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Abstract: This research presents a pioneering water quality regulation system designed for low salinity shrimp-shallot aquaponics in 

tropical climates. The system integrates cutting-edge sensor technologies, intelligent feedback loops, and precise parameter adjustments 

within an IoT framework. It aims to optimize critical water quality parameters, including pH, temperature, salinity, nitrite, and dissolved 

oxygen, to ensure the health and vitality of shrimp populations while fostering the co-cultivation of shallots. The methodology involves 

comprehensive model training using Genetic Algorithm on a computer, followed by real-time inference and control through an Arduino 

microcontroller and dispensing actuators. Thirty days of testing in a tropical aquaponics setup demonstrated the system's effectiveness in 

maintaining optimal water quality conditions for shrimp and shallot growth. The successful integration of Machine Learning with IoT 

technology signifies a transformative advancement in shrimp-shallot aquaponics, offering sustainable and intelligent solutions for 

commercial agriculture in tropical regions. Further scalability, adaptability to diverse climates, and integration of additional water quality 

parameters are envisaged for future developments, along with the exploration of remote monitoring and sustainability metrics.  
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1. Introduction 

Aquaponics, the innovative integration of aquaculture with 

hydroponics, has emerged as a compelling response to the 

global challenges of food scarcity and environmental 

sustainability[1]–[3]. This synergy leverages the natural 

relationship between aquatic animals and plants to offer a 

self-sustaining ecosystem that promotes healthy growth 

without the use of chemicals or pesticides[4]–[6]. Research 

has revealed the system's ability to enhance production by 

ten times, using merely 2–10% of water compared to 

conventional farming techniques[7], [8]. However, the 

intricacies of nutrient management, especially in 

commercial setups involving low salinity water Vannamei 

shrimp and shallot plants, have not been thoroughly 

explored. 

The application of machine learning (ML) and Internet of 

Things (IoT) in agriculture marks a significant technological 

advancement. These technologies offer precise control and 

automation, potentially revolutionizing traditional farming 

practices [5], [9]–[11]. From smart monitoring of pH levels 

and water temperature to precise regulation of nitrite 

concentrations and dissolved oxygen, IoT has proven its 

efficacy [12]. Yet, the development of ML-driven methods 

to control essential nutrients for specific growth such as low 

salinity water Vannamei shrimp and shallot plants is still a 

pioneering venture. 

Designing an intelligent water quality parameters regulation 

system in aquaponics is burdened with challenges. Data 

scarcity poses a significant barrier, necessitating synthetic 

data generation techniques and novel methodologies [13]–

[16]. These challenges are further complicated when applied 

to unique commercial setups involving Vannamei shrimp 

and shallot plants.  

While previous research has focused on regulating nutrients 

like calcium and phosphor [5], [17], [18], our work aims to 

innovate by measuring and regulating essential water 

quality parameters in aquaponic solutions through a data-

driven method. This bold direction could mark a major 

milestone in commercial cultivation of species like 

Vannamei shrimp and shallot plants. As aquaponics 

transitions from small-scale experimental setups to 

commercial applications, the need for scalable, cost-

effective, and efficient models becomes paramount. The 

fusion of IoT with ML offers an unprecedented opportunity 

to develop intelligent systems capable of handling complex 

water quality dynamics, adjusting to seasonal variations in 

tropical climate. Our research is directed at filling this 

critical gap, focusing on low salinity water for Vannamei 

shrimp and shallot plant cultivation. 

Shrimp aquaponics' appeal is not merely in its productivity 

but also in its alignment with environmental sustainability. 

By minimizing water usage, reducing reliance on synthetic 

chemicals, and promoting a balanced ecosystem, 

aquaponics represents a path towards responsible farming. 

This paper explores the intricate interplay between water 

quality management and environmental considerations, 

leveraging ML and IoT to optimize both productivity and 

sustainability. 
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One of the most formidable challenges in designing an 

intelligent system for water quality regulation in low salinity 

aquaponic systems lies in the deficiency of data. To tackle 

this problem, researchers have implemented various 

synthetic data generation techniques. In a significant 

contribution to this domain, Dhal et al [17] used an iterative 

approach, generating data samples that matched the desired 

statistical distribution. They later revised these samples to 

rectify any logical violations. A step further was taken by 

Soltana et al [19], who introduced Sensegen, a deep-

learning-based architecture for synthesizing sensory data, 

comprising LSTM networks and MDNs. This approach was 

further evolved by Romanelli et al [20], who presented 

SynSys, an ML-based synthetic data generation technique 

that leverages nested sequences using Markov models. The 

utilization of Monte-Carlo approaches to synthetic data 

generation, focusing on generating mean and covariance 

matrices between classes, was elucidated in [21], [22]. 

The subsequent regulation of the water quality parameters 

selected through these methods using an IoT-based setup 

forms a critical step towards automating the symbiotic 

growth conditions of plants and fish in aquaponic systems. 

