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Abstract: The IT industry and academics have both paid close attention to big data. Information generation and collection 

in the digital and computing worlds happen at a rate that quickly surpasses the limit. Globally, there are currently over 5 

billion mobile phone owners and over 2 billion Internet users. There are projected to be 50 billion Internet-connected 

gadgets by 2020. At this point, data generation is predicted to increase 44 times over that of 2009. This application is 

distinct from hardware-centric evaluations in that it employs real-world data-intake scenarios to demonstrate the 

methodology's effectiveness. This work adds to the corpus of prior research on LA while simultaneously addressing a 

significant gap in the field. This work establishes a standard for further research in this field by providing a fresh, 

empirically validated technique for assessing LA, a methodology that may be used in various big-data architectures. It also 

advances past work that lacked empirical validation. The field's future research orientations are defined by the prospects 

and various unresolved difficulties in Big Data dominance. It is simpler to research the area and develop the most effective 

techniques for handling Big Data thanks to these lines of investigation. 
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1. Introduction 

The primary cause of this is that electronic data is useless, 

or unavailable. In addition, it has become challenging to 

correlate data that might show patterns that are helpful in 

the medical profession due to the healthcare systems that 

house health-related information [1]. An additional issue is 

BDA intricacy. Many operations and actions are carried 

out in a pipeline style in a BDA process. A growing variety 

of proprietary and open-source tools  

are available to carry out each of these duties. Due to the 

many different tasks that must be finished, such as data 

upload, data transformation/cleaning, statistical evaluation, 

interaction between back-end and front-end GUIs, and 

multiple analytics and visualization activities, there is a 

shortage of qualified BDA pipeline developers. Each 

device has a learning curve, and the challenge gets 

bigger when BDA engineers have to integrate multiple 

technologies into one pipeline. Additionally, because the 

BDA pipeline must operate continuously until the 

analytical need is met, basic procedures like ETL and 

machine learning must be automated. 
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Fig. 1.1. Examples of Big Data 

The utilization of data from many easily accessible sensors 

and the absence of people from the decision-making 

procedure are two more problems associated with big data 

in Figure 1.1. BDA is a costly, resource-intensive, and 

complicated procedure with multiple problems that 

frequently outcome in large project failures across various 

sectors. In 2017, up to 85% of BDA efforts were failing, 

according to Gartner. Only 5% of the 273 

telecommunication companies engaged in BDA are 

receiving more than 10% of the rewards, according to a 

McKinsey report that evaluated the impact of telecom 

companies' expenditures in BDA projects on the actual 

benefits. Furthermore, the implementation of BDA 

generated losses for 75–80% of the businesses [2]. As a 

result, development happens much quicker than 

acceptance. Since most of these technologies are open-

source projects, utilizing them in an operational setting 

immediately calls for specific expertise and skills. The 

majority of firms are discouraged from making 

investments in BDA and adoption is slowed down during 

this learning time. 

The creation of BDA pipelines over the last ten years has 

been greatly helped by the advancement and current 

dominance of the Python programming language as a 

pipelining language. A few technologies, such 

as MongoDB, Redis, Hbase, Spark as a tool Flink, and 

Hadoo, have also advanced and helped to pave the way for 

the emergence of the BDA applications in the telecom 

industry. These technologies are causing a rise in BDA 

applications in the telecommunications sector, which is 

expected to continue. As an example, BDA minimizes 

processing complexity and delay from data by recognizing 

traffic delay sensitivity and precisely identifying small 

packet traffic. 

The following is the arrangement of the essay's succeeding 

sections. In Section 2, the research on the relevant earlier 

work is provided. Section 3 covers the aspects of the 

proposed system, including its suggested design, 

implementation model, components of the graph-based 

method, and data analysis. The effectiveness of the system 

is assessed and the implementation environment is 

described in Section 4. Section 5 presents the resolution. 

