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Abstract: Lossless compression is a critical technique for reducing the storage and transmission requirements of light field hyper-spectral 

images, which are high-dimensional and data-intensive. The proposed approach Sparse Wavelet Decomposition and PRN for Lossless 

Compression (SDWT-PRN) leverages the advantages of both Sparse Discrete Wavelets Transform (SDWT) and Poincare recurrence neural 

network (PRN) for efficient and effective compression of light field hyper-spectral images. The SDWT is applied to decompose the light 

field hyper-spectral images into wavelet coefficients, which capture the multi-resolution and multi-directional information in the images. 

The PRRN is then employed to exploit the temporal redundancy among the wavelet coefficients to further compress the data. The proposed 

approach is evaluated on light field hyper-spectral image datasets, and the results demonstrate its superior compression performance 

compared to existing approaches. The investigational outcomes display that the combined SDWT and PRRN approach achieves high 

compression ratios while maintaining lossless reconstruction, making it suitable for efficient storage and transmission of light field hyper-

spectral images in various applications, such as remote sensing, medical imaging, and scientific data analysis. 
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1. Introduction 

Light field hyperspectral imaging is becoming increasingly 

popular in scientific research. Light field hyperspectral 

imaging captures both spatial as well as spectral data 

resulting in large amounts of data. Hyperspectral imaging is 

a powerful image acquisition technique that captures high-

resolution spectral information across a wide range of 

wavelengths, enabling detailed analysis and interpretation 

of complex scenes [1-2]. In some applications, such as 

hyperspectral imaging pattern recognition [3-6], a 

succession of hyperspectral images taken across a single 

spatial area at different periods is required. However, 

hyperspectral data is often plagued by various types of 

noise, which can degrade the quality and accuracy of the 

data analysis. Additionally, hyperspectral data is inherently 

high-dimensional, resulting in challenges in storage and 

transmission. Therefore, efficient and effective pre-

processing, dimensionality reduction, and lossless 

compression procedures are crucial for handling the 

acquired hyperspectral images. 

The massive volumes of data that must be transmitted and 

stored limit the transmission and storage of hyperspectral 

images [7]. One of the most essential strategies for resolving 

such disagreements is data compression, which enhances 

transmission efficiency. The phrase nearly lossless, coined 

by some of the authors in 2000 [8], denotes that the 

distortion caused by compression has no effect on the 

outcomes of manual or automatic analysis done on 

compressed data. Hyperspectral images are large and 

contain vast amounts of data, which can make their storage 

and transmission challenging. Lossless compression 

techniques aim to compress the hyperspectral data without 

any loss of information, ensuring that the original data can 

be accurately reconstructed upon decompression. Various 

lossless compression methods have been proposed for 

hyperspectral data, including statistical-based methods, 

transform-based methods, and predictive methods. These 

methods exploit the inherent redundancy and regularity 

present in hyperspectral data to achieve compression 

without any loss of information. 

The paper makes an important contribution to the field of 

image processing and data compression by developing a 

comprehensive algorithm. This paper presents an efficient 

dimensionality reduction technique based on the Discrete 

Wavelet Transform (DWT) and adaptive Thresholding 

based on the Birge-Massort strategy, which improves the 

algorithm's adaptability to image characteristics and noise 

levels. In addition, the use of the Poincare Recurrence 

Network (PRN) for hyperspectral data analysis provides a 

novel approach to recognizing recurring patterns and 

spectral clusters, providing valuable insights into data 

relationships. Furthermore, by including encryption and 

decryption procedures, the algorithm prioritizes data 

security. With image resizing and binarization capabilities, 

the workflow is not only innovative but also adaptable to a 

variety of image processing applications. This work 

advances the field as a whole by offering a comprehensive 

_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

1 School of Electronics Engineering, Vellore Institute of Technology, 

Vellore, Tamilnadu, India  
2 Professor, School of Electrical Engineering, Vellore Institute of 

Technology, Vellore, Tamilnadu, India  

* Corresponding Author Email: rajini.gk@vit.ac.in 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 87–97 |  88 

solution that streamlines various image processing tasks 

while also addressing dimensionality reduction, 

compression, and data security. 

The paper is organized in a way that allows for a clear and 

logical progression of ideas. It starts with an introduction 

that describes the research problem and the paper's 

objectives. Following the introduction, a comprehensive 

review of relevant literature in the field establishes the 

context for the proposed system. The paper then expands on 

the proposed system, detailing the algorithm for image 

processing and data compression. This section describes the 

algorithm's steps, such as dimensionality reduction, 

thresholding, Poincaré Recurrence Network (PRN) 

analysis, and data security measures. The use of the Discrete 

Wavelet Transform (DWT), the Birge-Massort strategy, and 

other features such as image resizing and binarization are 

also discussed.  

