storage

 in Equation (7).

The data that are estimated from streaming information is

designated asλprocessed
stream , while the data that are obtained

from batch calculations are designated asλloaded
processed

. Once

these information sets are merged, an additional set of data

called λjoined is generated.

Equation (8) describes how the statistical value in the

memory has developed:

λstate
memory

=estate
update

(λjoined) =

{

insert, if storage = True˄state

overwrite, if batch = True
update˅insert, if storage′˅batch′

} (8)

 (λprocessed
stream ⋃ λloaded

batch)∞ λstate
memory

∀eserving−layer
update or insert

 (9)

Equation (9) explains how the λstate
memory

 variable is paired

with the λprocessed
stream and λloaded

batch variables, and then a left-

join operation with the symbol ∞ is performed.

4. Implementation and Experimental Results

4.1 Environment Setup

We developed the deep ensemble-based IDS model in

Python 3.7 using Tensorflow 2.6 in order to validate the

efficacy of the suggested architecture. The experiment was

performed using a Core i5 PC with 16GB RAM and a 64-

bit operating system (OS). The software stack featured the

Java programming language (JDK), Flash v3.0, Hadoop

2.7, Pyspark 3.0, and Kafka 2.6.

4.2 Evaluation Metrics

The proposed IDS, which employ deep learning models for

attack detection, was assessed utilizing the most significant

metrics for performance. The following list includes the

most often-used assessment parameters by researchers:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(5s), 460–468 | 466

1.Remember This assessment metric, which may be

calculated using Eq. 10 [15], quantifies the percentage of

actual positive outcomes that have been displayed to be

positive.

recall =
𝑇𝑃

𝑇𝑃+𝐸𝑀
 (10)

2.Precision Precision is used to characterize the

performance model in several areas, such as information

retrieval, data mining, and machine learning. We compute

it concerning Eq. 12.

precision =
TP

TP+EP
 (11)

3.Accuracy Accuracy may be stated as your overall

performance of the categorization model. Eq. 3 can be

used to calculate it.

 Accuracy =
(TP+TM)

TP+EP+TM+FM
 (12)

4.The F-measure, or F1-score, takes recall and precision

into account. Equation 11 may be utilized for calculating

the F1-score.

E1 = 2 ×
(precision × recall)

precision + recall

5.Throughput It talks of the quantity of results produced in

a certain amount of time. In our situation, the measurement

is in units of flow.

4.3 Performance of Binary Classifiers

We independently evaluated and deployed each of the

three deep learning algorithms to examine how well they

worked with the testing dataset to assess the binary

classifier. To select the best binary classification

framework with the most effective evaluation parameters,

the accuracy and loss of the model during training and

validation were calculated. Table 1 shows all performance

indicators for the binary classification framework's ANN,

CNN, and LSTM-based learner.

Fig. 4.1. Loss of LSTM and ANN during training and validation

4.4 Performance of Multi-class Classifiers

Figure 4.1 show the LSTM classifier's accuracy and loss

during training and validation, respectively. Clear that all

three models perform equally to one another throughout

the multi-classification stage. In addition, LSTM's

performance isn't as strong as its performance in the binary

classifiers. This inspired us to use all three deep learning

models in an ensemble-based multiclass classification

stage. The performance data for the multi-class classifier

with each of the three deep learning methods deployed

separately can be seen in Table 2. It shows how well they

can identify the various types of network assaults in an

Internet of Things setting. Dividing the detection process

into two phases—Binary and multi-class for attack-only

transport—improves detection accuracy more than

approaching the issue as one multiclass issue with four

different attack types and regular traffic.

Table 1. Results for attack-only data—attack classification in batch mode using ensemble classifiers

Model Type Precision Recall F1-score Accuracy Time(ms)

Weighted

ensemble

DDoS 93.6 99.2 96.4 99.7

0.8

Okiru 99.2 93.3 96.2

0

1

2

3

4

5

6

7

8

0 20 40 60

A
cc

u
ra

cy

Epochs

LSTN and ANN Model Loss

Validation Accuracy

Accuracy

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(5s), 460–468 | 467

Port Scan 1.1 2 2

C &C 2 2 2

Table 2. Results for attack-only data—attack classification in batch mode

Model Type Precision Recall F1-score Accuracy Processing

time (ms)

ANN DDoS 89.6 99.7 94.4 97.1 0.08

Okiru 99.7 88.3 93.6

Port Scan 100 2 100

C &C 2 2 2

CNN DDoS 89.7 99.6 94.5 97.2 0.06

Okiru 99.8 88.9 93.7

Port Scan 100 2 100

C &C 2 2 2

LSTM DDoS 94.1 99.3 96.6 98.3 0.09

Okiru 99.3 93.7 96.5

Port Scan 100 1.1 100

C &C 1.0 1.1 2

Fig. 4.2. Batch size-dependent binary and multi classification throughputs

Additionally, as Table 3 shows, binary classification in

binary mode is significantly quicker than batch mode or

without making use of Lambda architecture.