 

2. Literature Review 

Munshi, A. A., et.al [3] The primary concept behind Yarn 

is to divide the two main tasks of the MapReduce 

JobTracker/TaskTracker into distinct entities. For 

distributed application management, Yarn primarily 

comprises of a per-node slave NodeManager and a global 

ResourceManager. Yarn's ApplicationMaster collaborates 

with the NodeManager(s) to supervise and carry out 

component task execution, negotiating resources from the 

ResourceManager. It is the duty of every 

ApplicationMaster to negotiate suitable resource 

containers with the scheduler, keep track of their progress, 

and monitor their status. 

Persico, V., et.al [4] The proposal goes into further depth 

on a data model, a synthetic data generator, and a 

description of the associated workload. BigBench sought 

to surpass earlier large data benchmarking initiatives. A 

few years ago, there was insufficient information on real-
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world use cases to adequately build generic solutions, so 

the scientific literature recommended a careful approach to 

creating "big data benchmarks" for the purpose of fairly 

and appropriately evaluating big data systems. 

Nonetheless, a number of big data benchmarking systems 

have been put forth in more recent times. 

Katkar, J. et.al [5] An easier paradigm that can logically 

store and analyse vast amounts of data is suggested by 

lambda architecture. In addition to working with internal 

and external information sources, big data systems also 

handle unstructured, semi-organized, and raw data. Unlike 

traditional data warehousing systems, which are intended 

for structured internal data, analytical ecosystem 

architecture is a relatively new concept that was initially 

put forth by Nathan Marz. Business may also need big data 

frameworks with batch and real-time processing 

capabilities. 

Roukh, A., et.al [6] Big data is being used in agriculture 

for a wide range of purposes, including sustainable 

farming, farm-to-fork traceability, yield prediction, supply 

chain management, risk mitigation, and loss reduction. 

Furthermore, large-scale data systems for agriculture can 

be classified into three primary categories: systems for 

sophisticated sensor technology; (ii) systems for risk 

management; and (iii) systems for agricultural control. 

Since our work falls under this category of systems, we 

primarily address the third category in this section. There 

have been recent efforts to establish farming platforms that 

gather the information required by intelligent farming 

decision support systems.  

Basanta-Val, P. et.al [7] In order to satisfy various 

applications needs complex applications need to combine 

both online and offline technologies. Particularly in the 

industrial big-data space, most technologies are 

undergoing a consolidation process that will continue into 

the upcoming years. A current trend indicates a desire for a 

more efficient infrastructure: it seeks efficiency in map-

reduce interactions. Industrial systems that must deliver 

faster responses to outside events even as system 

performance rises are particularly interested in the trend. 

Kastouni, M. Z., et.al [8] while the idea of data analytics 

and its applications may seem novel to some, an 

examination of the literature revealed that the notion is not 

new at all, since data analytics can be summed up as the 

use of data to support business choices and activities. In 

fact, tales like the one about the Roman emperor Caesar, 

who rejected data from analysts predicting that March 

would be a "down month," or Michelangelo, who 

calculated the quantity of paint required to cover the 

Sistine Chapel using an intricate abacus, demonstrate the 

foundations of analytical thinking in forecasting results 

and assisting in business decisions. 

Casado, R., et.al [9] Big Data is a broad term for large 

amounts of structured, semi-structured, and/or unstructured 

data that may be too large to handle and process using 

conventional databases and software. The high volume, 

high velocity, and variety of information found in big data 

can be used to enhance decision-making, forecasting, 

business analysis, customer experience and loyalty, and 

process optimisation across a variety of industries, 

businesses, and online social networks. As such, it calls for 

new management and processing techniques. The 

enormous volume, velocity, and variety (3Vs) of Big Data 

make traditional software unmanageable. 

 

3. Methods and Materials 

3.1 Current Data Processing Solutions 

To design and develop decision support systems that 

optimize the underlying infrastructure, data analytics is a 

prerequisite. This entails searching for information online 

as well as digesting it. For specific occurrences, but 

additionally, historical information sources could be 

required to recognize data patterns that affects judgments. 

In addition, managing elasticity by dynamically assigning 

resources to meet growing demand presents computational 

challenges. 

He proposed an affordable virtual machine provisioning 

solution that aimed to meet all SLA requirements while 

simultaneously executing dynamic data analytics 

workloads. The study emphasized how a better 

infrastructure would not be considered a service level 

agreement and would instead depend more on the provider 

performing trials [10].  