The paper then presents the results of applying the algorithm 

to real-world or simulated data after presenting the proposed 

system. The findings are accompanied by a detailed analysis 

that assesses the effectiveness of dimensionality reduction, 

the adaptability of Thresholding techniques, and the insights 

gained through PRN analysis.  

The paper concludes with a summary of the main findings 

and contributions, discussion of their practical implications, 

addressing research limitations, and suggesting potential 

directions for future research in the field. The paper 

concludes with a reference list that cites all of the sources 

and references used throughout the paper. 

2. Literature Review. 

Light field hyperspectral images contain both spatial and 

spectral information, making them high-dimensional data. 

The storage and transmission of these images require large 

amounts of resources. Lossless compression is a technique 

that compresses data without losing any information.  

Before moving into the survey of Compression procedures 

a brief overview of the basic image acquisition of Light 

Field Hyperspectral Imaging methods is provided in this 

paragraph. Starting with modern-day HSI acquisition, 

Duarte et al. (2008) and Ma et al. (2009) developed a single-

pixel modality type of Imaging technology [9-10]. It is 

considered as an advanced technique in the hyperspectral 

image acquisition that enables the recovery of high-

dimensional spectral information from a scene using a 

single detector element, or pixel, rather than an array of 

detectors as in traditional hyperspectral imaging systems. 

This approach has acknowledged as a best approach these 

days because it offers the potential to reduce the complexity 

and cost of hyperspectral imaging systems while 

maintaining high spectral resolution. In polarimetric 

spectrum imaging, Soldevila et al. (2013) suggested a new 

concept known as single-pixel optical system [11]. 

Wagadarikar et al. (2008) suggested a compressive sensing-

based coded aperture snapshot spectral imaging System also 

referred as CASSI in brief form [12]. CASSI is a technique 

that uses a coded aperture to capture a snapshot of a scene's 

spectral content. The coded aperture is a patterned mask that 

is placed in front of a sensor, such as a camera, and is 

designed to modulate the incoming light in a way that 

encodes spectral information. By capturing multiple 

snapshots with different coded apertures, it is possible to 

reconstruct a hyperspectral image. 

In recent years, various researchers have explored lossless 

compression of Light field hyperspectral images and thus 

we will discuss some of the recent methods proposed for 

lossless compression. Karami et al.(2010) suggested  a 3D-

DCT, a modified Discrete Cosine Transform fed on HIS 

[13]. The advantages of this work include efficiency, ease 

of implementation, and ability to retain important 

information, while its disadvantages include limited 

compression ratio, lossy compression, and sensitivity to 

image quality and more than that Parameters have to be 

manually selected. 

Töreyn et al. (2015) projected an improved version of Joint 

photographic experts group-lossless [14]. Its advantages 

include high compression ratios, fast encoding and decoding 

speeds, and low computational complexity, while its 

limitations include high memory requirement, limited 

compression performance, sensitivity to noise, and lack of 

scalability. In this work overall CR depends heavily on the 

data. 

Xu et al. (2017) suggested an approach that separated the 

input HSI into blocks, each with its own appropriate bit rate 

[15]. In this work the main focus was on the Multiple Linear 

regression which can be used in image compression for 

various tasks such as predictive coding, quantization, 

compression parameter optimization, rate-distortion 

optimization, and image quality assessment. It can help in 

modeling the relationship between different variables in the 

compression process, leading to improved compression 

performance and optimized results. Here Rate distortion not 

optimal and is a Lossy type of Compression. 

Nascimento et. al (2018) proposed Compressive Sensing 

(CS) procedures [16]. Their advantages include high 

compression ratios, low computational complexity, 

robustness to noise and artifacts, and no need for prior 

knowledge. Their limitations include limited applicability, 

complex optimization, trade-off between compression ratio 

and reconstruction quality, and sensitivity to measurement 

errors. 

Haut et. al (2019) suggested that Deep neural networks with 

autoencoders [17]. In summary, while deep neural 

networks, including autoencoders, have shown promise in 
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nonlinear compression of hyperspectral images, they also 

have limitations related to their complexity, computational 

cost, data requirements, potential for overfitting, 

interpretability and explainability, trade-offs between 

compression ratio and image quality, and robustness to 

noise and variability. 

Deng et. al (2020) proposed a Generative Neural Network 

(GNN) is utilized for the purpose of  image compression in 

Lossless mode [18]. Their advantages include high 

compression ratios, adaptive compression, low distortion, 

robustness to noise and artifacts, and fast compression and 

decompression. Their limitations include data requirements, 

high computational requirements, overfitting, and limited 

interpretability. 