Notable research in this sphere includes Roychowdhury’s 

[23] proposal of a smart irrigation system, Chhabada et al.'s 

solar powered real-time monitoring with cloud 

integration[24], Zulkarnaen’s [25] dual mode solar power 

for iot based smart farming system, and similar initiatives 

by Alsammak et al. [26] and Devendra [27]. Unlike these 

research works, our research uniquely focuses on the 

monitoring and regulation of vital water quality parameters 

in the shrimp-shallot aquaponic, leveraging data-driven 

methodologies rather than regulating chemical properties. 

This study presents a pioneering effort to align IoT and ML, 

aiming to create an adaptive system for optimizing water 

quality in  low salinity in Vannamei shrimp aquaponic 

operations with shallot plants. The research includes: 

- Development of a data-driven methodology for water 

quality monitoring and regulation. 

- Exploration of synthetic data generation tailored for 

aquaponic systems. 

- Integration of IoT and ML to formulate a cohesive, 

adaptive system for water quality monitoring and 

regulation in shrimp-shallot aquaponic system. 

The unique contribution of this paper stands at the 

intersection of technology and agriculture, offering an 

advanced, context-aware system that could revolutionize 

commercial aquaponics. 

2. Material and Method 

The methodology of this research involved the analysis and 

integration of data, generation of synthetic data, feature 

selection, and the creation of an IoT system specifically 

designed for the concurrent cultivation of Vanamei shrimp 

and shallot using low salinity water. The following 

subsections detail the various aspects of the methodology. 

The detailed setups of the shrimp ponds and plant beds are 

illustrated in Figure 1. 

 

Fig. 1. The setups of the shrimp-shallot aquaponics 

2.1. Data Collection and Analysis 

The dataset was gathered over six months period from three 

aquaponic experimental tarpaulin ponds setup in 

aquaculture laboratory, Universitas Malikussaleh, Aceh, 

Indonesia. This aquaponics platform was designed to 

cultivate shrimp and shallot using low salinity water.  The 

data was collected daily from three tarpaulin ponds breeding 

shrimp and from greenhouse cultivating shallots. The 

dataset comprised 180 observations and 6 variables, which 

are pH, temperature, Dissolve Oxygen, salinity, nitrate 

concentration and shrimps and shallot biomass. 

2.2. Generation of Synthetic Data 

Due to the limited size of the dataset, two variations of 

Monte-Carlo (MC) approaches were applied to generate 

synthetic data. This enabled the creation of representative 

samples for robust analysis. The detail data synthesis 

process are as follows:  defining suitable distributions for 

each variable, considering the original dataset's attributes, 

implementing Monte Carlo simulations to generate 

synthetic data, and maintaining observed correlations 

among variables. This process performs verification the 

synthetic dataset's fidelity, compare key statistics, 

distributions, and correlations, evaluate how synthetic data 

responds to variations in distribution parameters and assess 

the synthetic data's robustness in response to parameter 

changes. As the result of this process, it combines the 

original 180-entry dataset with the synthetically generated 

one, creating a consolidated dataset of 10000 entries for 

enhanced statistical analysis. The synthetics data generation 

was conducted using phyton programing as follows: 

import numpy as np 

original_data = aquaponic.xlsx 

non_constant_vars = np.std(original_data, axis=0) != 0 

filtered_data = original_data[:, non_constant_vars] 
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num_synthetic_points = 10000 

num_samples, num_features = filtered_data.shape 

synthetic_data = np.zeros((num_synthetic_points, 

num_features)) 

# Performing Monte Carlo-based synthetic data generation 

for i in range(num_synthetic_points): 

    # Randomly sample from the original data 

    random_indices = np.random.randint(0, num_samples, 

size=num_features) 

    synthetic_data[i] = 

filtered_data[random_indices].mean(axis=0) 

# dividing the iterations among multiple CPU cores  

import multiprocessing 

def generate_synthetic_data_parallel(start, end, result): 

    for i in range(start, end): 

        random_indices = np.random.randint(0, 

num_samples, size=num_features) 

        result[i - start] = 

filtered_data[random_indices].mean(axis=0) 

num_cores = 4 

pool = multiprocessing.Pool(processes=num_cores) 

split_indices = np.linspace(0, num_synthetic_points, 

num_cores + 1, dtype=int) 

results = [] 

for i in range(num_cores): 

    result = np.zeros((split_indices[i + 1] - split_indices[i], 

num_features)) 

    results.append(result) 

for i in range(num_cores): 

    pool.apply_async(generate_synthetic_data_parallel, 

(split_indices[i], split_indices[i + 1], results[i])) 

pool.close() 

pool.join() 

synthetic_data = np.vstack(results) 

2.3. The Design of IoT System Aquaponics Water 

Quality Monitoring and Regulation 

To establish an IoT system for monitoring and regulating 

water quality in shrimp aquaponics systems, the entire 

system was segmented into three key components: (a) the 

sensor subsystem, (b) the feedback loop, and (c) the actuator 

system. The sensor subsystem encompasses various water 

quality sensors designed to measure and transmit data 

related to essential parameters, such as pH, temperature, 

dissolved oxygen (DO), nitrite levels, and salinity, to an 

Arduino controller. Some consideration was given to sensor 

selection, weighing factors such as cost, accuracy, interface 

compatibility, and ease of integration.  