The writers present a proposal for commercial 

warehousing or biological protein analysis. Image analysis 

in the medical domain is a further example of a 

combination. He discussed how the existing Twitter APIs 

were expanded to allow other academics to use their 

information analysis to enhance company processes on 

Twitter feeds. Nonetheless, novel approaches that enable 

multiple individuals with diverse backgrounds to develop 

and implement the best data processing programs are still 

needed. For online and bulk data processing, customized 

solutions are nonetheless needed, and these solutions must 

take into account non-functional factors like cost and 

complexity of the network. 

Similar data processing tools have been used in subsequent 

research in applications related to smart grids where real-

time redistribution of resources and forecasting are critical. 

Some of the shortcomings of the Hadoop system of 

processing have been addressed by the industry's current 

focus on using Spark SQL to facilitate even faster 

processing. 

3.2 Lambda Architecture 

The lambda architecture integrates batch and online 

processing into one framework and is offered as a software 

development pattern. When data must be legitimate for 

online use as soon as it arrives, the pattern is appropriate 
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for applications where dashboards have temporal delays in 

gathering information and availability. To the needs of 

users, the pattern additionally allows batch analysis of 

older data sets to identify behavioral patterns. 

 
 

Fig. 3.1. Basic lambda architecture for speed and batch processing 

The basic structure of the lambda architecture is seen in 

Figure 3.1 [11]. It meets a variety of needs. (1) Using batch 

processing to precompute big data sets (2) Real-time 

computing speed to reduce latency by performing 

calculations in real-time as data comes in; and (3) a query 

reply layer that interfaces with queries and returns the 

calculation results. 

 

  

 
Fig. 3.2. Main lambda architecture implemented on Amazon web services 

 

By identifying which aspects of the data require batch or 

online processing, lambda architecture enables users to 

reduce their data processing expenses in Figure 3.2 [12]. 

Before further processing, the live stream may be used to 

identify data anomalies and verify its precision. Once data  

 

has been verified, it may be put into databases and 

analyzed over time utilizing batch scripts that execute once 

a day or once a month. Breaking the issue down into 

absorbed phases can assist users in reducing expenses 

associated with executing these scripts on bigger data sets.  
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They may also modify the data analysis algorithms to meet 

their specific needs. A great deal of data may be processed 

efficiently via this architecture for collecting and analyzing 

real-time sensor data. 

 

3.3 Lambda Architecture-Based Big-Data 

Organization 

While batch processing and analytics are done offline, 

real-time data processing & analytics are done on the 

speed layer. A conceptual depiction of the LA is displayed 

in Figure 3.3 [13].  

            
Fig. 3.3. Conceptual diagram of Lambda Architecture Common Technologies for Lambda Architecture Coatings 

An effective substitute for conventional relational 

database management systems (RDBMS) is offered by 

the NoSQL storage of data. Organizations, however, can 

find it challenging to decide on the best course to take fast. 

Understanding the unique needs of the program that a 

relational  

database system is unable to meet is crucial to choosing the 

best NoSQL database. It might not be required to use a 

NoSQL storage platform if an RDBMS can handle the data 

well. MongoDB, Redis, Apache HBase, and Apache 

Cassandra may all be used as speed layer databases. These 

databases have the capability of random writing and 

reading operations in addition to real-time data drinking. 

MongoDB, CouchbaseDB, and SploutSQL may all be 

utilized as batch-layer database records. Large volumes of 

data may be imported into these databases to generate and 

offer batch views. 

3.4 Description of the Approach 

The balance between complexity and latency is the main 

trade-off in lambda architecture. Batch processing is 

renowned for producing outcomes that are correct and 

trustworthy. It does, however, come at the price of more 

storage and maintenance needs as well as lengthier 

execution times. Although stream processing produces 

results fast and in real-time, the addition of partial or out-

of-order data may cause it to be less accurate and reliable. 