To address the snapshot compressive imaging (SCI) 

reconstruction problem, Meng et al. (2021) recommended 

employing untrained neural networks [8]. However, 

untrained neural networks may have some limited utility for 

hyperspectral image compression, their limitations make 

them less suitable than trained neural networks or other 

compression techniques. 

Lee et al. (2022) suggested an image compression extended 

version of a sparse orthonormal transform [9] has shown 

promise in compression of hyperspectral images, it also has 

limitations related to computational complexity, dictionary 

design and training data, trade-off between sparsity and 

accuracy, sensitivity to noise and variability, interpretability 

and explainability, and scalability. 

After a Comprehensive survey on related works of 

Hyperspectral Image Lossless Compression the 

observations and Limitations are presented in Table 1.  

Table 1 Limitations of Image Compression Methods 

Reviewed. 

S.

N

o 

Mechanis

m Used 

with 

Reference 

Cited 

Yea

r of 

Pub

lica

tion 

Observation

s 

Limitations 

1 3D-DCT 

[13] 

201

0 

ease of 

implementati

on, and 

ability to 

retain 

important 

information 

limited 

compression 

ratio, lossy 

compression, 

and sensitivity 

to image 

quality 

2 Joint 

photograph

ic experts 

group-

201

5 

Spectral 

bands are 

subjected to 

a 1-D DWT 

In this work 

overall CR 

depends 

heavily on the 

data. 

lossless 

[14] 

3 Multiple 

linear 

regression 

[15] 

201

7 

Partitioned 

the incoming 

HSI, giving 

each 

segment an 

appropriate 

BR. 

Rate distortion 

not optimal 

and is a Lossy 

type of 

Compression. 

4 Compressi

ve Sensing 

(CS) 

techniques 

[16] 

201

8 

advantages 

include high 

compression 

ratios, low 

computation

al 

complexity 

limited 

applicability, 

complex 

optimization 

5 Deep 

neural 

networks 

in the form 

of auto 

encoders 

[17] 

201

9 

Cloud 

computing is 

used to 

implement 

the 

algorithm. 

potential for 

over fitting 

6 Generative 

Neural 

Network 

(GNN) 

[18] 

202

0 

combined 

spectral/spati

al correlation 

analysis 

high 

computational 

requirements 

7 untrained 

neural 

networks 

[19] 

202

1 

uses a two-

dimensional 

(2D) detector 

less suitable 

than trained 

neural 

networks 

8 Extended 

version of 

a sparse 

orthonorm

al 

transform 

[20] 

202

2 

It is based 

on unions of 

orthonormal 

dictionaries 

trade-off 

between 

sparsity and 

accuracy 

 

3. Proposed System. 

The proposed method as shown in Fig. 1 involves a 

combination of pre-processing for noise removal, Sparse 

discrete wavelet transforms (DWT) for dimensionality 

reduction, and Poincare recurrence neural network (RNN) 

for compression and decompression of hyperspectral data. 

This approach offers a comprehensive solution for efficient 

compression of large volumes of hyperspectral data, with 

minimal loss of information. 
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Fig. 1 Proposed Block diagrams. 

The stepwise algorithms for the three stages of the proposed 

work with their internal mechanisms are provided in detail 

below. 

Acquisition of Image form Hyperspectral Image database. 

Data augmentation is a method used to intentionally 

improve the diversity of the training data, and one method 

is the addition of noise using Gaussian functions. If the 

original image is denoted by I(x, y) where (x, y) denotes the 

corresponding pixel coordinates, and the Gaussian noise is 

denoted by N(x, y), the resulting noisy image can be 

obtained by adding the noise to the original image. 

Noisy image = I(x, y) + N(x, y) …………… (1) 

Where N(x, y) denotes the Gaussian noise, which is 

generated based on a Gaussian distribution function with a 

mean value (denoted by μ) and its corresponding value of 

standard deviation (denoted by σ). 

The formula for generating Gaussian noise is specified by: 

N(x,y) = μ + σ * Z ……………………………(2) 

Where  

• Z is considered as a random value attained from a standard 

Gaussian distribution, which has a mean value of 0 and the 

corresponding standard deviation value of 1. 

• μ represents the mean of the Gaussian distribution, which 

determines the amount of shift in intensity, and 

• σ represents the standard deviation of the Gaussian 

distribution, which determines the strength or amplitude of 

the noise. 