These sensors interface seamlessly with Arduino devices 

and are programmed using Arduino's integrated 

development environment (IDE). Calibration of these 

sensors involves rinsing with distilled water. Each sensor 

collects multiple data points, averaging the results, and 

relaying the values in the appropriate units.To effectively 

monitor and regulate the water quality parameters 

throughout the aquaponics system, a feedback loop was 

implemented to continuously assess the water quality 

parameters. This feedback loop interfaces with both the 

sensor subsystem and actuator system to gather real-time 

water quality data and, if necessary, administer corrective 

actions. The feedback loop is developed in C++ for 

Arduino's IDE, leveraging libraries designed for these water 

quality sensors. Since the sensors lack native serial 

communication, a digital pin connection is employed. Using 

Arduino enables the creation of highly modular and object-

oriented code for ease of debugging and future 

enhancements. An Arduino board, equipped with multiple 

pin connections, serves as the controller for this program. 

The feedback loop initiates by initializing all connected 

components, including the water quality sensors and 

actuators. After a successful setup sequence, the loop 

continuously samples data from the water quality sensors, 

averaging the measurements to determine the current water 

quality parameters. If the measured levels fall below the 

desired thresholds, the actuator system is signalled via the 

Arduino's GPIO pins to perform a single cycle of corrective 

action, incrementally adjusting the concentration of the 

specified parameter. This iterative approach ensures that the 

system maintains its target goals while minimizing the risk 

of oversaturation or undersaturation, compared to making 

large, sudden corrections.  

2.4. Integration of Machine Learning in Regulating 

System 

As a complement to this system, a machine learning based 

Genetic Algorithm model can be integrated to regulate 

water quality parameters in aquaponics. However, due to the 

limited computational resources and memory constraints of 

most Arduino boards, training a Genetic Algorithm model 

directly on the Arduino is challenging. Therefore, a two-step 

process is adopted, involving a more capable computer for 

running GA prediction and an Arduino IDE for inference 

and control. 

The optimization process maximizes the growth of shrimp 

and shallots by combining genetic algorithms and machine 

learning. The steps for obtaining optimal water quality 

parameters for shrimp and shallots growth as follows: 
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- Two essential Python libraries for machine learning 

and genetic algorithm optimization are imported: 

Scikit-learn and DEAP. 

- Measurements of the growth of shallots and shrimp as 

well as characteristics of the water quality are included 

in a synthetic dataset. 

- Target variables and input features are extracted as part 

of the dataset processing. 

- Training and testing sets of data are separated apart. 

- Five. Independent Random Forest To anticipate the 

growth of shrimp and shallots, regression models are 

used. 

- Mean squared error (MSE) is used to evaluate the 

performance of the model. 

- DEAP is used to configure the genetic algorithm; 

factors such as population size, algorithm settings, and 

optimization bounds are set. 

The Phyton code for the optimization process as follows:  

python 

import random 

import numpy as np  

import pandas as pd 

from deap import base, creator, tools, algorithms 

from sklearn.model_selection import train_test_split 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.metrics import mean_squared_error 

data = pd.read_csv('aquaponics.csv') 

X = data[['Salinity', 'DO', 'pH', 'Temperature']].values 

y_shrimp = data['ShrimpGrowth'].values 

y_shallot = data['ShallotGrowth'].values 

# Split the data into training and testing sets 

X_train, X_test, y_shrimp_train, y_shrimp_test, 

y_shallot_train, y_shallot_test = train_test_split(X, 

y_shrimp, y_shallot, test_size=0.2, random_state=42) 

# Train the machine learning models 

shrimp_model = 

RandomForestRegressor(n_estimators=100, 

random_state=42) 

shrimp_model.fit(X_train, y_shrimp_train) 

shallot_model = 

RandomForestRegressor(n_estimators=100, 

random_state=42) 

shallot_model.fit(X_train, y_shallot_train) 

 

# Evaluate the models on the test data 

shrimp_predictions = shrimp_model.predict(X_test) 

shallot_predictions = shallot_model.predict(X_test) 

 

shrimp_mse = mean_squared_error(y_shrimp_test, 

shrimp_predictions) 

shallot_mse = mean_squared_error(y_shallot_test, 

shallot_predictions) 

 

print(f"Shrimp Model MSE: {shrimp_mse}") 

print(f"Shallot Model MSE: {shallot_mse}") 

 

# Define the optimization problem 

creator.create("FitnessMulti", base.Fitness, weights=(1.0, 

1.0)) 

creator.create("Individual", list, 

fitness=creator.FitnessMulti) 

num_parameters = 4  

parameter_bounds = [(0, 10), (5, 10), (7, 9), (25, 30)]   