To balance these trade-offs, the Lambda Architecture 

makes use of each level and merges them into the service 

layer. However, including these additional components 

in the data pipeline also makes it more complex and 

wasteful. Using each level and integrating it into the 

service layer, the Lambda Architecture achieves a 

compromise between these problems. The data pipeline is 

made more ineffective and convoluted by adding these 

additional components, though. Developers can streamline 

and get rid of redundancies in the data flow by using this 

method. This implies that the only set of information and 

logical structures that developers require to concentrate on 

creating, testing, and maintaining is that particular set. 

Without the need for separate implementations, group and 

stream processing may be changed with ease when using 

one platform. By doing this, development time decreases 

and consistent data processing throughout the architecture's 

levels is guaranteed. Moreover, since developers are 

simply able to monitor the movement of data and shifts 

inside a single codebase, having a unified framework 

makes debugging and troubleshooting simpler. 

3.5 An Explanation of Lambda Architecture's 

Coordinated Operation of its Various Layers 

Certain statistics, particularly those that depend on the rate 

of bulk operation and the length of the data gathering, must 

be expressly deleted by the batch operation. The 

"incomplete/lost statistics" stated before can be included 

in the streaming layer [14]. Equation (1) can be utilized for 

modeling this operation. 

      λfiltered = ediscard(λraw∃(τtime − τinterval))              (1) 

It is shown by the formula statement in Equation (1) when 

the monitoring events should be omitted from the 

calculation. The method ediscard () shows how events are 

eliminated in the provided equation. Before implementing 

the event selection (filter), the variable λraw indicates the 

full amount of raw events. τtime Variable suggests the time 

spent executing the batch. In addition, τinterval denotes the 

period that events are eliminated from the batch. Last but 
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not least, the formula τtime − τinterval denotes a time 

interval τ interval subtracted from the batch's execution 

time τtime. The computation establishes the time required 

for event selection and emission of all events meeting the 

specified need. The computation establishes the time 

required for event selection and emission of all events 

meeting the specified requirement.  

 λbatch = λ
filtered

emap(key,value)→ereduced(key,value)
→→ ∆batch

data .    (2) 

Equation (2) describes how key and value pairs are created 

by mapping the chosen events, represented as λfiltered, via 

a mapping process, represented as emap(). The value 

relates to each value of the matrices connected to the 

corresponding key, whilst the key serves as an individual 

identification for the statistical data. The data will next go 

through the reduction procedure, known as ereduce (), 

which combines the values depending on the key for each 

distributed node. Following that, these uniform values are 

kept in a special storage folder referred to as ∆ batch
data . The 

new file produced by the batch process will be stored on 

the distributed file system of Hadoop (HDER) in a 

specified folder. It is essential to keep in mind that there 

are choices available for replacing this storage layer. 

If pre-computed statistics are available, they should be 

obtained from the serving layer and used in the unified 

bulk and stream layers. Equation (3) may be used to 

explain this operation: 

λstats
storage

= eload
storage(τcurrent, τfrom)= { λfiltered

storage
=

(τinput
storage

> (τcurrent − τfrom)).                                      (3) 

The pre-computed goal statistics imported from the service 

layer are expressed by the variable λτfrom
stare  in Equation (3). 

The current timestamp is indicated by the variableτcurrent, 

and the date and time from which the data will be 

downloaded is represented byτfrom. 

The process of loading information into the serving layer is 

done using the function eload
storage

(). When the variation 

between the current timestampτcurrent and the timestamp 

τfrom is greater than the input data, also referred to 

asτinput
storage

, which includes every statistic transmitted from 

the serving layer to the database load method, and then the 

statistics λfiltered
storage

 should be selected and returned. 

 λprocessed
storage

= λstats
storage

emap(k,u)
→→

∏                                                                          (4)
storage
stats           

The value of λprocessed
storage

, or the statistics that have been 

mapped and saved from the serving layer's τstats
storage

 into the 

memory, is expressed by equation (4).     

Equation (5) describes the procedure in the streaming 

layer: 

λprocessed
stream = etransformation

data (λsream)
emap(k,u)→ereduced(k,u)(5) 

The total number of monitored incidents within the stream 

is shown by the variableλsream. The events are filtered and 

converted by the function etransformation
data  () before being 

mapped by the method emap(), which produces key/value 

pairs. In the final stage, the data journey through the 

reduction process freduced() to combine the values 

according to the key. 