Additionally, the image might be blurred due to various 

factors like motion or defocusing. So, image deblurring by 

means of Wiener Filter is carried out in order to reduce the 

noise. The Wiener Filter is a frequency-domain image 

restoration filter. It seeks to reduce the mean square error 

between the restored and original images. It takes into 

account both blurring degradation and additive noise.   

Blurred Image = B(x,y) * I(x,y) + N(x,y)………………(3) 

Where: B(x, y) represents the blurring kernel, describing 

how the original image is convolved or blurred. 

The objective is to restore the original, noise-free image I(x, 

y) from the noisy and blurred image. The Wiener Filter is 

used for this purpose. The Wiener Filter is defined as 

follows: 

Restored Image = H*(f)/[H*(f)*H(f)+S(f)]*Noisy 

Image(f)….(4) 

Where: H (f) represents the Fourier Transform of the 

blurring kernel B(x, y). H*(f) represents the complex 

conjugate of H (f). S (f) represents the power spectral 

density of the noise, which can be estimated from the noisy 

image. Noisy Image (f) represents the Fourier Transform of 

the noisy image. The division and multiplication are done 

element-wise in the frequency domain. 

First, we normalize the restored image to have values within 

a certain range (for example, [0, 1]). This is typically 

accomplished by subtracting the image's minimum pixel 

value and then dividing by the range of pixel values. 

Normalized Image(x,y) = (Restored Image(x,y)-Min)/(Max 

- Min)…..(5) 

Where: Restored Image(x, y) is the pixel value in the 

restored image. 

• Min is the minimum pixel value in the entire image. 

• Max is the maximum pixel value in the entire image. 

We perform contrast stretching after normalization to 

improve the image's contrast. This is accomplished by 

performing a linear transformation on the pixel values. 

X=Enhanced Image(x,y) = Stretch Factor * Normalized 

Image(x,y) + Offset.............(6) 

Where: 

• Stretch Factor is a positive scaling factor. 

• Offset is an optional offset value. 

The stretch factor is determined by the desired level of 

contrast enhancement. One popular approach is to specify 

two limits, the lower limit (LL) and the upper limit (UL), 

and calculate the stretch factor as follows: 

Stretch Factor = (UL - LL)……………………….. (7) 

The offset parameter is employed to displace the pixel 

values. The adjustment is discretionary and has the potential 

to be adjusted to a value of zero in order to implement 

standard contrast stretching. In the event that an offset is 

Acquisition of 

Image from 

Database 

Stage 1: Pre-

Processing  

Stage 2: 

Dimensionality 

Reduction 
Stage 3: Lossless 

Compression/decompr

ession Via SDWT-PRN  

Computation of 

Metrics  

Lossless Compressed 

/Decompressed Image Evaluation 
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employed, it results in a displacement of the complete range 

of intensities. 

Offset = LL……………………(8) 

 Now we move towards the dimensionality reduction stage. 

Declaration of Variables such as coefficient of scaling, 

lifting steps and layer type transformation. Sub sampling 

based on lifting steps that have been declared. Compute the 

Transformation function by means of Discrete Wavelet 

transform.  

The transformation function can be mathematically 

represented as follows: 

T(C)=f(C)…………… ………………………(9) 

Where T(C) represents the transformation function applied 

to the coefficients C obtained from the DWT, and   f(C) 

represents the specific processing applied to the 

enhancement from the previous stage. Carry out the retrieval 

process of detail coefficients. Apply Boundary Conditions 

for tracing purpose and Initiate Inverse Transform. Attain 

the Dimensionality reduced outcome in form a resultant 

image. Now the next step is to carry out Lossless 

Compression as well as decompression Via Poincare. The 

resultant image from the previous stage is subjected here as 

input 

Initiate 2-D Wavelet decomposition via ‘dmey’ . Let X be 

enhanced version of  the  image, and W be the 2D wavelet 

transform of X using a specific wavelet function. The 2D 

wavelet decomposition can be mathematically expressed as: 

W_j,k =∑ (h_i,j * X_k-i,l-j) for 0 ≤ i < N,0 ≤ j < M 

……(10) 

Where: 

➢ W_j,k is the coefficient of the wavelet transform at 

the j-th scale and k-th position 

➢ h_i,j is the wavelet filter coefficient at the i-th scale 

and j-th position 

➢ X_k-i,l-j is the pixel value of the input image at the 

k-i-th row and l-j-th column 

➢ N and M are the dimensions of the wavelet filter 

The formula represents a convolution operation between the 

wavelet filter coefficients (h_i,j) and the input image (X) at 

different scales and positions, followed by a summation to 

obtain the wavelet coefficients (W_j,k).  