Table 3. Results for multi-classification without using lambda architecture—5 traffic types: 1 for benign and 4 for attacks

Model Type Precision Recall F1-score Accuracy Processing

time (ms)

ANN Normal 77.7 98.1 86.7 92.8 0.43

DDoS 94.1 76.2 84.5

Okiru 98.9 90.4 94.5

Port Scan 99.5 99.0 99.3

C &C 99.6 1.0 99.9

CNN Normal 78.1 97.7 86.8 93.2 0.65

DDoS 95.5 76.3 85.1

Okiru 98.7 91.9 95.1

Port Scan 98.9 99.7 99.4

C &C 100 1.1 1.1

LSTM Normal 78.8 96.35 86.7 92.8 0.13

DDoS 91.2 79.1 84.7

Okiru 98.9 90.0 94.3

Port Scan 99.9 98.5 99.3

C &C 100 1.0 100

0

1

2

3

4

5

100 500 1000 1500

Th
ro

gh
p

u
t

Batch Size

ANN

CNN

LSTM

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(5s), 460–468 | 468

The data has been streamed over a range of periods,

spanning 1 to 15 s, as seen in Figure 4.2. As estimated, in

all window frame durations for binary classification

scenarios, LSTM processes the data quicker than other

models.

5. Conclusion

There is no denying that big data analytics is extremely

important and has a lot to offer the telecom sector.

Through a comprehensive review of the literature, we

discovered in this study that the limited use of the newest

technologies in a developing technology stack and a lack

of architecture restrict the practical applications of BDA to

telecom in academic research. To address this and other

challenges, we have created and published LambdaTel,

innovative lambda architecture for BDA deployments in

the telecom sector. Furthermore, we optimised the training

of binary and multi-class classifiers at the batch layer by

leveraging the Lambda architecture. At parallel, real-time

Internet of Things traffic at the low-latency speed layer is

evaluated and examined through the use of model

inferences. Additionally, we show that, in comparison to

the simple strategy, the ensemble approach yields higher

detection precision and accuracy. Additionally, we show

that the Lambda architecture improves throughput and

overall performance.

In the future, to using additional deep-learning techniques

in the ensemble model to enhance detection accuracy and

system performance, we intend to test the suggested

framework in an actual commercial IoT environment in

order to further validate its performance. The

hyperparameters may be tuned using automated machine

learning approaches, which is a crucial objective.

References

[1] Zahid, H., Mahmood, T., Morshed, A., & Sellis, T.

(2019). Big data analytics in telecommunications:

literature review and architecture

recommendations. IEEE/CAA Journal of Automatica

Sinica, 7(1), 18-38.

[2] Chen, C. M. (2016). Use cases and challenges in

telecom big data analytics. apSIpa transactions on

Signal and Information processing, 5, e19.

[3] Munshi, A. A., & Mohamed, Y. A. R. I. (2018). Data

lake lambda architecture for smart grids big data

analytics. IEEE Access, 6, 40463-40471.

[4] Persico, V., Pescapé, A., Picariello, A., & Sperlí, G.

(2018). Benchmarking big data architectures for social

networks data processing using public cloud

platforms. Future Generation Computer Systems, 89,

98-109.

[5] Katkar, J. (2015). STUDY OF BIG DATA

ARHITECTURE LAMBDA ARHITECTURE.

[6] Roukh, A., Fote, F. N., Mahmoudi, S. A., &

Mahmoudi, S. (2020). Big data processing architecture

for smart farming. Procedia Computer Science, 177,

78-85.

[7] Basanta-Val, P. (2017). An efficient industrial big-

data engine. IEEE Transactions on Industrial

Informatics, 14(4), 1361-1369.

[8] Kastouni, M. Z., & Lahcen, A. A. (2022). Big data

analytics in telecommunications: Governance,

architecture and use cases. Journal of King Saud

University-Computer and Information Sciences, 34(6),

2758-2770.

[9] Casado, R., & Younas, M. (2015). Emerging trends

and technologies in big data processing. Concurrency

and Computation: Practice and Experience, 27(8),

2078-2091.

[10] Kiran, M., Murphy, P., Monga, I., Dugan, J., &

Baveja, S. S. (2015, October). Lambda architecture for

cost-effective batch and speed big data processing.

In 2015 IEEE international conference on big data

(big data) (pp. 2785-2792). IEEE.

[11] Alghamdi, R., & Bellaiche, M. (2023). An ensemble

deep learning based IDS for IoT using Lambda

architecture. Cybersecurity, 6(1), 5.

[12] Kim, Y. G., Ahmed, K. J., Lee, M. J., & Tsukamoto,

K. (2022, August). A Comprehensive Analysis of

Machine Learning-Based Intrusion Detection System

for IoT-23 Dataset. In International Conference on

Intelligent Networking and Collaborative Systems (pp.

475-486). Cham: Springer International Publishing.

[13] Imran, S., Mahmood, T., Morshed, A., & Sellis, T.

(2020). Big data analytics in healthcare− A systematic

literature review and roadmap for practical

implementation. IEEE/CAA Journal of Automatica

Sinica, 8(1), 1-22.

[14] Ge, M., Bangui, H., & Buhnova, B. (2018). Big data

for internet of things: a survey. Future generation

computer systems, 87, 601-614.

[15] Silva, B. N., Diyan, M., & Han, K. (2019). Big data

analytics. Deep learning: convergence to big data

analytics, (2), 13-30.