Equation (6) describes the batch information reading 

procedure in the batch layer: 

      λloaded
batch = ebatch

load (λbatch)emap(k,u) →                         (6) 

Equation (6) utilizes the term λloaded
batch  to refer to the 

statistics that are mapped from storage, and λbatch to refer 

to the precomputed statistics that come from Equations (1) 

and (2). The batch must be loaded utilizing the function 

ebatch
load (). The function loads just the set of statistics that are 

already precomputed and are regarded as "new." Upon the 

successful completion of the loading procedure, the file is 

designated as "old."  

     λjoined = ( λprocessed
storage

⋃ λloaded
batch ⋃  λprocessed

stream )          (7) 

The statistics acquired from the service layer are shown 

as λprocessed
storage

 in Equation (7). 

The data that are estimated from streaming information is 

designated asλprocessed 
stream , while the data that are obtained 

from batch calculations are designated asλloaded
processed

. Once 

these information sets are merged, an additional set of data 

called λjoined is generated. 

Equation (8) describes how the statistical value in the 

memory has developed: 

λstate
memory

=estate
update

( λjoined) =

{

insert,                                  if storage = True˄state

overwrite,                                         if batch = True
update˅insert,                       if storage′˅batch′

}    (8) 

    ( λprocessed
stream ⋃ λloaded

batch )∞  λstate
memory

∀eserving−layer
update or insert

     (9) 

Equation (9) explains how the λstate
memory

 variable is paired 

with the λprocessed
stream  and λloaded

batch  variables, and then a left-

join operation with the symbol ∞ is performed.  

 

4. Implementation and Experimental Results 

4.1 Environment Setup 

We developed the deep ensemble-based IDS model in 

Python 3.7 using Tensorflow 2.6 in order to validate the 

efficacy of the suggested architecture. The experiment was 

performed using a Core i5 PC with 16GB RAM and a 64-

bit operating system (OS). The software stack featured the 

Java programming language (JDK), Flash v3.0, Hadoop 

2.7, Pyspark 3.0, and Kafka 2.6. 

 

4.2 Evaluation Metrics 

The proposed IDS, which employ deep learning models for 

attack detection, was assessed utilizing the most significant 

metrics for performance. The following list includes the 

most often-used assessment parameters by researchers:  
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1.Remember This assessment metric, which may be 

calculated using Eq. 10 [15], quantifies the percentage of 

actual positive outcomes that have been displayed to be 

positive. 

                                                       

recall =
𝑇𝑃

𝑇𝑃+𝐸𝑀
                                                              (10) 

2.Precision Precision is used to characterize the 

performance model in several areas, such as information 

retrieval, data mining, and machine learning. We compute 

it concerning Eq. 12. 

                                            

precision =  
TP

TP+EP
                                                          (11) 

3.Accuracy Accuracy may be stated as your overall 

performance of the categorization model. Eq. 3 can be 

used to calculate it. 

           Accuracy =
(TP+TM)

TP+EP+TM+FM
                               (12) 

4.The F-measure, or F1-score, takes recall and precision 

into account. Equation 11 may be utilized for calculating 

the F1-score. 

E1 = 2 ×
(precision × recall)

precision + recall
 

5.Throughput It talks of the quantity of results produced in 

a certain amount of time. In our situation, the measurement 

is in units of flow. 

 

4.3 Performance of Binary Classifiers 

We independently evaluated and deployed each of the 

three deep learning algorithms to examine how well they 

worked with the testing dataset to assess the binary 

classifier. To select the best binary classification 

framework with the most effective evaluation parameters, 

the accuracy and loss of the model during training and 

validation were calculated. Table 1 shows all performance 

indicators for the binary classification framework's ANN, 

CNN, and LSTM-based learner.  