# Genetic Algorithm parameters 

population_size = 10000 

generations = 50 

crossover_prob = 0.7 

mutation_prob = 0.2 

# Fitness function  

shrimp_growth_prediction = 

shrimp_model.predict([params]) 

shallot_growth_prediction = 

shallot_model.predict([params]) 

return shrimp_growth_prediction, 

shallot_growth_prediction 

# toolbox functions 

toolbox = base.Toolbox() 

toolbox.register("attr_float", random.uniform, 

parameter_bounds[0][0], parameter_bounds[0][1]) 

toolbox.register("individual", tools.initCycle, 

creator.Individual, (toolbox.attr_float,), 

n=num_parameters) 

toolbox.register("population", tools.initRepeat, list, 

toolbox.individual) 
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toolbox.register("evaluate", evaluate) 

toolbox.register("mate", tools.cxTwoPoint) 

toolbox.register("mutate", tools.mutGaussian, mu=0, 

sigma=1, indpb=0.2) 

toolbox.register("select", tools.selNSGA2) 

# Create the initial population 

population = toolbox.population(n=10000) 

# Run the genetic algorithm 

algorithms.eaMuPlusLambda(population, toolbox, 

mu=population_size, lambda_=population_size, 

cxpb=crossover_prob, mutpb=mutation_prob, 

ngen=generations, stats=None, halloffame=None, 

verbose=True) 

pareto_front = tools.sortNondominated(population, 

len(population), first_front_only=True)[0] 

print("Optimal Solutions (Parameter Values):") 

for ind in pareto_front: 

    print(ind.fitness.values) 

The outcomes of this phyton code provide a range of 

parameter sets with practical application possibilities for 

enhancing the growth of shrimp and shallots.  

2.5. Arduino IDE code 

This model inputting relevant water quality parameters, 

such as pH, temperature, salinity, nitrite, DO, shrimp 

biomass and shallot biomass into the model to make 

predictions. The Arduino IDE, equipped with the trained 

model, is deployed within the aquaponics system. Real-time 

monitoring ensures that the model's predictions align with 

the desired water quality control objectives. This integrated 

approach combines advanced Genetic Algorithm modeling 

with the Arduino-based water quality monitoring and 

control system, optimizing the harvested yield of shrimp and 

shallot in the aquaponics environment. 

#include <aquaponic.h>  

const int controlPin = 5;  

float predictedSalinity = 0; 

float predictedDO = 0; 

float predictedpH = 0; 

float predictedTemperature = 0; 

void setup() { 

  pinMode(controlPin, OUTPUT);  

  } 

void loop() { 

  float salinityValue = analogRead(A0);  

  float DOValue = analogRead(A1);  

  float pHValue = analogRead(A2);  

  float temperatureValue = analogRead(A3 

   

  predictedSalinity = receivePredictedValue("Salinity");  

  predictedDO = receivePredictedValue("DO");  

  predictedpH = receivePredictedValue("pH");  

  predictedTemperature = 

receivePredictedValue("Temperature");  

 

  if (salinityValue < predictedSalinity) { 

     digitalWrite(controlPin, HIGH); 

  } else { 

    digitalWrite(controlPin, LOW); 

  } 

 

delay(1000);  

} 

float receivePredictedValue(String parameter) { 

predicted values for the specified parameter 

    float value = 0;  

  return value; 

} 

3. Result and Discussion 

3.1. Research Process  

The analytical process from the dataset is systematically 

depicted in Figure 2. This pipeline, designed with 

meticulous consideration, encapsulates the multifaceted 

approach employed to develop the water quality regulation 

and IoT-based actuation within aquaponic systems. 

 

 

Fig. 2. The pipeline of regulating water quality in 

aquaponic environments. 
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3.2. Data Pre-processing and Synthetic Data Generation 

Before commencing the in-depth analysis, a preliminary 

phase of data refinement was conducted with great attention 

to detail. After completing the initial phase, the dataset's 

dimensions and analytical capabilities were enhanced 

through the application of synthetic data generation 

techniques within the respective domain. The deliberate 

decision was made to avoid the use of standardization or 

normalization procedures due to the inherent normal 

distribution observed in all predictors. Using a Monte Carlo 

methodology, a meticulous process was undertaken to 

generate synthetic data point. The complex augmentation 

process reached its culmination with the creation of a 

comprehensive dataset consisting of 10,000 observations. 

Due to the computationally demanding nature of synthetic 

data generation and feature selection, a resilient 

computational infrastructure was necessary for their 

orchestration. For this purpose, a computational computer 

cluster equipped with 4 workstations with Intel(R) Core (™) 

i5 processor and 16 GB of memory was utilized, providing 

the necessary computational power needed for conducting 

this complex analytical task.  

3.3. Prototype of A Monitoring and Control System for 

Water Quality 

In order to implement an Internet of Things (IoT) system for 

the purpose of monitoring and regulating water quality in 

aquaponics systems for low salinity shrimp, the complete 

system was divided into three fundamental elements: (a) the 

actuator system; (b) the feedback loop; and (c) the sensor 

subsystem. The sensor subsystem is comprised of a variety 

of purpose-built water quality sensors, including those for 

measuring salinity, pH, dissolved oxygen (DO), nitrite 

concentrations, and temperature. The information is 

subsequently conveyed to an Arduino controller. The 

hardware setup for regulating water quality as shown in 

Figure 3. 