Declaration of threshold for Wavelet 2D using Birge-

Massort strategy which involves estimating the threshold 

value. Within the framework of wavelet-based 

Thresholding, the Birge-Massort strategy entails the 

estimation of a threshold value for the purpose of discerning 

which wavelet coefficients should be retained and which 

should be discarded. 

The estimation of the threshold value (T) can be performed 

using the Birge-Massort strategy. The estimation of the 

threshold is commonly derived from the statistical 

characteristics of the wavelet coefficients. The 

determination of the threshold value typically relies on the 

noise level (σ) present in the image. 

T = Threshold Estimation Function (σ)………….. (11) 

Analyze the compressed hyperspectral data using the 

Poincare Recurrence Network (PRN). This step entails, 

creating a Poincare section that selects specific 

hyperspectral regions and recognizing recurring states in 

compressed data. 

Building a network based on recurrence patterns, with nodes 

representing states and edges representing recurrent 

connections. Analyze the PRN for hyperspectral data to 

learn more about the dynamics and spatial-spectral 

relationships. Recognize recurring patterns or spectral 

clusters. Network properties such as connectivity and 

centrality are measured. PRN features are extracted for 

further processing of Compression process. 

Compression process based on real valued matrix and that 

too via Hard Thresholding and obtaining the Compressed 

Image. In the context of wavelet-based image compression 

and also involving PRN here, we employ hard Thresholding 

as a means to eliminate coefficients that possess values 

below a specified threshold. The representation of the 

thresholded wavelet coefficients can be expressed in the 

following manner. 

Compressed Coefficients (W_j,k_compressed) = 

 W_j,k if |W_j,k| > T,0 otherwise………………(12) 

The compressed image is derived through the application of 

the inverse two-dimensional wavelet transform on the 

compressed coefficients. 

Compressed Image (X_compressed) = Inverse 2D Wavelet 

Transform W_j,k_compressed)…………..(13) 

 The act of adjusting the dimensions of an image to a 

predetermined number of rows (R) and columns (C) is a 

frequently performed task. The resizing operation is 

executed by employing interpolation techniques, 

specifically bilinear interpolation. 

Resized Image (X_resized) = Interpolation 

(X_compressed,R,C)……(14) 

The process of binarization is commonly executed by 

applying a threshold to the grayscale image, resulting in the 

generation of a binary image. The thresholding operation 

can be mathematically represented as: 

Binary Image (X_binary) = Binarization 

(X_resized,Threshold)……….(15) 

 Encryption and Decryption procedures are carried out to 
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attain the Lossless de-compressed image. Within the realm 

of image compression and decompression, encryption and 

decryption techniques are employed to safeguard the 

integrity and confidentiality of the image data. One 

prevalent method of encryption entails the utilization of a 

cryptographic algorithm to manipulate the data within an 

image. 

Encrypted_Image = 

Encryption_Algorithm(X_binary,Key)………..(16) 

Decrypted_Image = 

Decryption_Algorithm(Encrypted_Image,Key)……(17) 

The mathematical expression for deriving the decompressed 

image subsequent to decryption can be formulated as 

follows: 

Decompressed Image (X_decompressed) = 

Decryption_Algorithm (Encrypted_Image,Key).......(18) 

3.1 Proposed Model: 

The described process in model as shown in Fig. 2 is a 

comprehensive pipeline that combines advanced signal 

processing, image compression, and data security 

techniques. Its multifaceted approach demonstrates its 

novelty and justification.  The title "Sparse Wavelet 

Decomposition and PRN for Lossless Compression - 

SWaPR-Net" justifies the methodology's core components 

in a clear and concise manner. It starts off by emphasizing 

the use of Sparse Wavelet Decomposition (SWD), which 

stands for selective data representation and redundancy 

reduction. Furthermore, the title introduces the novel 

inclusion of the Poincare Recurrence Network (PRN) for 

lossless compression, which is a distinguishing feature of 

this approach. This combination is conveniently 

encapsulated by the acronym SWaPR-Net, emphasizing the 

interconnected nature of the two reference techniques. 

 

Fig.2 Proposed Model architecture 

The combination of Sparse Wavelet Decomposition (SWD) 

and Poincare Recurrence Network (PRN) for lossless 

compression is what makes this methodology unique. When 

combined with PRN, SWD's selective data representation 

effectively reduces redundancy, introducing a novel 

application in lossless compression. PRN is not commonly 

associated with data compression because it is typically 

used for analyzing complex dynamic systems. The 

combination of these two techniques provides a novel 

approach, and the provided SWaPR-Net acronym 

emphasizes the innovation in combining these data 

compression methodologies. 