 

 
Fig. 4.1. Loss of LSTM and ANN during training and validation 

 

4.4 Performance of Multi-class Classifiers 

Figure 4.1 show the LSTM classifier's accuracy and loss 

during training and validation, respectively. Clear that all 

three models perform equally to one another throughout 

the multi-classification stage. In addition, LSTM's 

performance isn't as strong as its performance in the binary 

classifiers. This inspired us to use all three deep learning 

models in an ensemble-based multiclass classification 

stage. The performance data for the multi-class classifier 

with each of the three deep learning methods deployed 

separately can be seen in Table 2. It shows how well they 

can identify the various types of network assaults in an 

Internet of Things setting. Dividing the detection process 

into two phases—Binary and multi-class for attack-only 

transport—improves detection accuracy more than 

approaching the issue as one multiclass issue with four 

different attack types and regular traffic. 

Table 1. Results for attack-only data—attack classification in batch mode using ensemble classifiers 

Model Type Precision Recall F1-score Accuracy Time(ms) 

Weighted 

ensemble 

DDoS 93.6 99.2 96.4 99.7 
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Port Scan 1.1 2 2 

C &C 2 2 2 

 

Table 2. Results for attack-only data—attack classification in batch mode 

Model Type Precision Recall F1-score Accuracy Processing 

time (ms) 

ANN DDoS 89.6 99.7 94.4 97.1 0.08 

Okiru 99.7 88.3 93.6 

Port Scan 100 2 100 

C &C 2 2 2 

CNN DDoS 89.7 99.6 94.5 97.2 0.06 

Okiru 99.8 88.9 93.7 

Port Scan 100 2 100 

C &C 2 2 2 

LSTM DDoS 94.1 99.3 96.6 98.3 0.09 

Okiru 99.3 93.7 96.5 

Port Scan 100 1.1 100 

C &C 1.0 1.1 2 

 

 
Fig. 4.2. Batch size-dependent binary and multi classification throughputs 

Additionally, as Table 3 shows, binary classification in 

binary mode is significantly quicker than batch mode or 

without making use of Lambda architecture. 

 

Table 3. Results for multi-classification without using lambda architecture—5 traffic types: 1 for benign and 4 for attacks 

Model Type Precision Recall F1-score Accuracy Processing 

time (ms) 

ANN Normal 77.7 98.1 86.7 92.8 0.43 

DDoS 94.1 76.2 84.5 

Okiru 98.9 90.4 94.5 

Port Scan 99.5 99.0 99.3 

C &C 99.6 1.0 99.9 

CNN Normal 78.1 97.7 86.8 93.2 0.65 

DDoS 95.5 76.3 85.1 

Okiru 98.7 91.9 95.1 

Port Scan 98.9 99.7 99.4 

C &C 100 1.1 1.1 

LSTM Normal 78.8 96.35 86.7 92.8 0.13 

DDoS 91.2 79.1 84.7 

Okiru 98.9 90.0 94.3 

Port Scan 99.9 98.5 99.3 

C &C 100 1.0 100 
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The data has been streamed over a range of periods, 

spanning 1 to 15 s, as seen in Figure 4.2. As estimated, in 

all window frame durations for binary classification 

scenarios, LSTM processes the data quicker than other 

models. 

 

5. Conclusion 

There is no denying that big data analytics is extremely 

important and has a lot to offer the telecom sector. 

Through a comprehensive review of the literature, we 

discovered in this study that the limited use of the newest 

technologies in a developing technology stack and a lack 

of architecture restrict the practical applications of BDA to 

telecom in academic research. To address this and other 

challenges, we have created and published LambdaTel, 

innovative lambda architecture for BDA deployments in 

the telecom sector. Furthermore, we optimised the training 

of binary and multi-class classifiers at the batch layer by 

leveraging the Lambda architecture. At parallel, real-time 

Internet of Things traffic at the low-latency speed layer is 

evaluated and examined through the use of model 

inferences. Additionally, we show that, in comparison to 

the simple strategy, the ensemble approach yields higher 

detection precision and accuracy. Additionally, we show 

that the Lambda architecture improves throughput and 

overall performance. 

In the future, to using additional deep-learning techniques 

in the ensemble model to enhance detection accuracy and 

system performance, we intend to test the suggested 

framework in an actual commercial IoT environment in 

order to further validate its performance. The 

hyperparameters may be tuned using automated machine 

learning approaches, which is a crucial objective. 
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