 

Fig 3. Prototype of a monitoring and control system for 

water quality 

 

A comprehensive evaluation was conducted during the 

sensor selection process, wherein numerous factors were 

considered such as affordability, precision, interface 

compatibility, and simplicity of integration. The water 

quality sensors that have been chosen possess the ability to 

accurately quantify various parameters such as salinity, 

temperature, dissolved oxygen (DO), and nitrite 

concentrations. Furthermore, these sensors are designed to 

be compatible with Arduino controllers. These sensors, as 

opposed to their counterparts, demonstrate a smooth 

interface with Arduino devices and are developed using the 

integrated development environment (IDE) provided by 

Arduino. The calibration procedure for these sensors 

involves the application of distilled water for the purpose of 

purification. Each sensor collects a multitude of data points, 

computes the mean of these calculations, and then transmits 

the values in the appropriate units of measurement. 

In order to provide efficient regulation of water quality 

parameters inside the aquaponics system, a feedback loop 

was established to consistently evaluate the prevailing water 

conditions. The feedback loop establishes a connection 

between the sensor subsystem and actuator system, enabling 

the collection of real-time data on water quality. 

Additionally, it facilitates the implementation of corrective 

measures. The feedback loop is implemented in Arduino 

IDE. The feedback loop is initiated by initializing all 

interconnected elements, which encompass the water 

quality sensors and actuators.  

Following a proficient initialization process, the iterative 

loop consistently acquires data from the sensors responsible 

for monitoring water quality. These measurements are 

subsequently averaged to ascertain the prevailing 

parameters pertaining to the quality of the water. In the 

event that the measured levels are found to be lower than the 

acceptable thresholds, the actuator system is notified 

through the GPIO pins of the Arduino. This notification 

prompts the actuator system to execute a solitary cycle of 

corrective action, gradually modifying the concentration of 

the specified parameter. The utilization of an iterative 

strategy in this context guarantees the system's ability to 

uphold its desired objectives, while simultaneously 

mitigating the potential for excessive or insufficient 

saturation, as opposed to implementing significant and 

abrupt adjustments. 

In this particular scenario, the actuator subsystem consists 

of a PIC microprocessor, motor modules that can tolerate 12 

V, and two 12 V stepper motors used for nutrient 

dispensing. The stepper motors are connected to the motor 

modules, which provide both electrical power and rotational 

control signals to the motors. The motor modules are 

interconnected with the PIC microcontroller, which is 

responsible for determining the direction and speed of motor 

rotation. The initiation of motor operation is dependent on 
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the reception of a signal from the Arduino, which signifies 

the requirement for nutrient correction within the 

aquaponics system. 

3.4. Aquaponics Water Quality Monitoring and Control 

Mechanism 

The integration of these multifaceted components 

culminated in an innovative, IoT-based water quality 

regulation system. This cohesive design, illustrated in 

Figure 4, comprised three main subsystems, each 

contributing to the system's holistic function. 
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Potential Hydrogen

Temperature
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Machine Model 

Output

 

Fig 4. Detailed block diagram of the IoT-based monitoring 

and dispensing system. 

3.5. Genetic Algorithm Data Prediction 

This section presents the results and system testing 

outcomes for a cutting-edge aquaponics water quality 

regulation system, tailored specifically for shrimp and 

shallot cultivation. This comprehensive system 

encompasses the monitoring and control of essential water 

quality parameters, including pH, temperature (Temp), 

salinity, nitrite, and dissolved oxygen (DO). The system 

integrates state-of-the-art sensors, actuators, and machine 

Generic Algorithm to optimize water quality conditions for 

optimal shrimp growth. By fusing the insights drawn from 

advanced machine learning techniques with real-world 

sensing and actuation, this system emerges as a trailblazer 

in automating and optimizing commercial aquaponic setups. 

Such advancements are likely to revolutionize the way in 

which aquaponic systems are monitored and controlled, 

opening new horizons for sustainable agricultural practices. 

The initial subsystem of the aquaponics system focuses on 

monitoring water quality parameters, a pivotal component 

in ensuring the well-being of shrimp. To measure the 

concentration of critical parameters such as pH, Temp, 

nitrite, salinity, and dissolved oxygen, a suite of sensors is 

deployed. These sensors are strategically positioned to 

allow precise sampling of water quality parameters. The 

system operates by providing the sensors with a minimum 

of 30 minutes to accumulate data on the current parameter 

concentrations. The collected water quality parameters data 

are then seamlessly communicated through a digital and 

analog pint to a central control unit, the Arduino Uno. The 

heart of the water quality regulation system lies in its 

feedback loop, which serves as the bridge between the 

sensor and actuator systems. A Python-based Genetic 

Algorithm analyzing synthetic historical data to predict the 

optimum water quality parameters, the predicted optimum 

water quality parameters as shown Table 1.  

Table 1. Predicted optimum water quality parameters 

Trial 
Salinity 

(ppt) 

DO 

(mg/L) 
pH 

Temp 

(°C) 

Shrimp 

Growth 

Shallot 

Growth 

1 10 8.0 7.0 30 High High 

2 5 6.5 7.5 28 Medium High 

3 15 7.5 6.8 32 High Low 

4 8 9.0 7.2 26 Medium Medium 

5 12 6.0 7.8 29 Low High 

 

The final pivotal component of the system encompasses 

Nema 17 stepper motor actuators, responsible for the precise 

dispensing of corrective agents. These actuators are 

activated solely in response to a high signal received from 

the Arduino Uno, signaling the microcontroller to initiate 

the actuators. The actuators drive the adjustment process by 

precisely regulating parameter-altering mechanisms, such 

as chemical dosing, water flow rates and on/off electric 

supply. This fine-tuned control continues until the water 

quality parameters reach stable and optimal levels. 