3.2 Algorithm of proposed model 

The proposed model in a stepwise manner is provided in the 

following algorithm. This algorithm is intended to process 

and compress images, making it suitable for image storage, 

transmission, and secure data transfer applications. To 

ensure efficient compression while maintaining data 

security, it combines dimensionality reduction, wavelet-

based compression, and data encryption. Because it includes 

image resizing and binarization, it is adaptable to a variety 

of image processing tasks. 

Algorithm : Proposed Algorithm 

Step 1: Dimensionality Reduction 

// Declare Coefficient of Scaling, Lifting Steps, Layer 

Type Transformation 

// Apply Sub sampling based on Lifting Steps. 

// Compute Transformation Function using DWT 

// T(C) = f(C) where T(C) represents the 

transformation  

   and f(C) specific processing 

// Retrieve Detail Coefficients 

// Apply Boundary Conditions 

// Initiate Inverse Transform 

// Resultant Image is the outcome 

Step 2: Lossless Compression 

// Use Resultant Image as Input 

// Initiate 2-D Wavelet Decomposition with 'dmey' 

wavelet 

// Let X be the enhanced image, and W be the 2D 

wavelet  

   transform of X 

// Apply 2D Wavelet Decomposition: W_j,k = ∑ (h_i,j 

*  

   X_k-i,l-j) 

// Declare Threshold for 2D Wavelet using Birge-

Massort  

    Strategy 

// Estimate Threshold (T) based on noise level (σ) in 

the  

   image 

// Apply Hard Thresholding: W_j,k_compressed = 

W_j,k if  

   |W_j,k| > T, 0 otherwise 

// Compressed Image is derived through Inverse 2D   

   Wavelet Transform 

Step 3: Image Resizing 

// Adjust Compressed Image to R rows and C columns 

// Resize using Bilinear Interpolation 

// Resized Image is the output 

Step 4: Binarization 
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    // Apply Threshold to Resized Image to generate 

Binary  

        Image 

Step 5: Encryption and Decryption 

    // Encrypt Binary Image with Encryption Algorithm 

and Key. 

   // Decrypted Image is derived by applying Decryption    

      Algorithm with the Key 

Step 6: Decompressed Image 

  // The Decompressed Image is obtained as the final 

output     

     After Decryption. 

 

4. Results and Analysis. 

For the purpose of Investigation, the sample image as shown 

in Fig.3 from the dataset of Hyperspectral Images is 

considered.  

 

Fig. 3 Original Image                        Fig. 4 Resized Image 

In Pre-processing stage, the original Image from the samples 

of database is resized as shown Fig. 4 before adding 

Gaussian Noise and later Wiener filter is used to remove the 

noise and its resultant is shown in Fig. 5. The image is 

further contrast enhanced to improve the quality of the 

Noise removed image as revealed in Fig.6. 

 

Fig. 5 Noise Removed Image  Fig. 6 Quality Improved 

Image. 

 

Fig. 7 (a), (b) &(c) SDWT Spatial Pre-Processing Stages 

of Image. 

The quality improved image later subjected to second stage 

where at first SDWT Spatial Pre-processing is carried out to 

achieve the wavelet decomposed images as shown if Fig. 7 

(a), 7 (b) & 7 (c). Further the image is reduced for its 

dimensionalities as shown in Fig. 8. 

 

Fig. 8 Dimensionality Reduction Processed Images. 

The dimensionality reduced image is subjected to third stage 

of Poincare RNN where the encryption and decryption 

procedures are carried out. Thus, the resultant lossless 

compressed image is shown in Fig. 9 after carrying out the 

proposed method. 

 

Fig. 9 Lossless Compressed Image        

The further investigation has been carried out for quality 

metrics such as Average Difference (AD),   Normalized 

Cross-correlation (NC), Maximum Difference (MD) 

Structural Content (SC), and Normalized Absolute Error 

(NAE).  

4.1 Quality Metrics. 

A. Normalized Cross-Correlation (NCC). 

The NCC is a metric for comparing two sets of images. In 

image processing presentations where the image's 

brightness can be vary due to lighting and also exposure 

circumstances, the images can first be normalized. It is used 

to determine the number of instances of a pattern or object 

in a picture. A frequently used parameter that aids in 

determining the gradation of similarity or dissimilarity 

among the reconstructed and original images. Normally, the 

NCC value ranges between -1 and 1. If the NCC value is'1 

', the image arrangement in the time series is precise, but 

amplitude will be vary and is characterized in following 

equation. 