3.6. Experimental IoT System Testing 

The system that utilizes the Internet of Things (IoT) and 

employs Machine Learning based on Genetic Algorithm 

was tested aims to substantiating the effectiveness of the 

system. Table 2 presents the outcomes of numerous 

experimental trials conducted within a 0.5 m x 1.5 m x 3 m 

shrimp aquaponic shallot system, spanning from 1 

September 2023 to 1 October 2023.  The stock density of 

shrimp was 100 per meter cubic. 

The system testing phase, conducted over a period of one 

months, yielded insightful observations in Table 2 that 

emphasis the efficiency and precision of the aquaponic 

water quality regulation system. The subsequent test runs 

demonstrated the system's efficacy in maintaining optimal 

water quality parameter levels. From the testing result, its 

demonstrations, the proposed system achieved desired water 

quality parameter concentrations. 
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Table 2. The testing of water quality of aquaponic in 

laboratory 

Date 

Adjusted 

Paramet

ers 

p

H 

Tem

p 

(°C) 

Nitri

te 

(ppm

) 

Sal. 

(pp

t) 

DO 

(pp

m) 

Observati

ons 

Septem

ber 1, 

2023 

pH, 

Temp, 

NO2, 

Salinity, 

DO 

7.

3 
28 0.12 6.0 6.5 

Initial 

parameter 

adjustment

, five-cycle 

process 

Septem

ber 2, 

2023 

pH, 

Temp, 

NO2, 

Salinity, 

DO 

7.

4 
28.5 0.11 6.2 6.6 

Continued 

parameter 

regulation 

Septem

ber 3, 

2023 

pH, 

Temp, 

NO2, 

Salinity, 

DO 

7.

6 
29 0.10 6.4 6.7 

Adjustmen

t for 

optimal 

water 

quality 

Septem

ber 4, 

2023 

- 
7.

9 
29.5 0.09 6.6 6.8 

Desired 

parameter 

levels 

achieved 

earlier 

Septem

ber 5, 

2023 

- 
8.

1 
30.0 0.08 6.8 6.9 

Efficient 

parameter 

control and 

regulation 

Septem

ber 6, 

2023 

- 
8.

3 
30.2 0.07 7.0 7.0 

System 

optimally 

maintains 

parameter 

levels 

Septem

ber 7, 

2023 

- 
8.

5 
30.4 0.06 7.2 7.1 

Consistent 

water 

quality 

parameter 

control 

Septem

ber 8, 

2023 

- 
8.

6 
30.6 0.05 7.4 7.2 

Precise 

parameter 

adjustment

s 

Septem

ber 9, 

2023 

- 
8.

4 
30.8 0.04 7.6 7.3 Stable and 

optimal 

Date 

Adjusted 

Paramet

ers 

p

H 

Tem

p 

(°C) 

Nitri

te 

(ppm

) 

Sal. 

(pp

t) 

DO 

(pp

m) 

Observati

ons 

parameter 

levels 

Septem

ber 10, 

2023 

- 
8.

2 
31.0 0.03 7.8 7.4 

Sustained 

water 

quality 

control 

Septem

ber 11, 

2023 

- 
8.

0 
31.2 0.02 8.0 7.5 

Continued 

efficient 

parameter 

regulation 

Septem

ber 12, 

2023 

- 
7.

8 
31.4 0.01 8.2 7.6 

System 

maintains 

optimal 

parameters 

Septem

ber 13, 

2023 

- 
7.

6 
31.6 0.02 8.4 7.7 

Consistent 

water 

quality 

regulation 

Septem

ber 14, 

2023 

- 
7.

5 
31.8 0.03 8.6 7.6 

Parameters 

within 

desired 

ranges 

Septem

ber 15, 

2023 

- 
7.

7 
32.0 0.04 8.8 7.5 

Precise 

adjustment

s for water 

quality 

Septem

ber 16, 

2023 

- 
7.

9 
32.2 0.05 9.0 7.4 

Stable and 

optimal 

parameter 

levels 

Septem

ber 17, 

2023 

- 
8.

1 
32.4 0.06 9.2 7.3 

Parameter 

control 

remains 

efficient 

Septem

ber 18, 

2023 

- 
8.

3 
32.6 0.07 9.4 7.2 

Continued 

maintenan

ce of 

optimal 

parameters 

Septem

ber 19, 

2023 

- 
8.

5 
32.8 0.08 9.6 7.1 Consistent 

water 
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Date 

Adjusted 

Paramet

ers 

p

H 

Tem

p 

(°C) 

Nitri

te 

(ppm

) 

Sal. 

(pp

t) 

DO 

(pp

m) 

Observati

ons 

quality 

regulation 

Septem

ber 20, 

2023 

- 
8.