NCC=∑ ∑ 𝐼(𝑥, 𝑦). 𝐼′(𝑥, 𝑦)𝑁
𝑦=1

𝑀
𝑥=1  ……………… (19) 

B. Average Difference (AD). 

The average difference is the difference in pixels between 

the filtered and degraded images. This quantitative degree is 

utilized exclusively in object detection and identification 

applications, but it can also be used in any image processing 

application where the average difference between two 
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images is determined as provided below. 

Average Difference is defined as AD=Error/(MxN),  

Error = (Original Image – Reconstructed Image) 

𝐴𝐷 =
1

𝑀𝑁
∑  𝑀

𝑥=1 ∑ [𝐼(𝑥, 𝑦) − 𝐼′(𝑥, 𝑦)]𝑁
𝑦=1 ………… (20) 

C. Structural Content (SC). 

The structural content of an image is concerned with the 

spatial organization of its pixels. It determines the proximity 

of two digital images, which may alternatively be expressed 

as a correlation function. This metric is used to determine 

the degree of resemblance between two photographs. It 

eliminates the intimate relationship between two images and 

says that the human eye is incapable of distinguishing the 

two images. The degree of correspondence between images 

is determined by their structural contents and is presented 

below. 

SC = 
∑  𝑀

𝑥=1 ∑ [𝐼(𝑥,𝑦)]𝑁
𝑦=1

2

∑  𝑀
𝑥=1 ∑ [𝐼′(𝑥,𝑦)]𝑁

𝑦=1
2 …………. (21) 

D. Maximum Difference (MD). 

It is proportional to contrast and so determines the dynamic 

range of a picture. It is accomplished by sending a picture 

through a low pass filter, as sharp edges correlate to the 

image's higher frequency parts, which the low pass filter 

suppresses. It illustrates a variation on the matching 

assessments method and represented in below equation.

  

MD=Max(|𝐼(𝑥, 𝑦) − 𝐼′(𝑥, 𝑦)|) ……. (22) 

E. Normalized Absolute Error (NAE). 

This is the standard measure, and it may be used to detect 

blurring in any real-time image. This calculates the 

arithmetical variance between the original image and the 

resultant image  from the proposed work specified in 

equation below. 

NAE=
∑  𝑀

𝑥=1 ∑ |𝐼(𝑥,𝑦)−𝐼′(𝑥,𝑦)|𝑁
𝑦=1

∑  𝑀
𝑥=1 ∑ 𝐼(𝑥,𝑦)𝑁

𝑦=1
   …..…….. (23) 

Sample Quality Metrics 

NC AD SC MD NAE 

Image 1 1.085 -16.2 0.84 13 0.109 

Image 2 1.062 -8.23 0.92 16 0.025 

Image 3 0.98 0.001 0.89 14 0.110 

Image 4 1.078 -9.25 0.982 45 0.105 

Image 5 1.065 -6.25 0.921 34 0.102 

 

4.2 Performance assessment 

Compression ratio simply refers to the ratio of the output 

to the input hyperspectral image size involved in 

compression/decompression. In other words, it is the ratio 

of original image size to the compressed bit stream size. It 

is mathematically expressed as given below. 

𝐶𝑅 =  
𝑂𝐼𝑆

𝐶𝐼𝑆
………… (24) 

With the equation (24), the compression ratio ‘CR’ is 

dignified constructed on the original image size ‘OIS’ and 

the compressed image size ‘CIS’. Table 3 given below 

reports the compression ratio over the trial set realized by 

the numerous methods [21] and [22]. 

Table 3 Compression ratio of Proposed SDWT-PRN  and 

Existing GDW-PRN[23],  C-DPCM [21] and 3DWT-SRV 

[22] 

Samples Compression ratio (mb) 

Proposed 

SDWT-

PRN 

GDW-

PRN 

[23] 

C-

DPCM 

[21] 

3DWT-

SRV 

[22] 

Image 1 1.26 1.54 1.76 1.976 

Image 2 1.84 1.95 2.15 2.25 

Image 3 1.89 2.05 2.3 2.45 

Image 4 1.95 2.15 2.45 2.6 

Image 5 2.12 2.28 2.55 2.9 

Image 6 2.21 2.55 2.95 3.15 

Image 7 2.34 2.95 3.15 3.85 

Image 8 2.89 3.05 3.3 4.25 

Image 9 2.91 3.15 3.55 4.45 

Image 

10 

3.05 3.3 3.95 4.6 

 

Fig 10 Graphical representation of compression ratio. 

Above depicts the compression ratio evaluated for 10 

different images of varying sizes. From figure 12 it is 

evident that the compression ratio is right proportionate to 

the samples provided. In other words, different samples 

result in different compression ratio. The proposed SDWT-
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PRN Model has shown a commendable compression ratio 

for a sequence of hyperspectral images, outperforming 

previous works such as GDW-PRN [23], C-DPCM [21], 

and 3DWT-SRV [22]. This means that the SDWT-PRN 

Model outperforms these established methods in terms of 

hyperspectral data compression efficiency. 

Table 4 compares Light Field Image Storage between the 

proposed SDWt-PRN model and previously published 

works, namely GDW-PRN [23], C-DPCM [21], and 

3DWT-SRV [22]. This table demonstrates the SDWT-PRN 

model's efficiency in terms of storage requirements, 

emphasizing its superiority in minimizing storage demands 

for light field images. 

Samples Light field images storage (KB) 

Proposed 

SDWT-

PRN 

GDW-

PRN 

[23] 

C-

DPCM 

[21] 

3DWT-

SRV 

[22] 

Image 1 21 30 45 60 

Image 2 42 60 90 120 

Image 3 78 90 100 140 

Image 4 101 120 135 160 

Image 5 111 140 160 190 

Image 6 131 180 190 210 

Image 7 147 210 230 250 

Image 8 163 230 280 310 

Image 9 189 250 300 340 

Image 

10 

210 290 340 390 

 

Fig 11 Graphical representation of storage (KB). 

Above figure 11 presents a graphical depiction of the data, 

wherein the x-axis denotes distinct samples and the y-axis 

portrays the storage capacity of Light Field Images in 

kilobytes (KB). The graphical representation provides 

visual evidence that supports the conclusions outlined in 

Table 4, highlighting the superior performance of the 

SDWT-PRN model compared to GDW-PRN [23], C-

DPCM [21], and 3DWT-SRV [22] in terms of storage 

efficiency. 

Table 5 presents a comparative analysis of the Peak Signal-

to-Noise Ratio (PSNR) values for the SDWT-PRN model 

and the aforementioned existing works, namely GDW-PRN 

[23], C-DPCM [21], and 3DWT-SRV [22]. The table 

presents a comparison of different methods, demonstrating 

that the SDWT-PRN model achieves superior peak signal-

to-noise ratio (PSNR) outcomes in comparison to the 

alternative approaches. This finding underscores the 

model's capacity to minimize storage requirements while 

preserving a high level of image fidelity. 

Table 5 PSNR values comparison 

Samples PSNR (dB) 

Proposed 

SDWT-

PRN 

GDW-

PRN 

[23] 

C-

DPCM 

[21] 

3DWT-

SRV 

[22] 

Image 1 48.23 39.04 37.3 35.85 

Image 2 49.32 41.35 38.35 36.15 

Image 3 48.43 42.55 39.55 37 

Image 4 49.88 43.15 40.15 38.35 

Image 5 50.23 45.55 41.35 39.01 

Image 6 51.11 46 42 40.25 

Image 7 51.45 46.15 44.55 40.35 

Image 8 52.12 46.85 45.35 41.2 

Image 9 52.76 47 45.85 42.45 

Image 

10 

52.89 47.35 46.25    43.21 

 

 

Fig 12 Graphical representation of PSNR 

The visual representation in Figure 12 illustrates the PSNR 

values, where the x-axis represents various samples and the 

y-axis represents the corresponding PSNR values. The 

graphical representation supports the results presented in 
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Table 5, highlighting the consistent ability of the SDWT-

PRN model to produce higher Peak Signal-to-Noise Ratio 

(PSNR) values in comparison to GDW-PRN [23], C-DPCM 

[21], and 3DWT-SRV [22]. The visual representation serves 

to enhance the perception of the model's exceptional image 

quality. 

5. Conclusion  

In this article, a combined method for lossless hyperspectral 

image compression and decompression is presented that 

incorporates pre-processing for noise removal, Sparse 

Discrete Wavelet Transforms (SDWT) for dimensionality 

reduction, and Poincare recurrence neural network (PRNN) 

for lossless compression and decompression. The different 

quality metrics to examine the suggested method, including 

Average Difference (AD), Normalized Cross-correlation 

(NC), Maximum Difference (MD), Structural Content (SC), 

and Normalized Absolute Error (NAE) (NAE) were 

utilized. For 10 different hyperspectral images, our 

experimental results show that the suggested method 

produces improved compression ratios and surpasses the 

existing methods published in the literature. The proposed 

method will be extended in the future to include lossy 

compression techniques in order to obtain even greater 

compression ratios along with optimal PSNR and image 

storage capacity. We also intend to investigate the 

applicability of our method to various types of hyperspectral 

images collected by different sensors and under varied 

conditions. Another possible direction for future research is 

to use our technology to compressing hyperspectral videos. 
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