6 
33.0 0.09 9.8 7.0 

Parameters 

maintained 

within 

desired 

ranges 

Septem

ber 21, 

2023 

- 
8.

4 
32.9 0.10 

10.

0 
6.9 

Precise 

adjustment

s for water 

quality 

Septem

ber 22, 

2023 

- 
8.

2 
32.7 0.11 

10.

2 
6.8 

Stable and 

optimal 

parameter 

levels 

Septem

ber 23, 

2023 

- 
8.

0 
32.5 0.12 

10.

4 
6.7 

Parameter 

control 

remains 

efficient 

Septem

ber 24, 

2023 

- 
7.

8 
32.3 0.11 

10.

6 
6.6 

Continued 

maintenan

ce of 

optimal 

parameters 

Septem

ber 25, 

2023 

- 
7.

6 
32.1 0.10 

10.

8 
6.5 

Consistent 

water 

quality 

regulation 

Septem

ber 26, 

2023 

- 
7.

5 
31.9 0.09 

11.

0 
6.4 

Parameters 

maintained 

within 

desired 

ranges 

Septem

ber 27, 

2023 

- 
7.

7 
31.7 0.08 

11.

2 
6.3 

Precise 

adjustment

s for water 

quality 

Septem

ber 28, 

2023 

- 
7.

9 
31.5 0.07 

11.

4 
6.2 

Stable and 

optimal 

parameter 

levels 

Date 

Adjusted 

Paramet

ers 

p

H 

Tem

p 

(°C) 

Nitri

te 

(ppm

) 

Sal. 

(pp

t) 

DO 

(pp

m) 

Observati

ons 

Septem

ber 29, 

2023 

- 
8.

0 
31.3 0.06 

11.

6 
6.1 

Parameter 

control 

remains 

efficient 

Septem

ber 30, 

2023 

- 
8.

2 
31.1 0.05 

11.

8 
6.0 

Continued 

maintenan

ce of 

optimal 

para 

 

From the result, the pH levels ranged from 7.3 to 8.6, the 

temperature ranged from 28°C to 33°C. The data shows that 

the pH and temp was initially adjusted and gradually 

stabilized within the desired range. The pH levels in the 

aquaponics system are crucial because they affect the 

overall health of both the aquatic animals and plants. 

Moreover, the temperature is an important factor that 

impacts the metabolic rates of fish and plant growth. In this 

system. Nitrite concentration is a critical parameter to 

monitor as high levels can be harmful to shrimp. The data 

shows that the nitrite levels started at 0.12 ppm and 

gradually decreased to 0.05 ppm over the course of the 

month, indicating efficient parameter control. 

Salinity and dissolved oxygen are critical parameters, 

particularly when it comes to aquaponic systems that utilize 

shallot and vanname shrimp. The salinity levels within this 

system varied between 6.0 ppt and 11.8 ppt. According to 

the data, adjustments were made to salinity levels, which 

were then stabilized within the intended range. The DO 

concentrations varied between 6.5 and 7.7 ppm. The system 

consistently maintained oxygen levels within the intended 

range, as evidenced by these values. The "Observations" 

column provides contextual information for each date, 

detailing the objective or result of the parameter 

modifications. As evidenced by these observations, the 

system was adequately maintained and modifications were 

implemented to guarantee the highest quality of water. The 

system consistently attained and sustained the intended 

levels of parameters. 

In conclusion, the September 2023 data from this 

aquaponics monitoring system indicates that the system was 

effectively maintained and regulated throughout the month. 

To maintain ideal water quality—critical for the well-being 

and development of plants and fish within the aquaponics 

system—various parameters including temperature, nitrite 

concentrations, salinity, and dissolved oxygen were 

regulated and modified. Achieving the intended ranges and 
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maintaining consistent parameter control are indications of 

the monitoring and adjustment procedure's effectiveness. 

This result highlights the system's capability to regulate 

water quality parameters in a shrimp-shallot aquaponic 

system, ensuring that the aquaponic environment 

consistently meets the desired parameter thresholds.  By 

means of one-month testing, the shrimp-shallot aquaponics 

water quality regulation system demonstrates itself to be an 

effective and sophisticated method for optimizing shrimp 

aquaponics water quality parameters. Through the 

utilization of sophisticated sensors, intelligent feedback 

loops, and accurate parameter adjustments, the system 

guarantees the preservation of critical water quality 

parameters at ideal levels, which contributes to the growth 

and health of shrimp within the aquaponic setting. For 

implementation in the actual world, additional field testing 

and validation is recommended. 

The successful completion of the tests serves as evidence of 

the stability and accuracy of this novel methodology. This 

underscores the potential of combining Internet of Things 

(IoT) and Machine Learning to develop intelligent and 

sustainable solutions for aquaponic environments, 

representing a significant progression in the field of 

commercial agriculture. 

3.7. Discussion 

The main goal of this methodology's development is to 

establish a recommendation system that incorporates 

sensing and actuation components that operate in real time. 

The objective of this system is to control a range of water 

quality parameters present in the aquaponic solution, 

including pH, Temperature (Temp), Salinity, Nitrite, and 

Dissolved Oxygen. Attaining ideal growth conditions for 

shrimp and shallot plants in a unified system is the ultimate 

objective. In order to achieve this goal, a methodology was 

devised through the examination of pre-existing 

observations taken from the historical dataset. 

This research paper introduces a novel methodology in the 

domain of aquaponics: the integration of shallots and shrimp 

aquaponics under low salinity conditions; in this system, 

both species are cultivated concurrently. By enabling the co-

cultivation of two distinct organisms in a shared habitat, this 

innovative approach has substantial potential to increase 

resource utilization and production, thereby enhancing 

efficiency and sustainability in aquaponics. A novel strategy 

that expands the range of aquaponic systems and establishes 

a unique foundation for the progression of sustainable, 

integrated agriculture is the incorporation of shallots and 

low salinity shrimp. Furthermore, it is significant that 

machine learning was implemented as a method of control 

and inference on the Arduino microcontroller in this 

research. The integration of machine learning algorithms 

into the control mechanism of the aquaponics system 

facilitates instantaneous decision-making and accurate 

management of water quality parameters. The utilization of 

this sophisticated technology not only amplifies the overall 

efficacy of the system, but also plays a pivotal role in 

fostering the sustainability and expandability of aquaponic 

activities. 

One notable benefit of employing a data-driven Internet of 

Things (IoT) system in contrast to a conventional aquaponic 

system is the potential for cost reduction achieved by 

enhancing crop output and produce quality through the 

incorporation of artificial intelligence (AI) technologies. 

Therefore, there is a substantial financial gain derived from 

the aquaponic system. An additional approach proposed in 

this study is the implementation of nutrient reduction 

strategies to limit the availability of essential elements for 

plant development.  

The focus of this study is to optimize water quality 

parameters (pH, temperature, salinity, nitrite, and dissolved 

oxygen) consistently throughout the year, irrespective of the 

prevailing tropical climate conditions. The regulation of 

Nitrite concentration is crucial in maintaining water quality 

and pH levels in a solution, as it serves as a significant 

determinant. By addressing imbalances in the solution, the 

control of Nitrite concentration effectively mitigates 

potential concerns. In addition, the level of Dissolved 

Oxygen concentration significantly influences the well-

being of shrimp. Consequently, the implementation of an 

Internet of Things (IoT)-enabled sensing and actuation 

system for the regulation of water quality parameters is 

essential in order to effectively manage the environment and 

facilitate the optimal growth and productivity of both 

shrimp and crop plants within a unified framework. The 

primary benefit of using this automated system is in its 

ability to significantly decrease the financial burden 

associated with rectifying unregulated aquaponic systems 

affected by complications arising from excessive buildup of 

water quality indicators. Another benefit of the system is the 

decrease in the quantity of water quality parameters that are 

monitored in commercial aquaponic systems. With the 

exception of the aforementioned improvements in 

productivity and size of the food, the present study has 

identified some notable advantages in our controlled 

aquaponic system when compared to existing commercial 

operations. 

4. Conclusion and Future Research 

4.1. Conclusion 

The proposed IoT system effectively controlled and 

preserved important water quality parameters through 

September 2023. The well-being of shrimp and shallot 

plants was promoted by the constant adjustment and control 

of parameters such as pH, temperature, nitrite levels, 

salinity, and dissolved oxygen, all of which stayed within 

the intended ranges. Shrimp and shallot growth were 
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impacted by the initial adjustment and progressive 

stabilization of pH levels, which ranged from 7.3 to 8.6. The 

ideal temperature range, which influenced metabolic rates 

and overall system health, was maintained between 28°C 

and 33°C. The nitrite concentration maintained at 0.12 ppm 

to 0.05 ppm, demonstrating effective parameter 

management and lowering the risk of injury to the shrimp 

population. Salinity levels ranging from 6.0 ppt to 11.8 ppt 

and dissolved oxygen ranging from 6.5 ppm to 7.7 ppm 

were successfully maintained during the testing period. The 

stability of the aquaponic environment was preserved 

through an automated feedback loop that accurately 

assessed the water conditions. The outcomes demonstrate 

how the system's machine learning and IoT integration 

capabilities may transform aquaponic monitoring and 

control, promoting sustainability and commercial 

aquaponics.  Therefore, the study's findings highlight how 

well the system controls many aspects of water quality, 

providing aquaponics with a novel and exciting option. Its 

practical potential will be ascertained by more field testing 

and validation, but the preliminary results are positive for 

the development of sustainable agriculture. 

4.2. Future Research  

Adaptation to Diverse Seasons: this aspect is of utmost 

importance as it dictates the system's resilience and 

suitability across different climates and geographic areas, 

thereby enhancing its versatility and adaptability to practical 

circumstances, particularly in areas characterized by 

fluctuating tropical seasons, including periods of both rain 

and drought. 

Commercial-Scale Implementation: It is critical to assess 

the performance and economic feasibility of the system in a 

commercial setting in order to ascertain its practical 

implications and capacity to bring about a paradigm shift in 

the aquaponics sector. 
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