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Abstract: Long-term research has been done on anomaly detection. Its uses in the banking industry have made it easier to spot 

questionable hacker activity. However, it is more difficult to trick financial systems due to innovations in the financial sector like 

blockchain and artificial intelligence. Despite these technical developments, there have nevertheless been several instances of fraud. To 

address the anomaly detection issue, a variety of artificial intelligence algorithms have been put forth; while some findings seem to be 

remarkably encouraging, no clear victor has emerged. The transactional data of "Bitcoin," which is one of the public financial block 

chains, can be detected with the help of several anomaly detection algorithms. This paper makes a quantum leap toward bridging the gap 

between artificial intelligence and blockchain. In light of anomaly detection, this article also explains the importance of block chain 

technology and its use in the financial sector. Additionally, it pulls the bitcoin blockchain's transactional data and uses unsupervised 

machine learning algorithms to look for fraudulent transactions. Although various artificial intelligence algorithms have been proposed 

for anomaly detection, none have distinctly outperformed the rest. This paper delves into the intersection of artificial intelligence and 

blockchain, specifically focusing on the transactional data of Bitcoin, a leading public financial blockchain. We employ a range of 

unsupervised machine learning algorithms to identify potentially fraudulent transactions. A variety of techniques are assessed and 

contrasted, including isolation forest, cluster-based local outlier factor (CBLOF), deep autoencoder networks, and ensemble approaches 

service. This paper underscores the synergy of blockchain technology and anomaly detection in the realm of financial security, 

establishing a comprehensive perspective on modern approaches to fraud detection. 
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1. Introduction 

As long as network structures have existed, there has been 

suspicious activity in them. Anomalies are entities or their 

behaviors that frequently exhibit anomalous behaviour 

inside the system. The identification of financial fraud, 

network intrusion, anti-money laundering, virus detection, 

and other cybersecurity applications all make heavy use of 

anomaly detection. In these networks, finding these 

abnormalities and stopping such criminal activity from 

occurring in the future is typically a shared objective. As 

technology develops, blockchain plays an increasingly 

crucial role in protecting these network architectures. 

According to Carlozo and Lou (2017), fraudulent records 

can be blocked with the help of the immutability property 

and the decentralised distributed feature of the block chain. 

However, users of a blockchain network may attempt to 

engage in illicit activity and, in some situations, succeed in 

tricking the system to operate in their favour. Modern, 

cutting-edge approaches for anomaly detection are created 

and put into practice with the support of centralized 

systems. Blockchain development technology necessitates 

the implementation of anomaly detection processes inside 

these systems. In this thesis, we take data from the publicly 

accessible bitcoin blockchain and analyze it. According to 

Nakamoto and Satoshi (2008), bitcoin is a peer-to-peer 

blockchain for digital currency that enables users to 

transfer and receive money anonymously between 

themselves without the necessity of a middleman. The 

records from the repository are joined together to form a 

chain, which represents the block chain technology. From 

a technological perspective, a blockchain is an append-

only ledger with the feature of immutability that operates 

on the phenomena of peer-to-peer (P2P) networking by 

Saad et al. (2020) with decentralisation. Each block in the 

blockchain ledger contains many transactions, which can 

range in kind from financial transactions to data about 

transportation. 

The field of cyber security has historically made extensive 

use of data analysis techniques Buczak et al. (2015), and 

more recently, the spread of cutting-edge machine learning 

techniques has made it possible to precisely detect 

cyberattacks and threats, both in real-time and during post-

incident analysis (Usman et al, 2019; Mahdavifar et al, 
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2019). To assist intrusion detection and prevention 

systems, to detect system abuses and security breaches 

with the help of supervised and unsupervised learning 

algorithms are efficiently used. The packet-level or 

application-level data, which is a continuous stream of 

data, describes the underlying network behaviour and is 

often identified as an interesting situation. Despite these 

advantages, block chain technology does not provide 

complete security and is vulnerable to several problems 

and attacks (Chen et al, 2019; Hassan et al, 2019). For 

instance, to rob money from innocent users, several Ponzi 

methods have been discovered, and numerous fraudulent 

accounts are continuously generated to engage in money 

laundering. Similar to this, rogue forks are occasionally 

developed and used to outperform processing capacity and 

execute double spending within the network (Zhang et al. 

2019). As a result, it is critical to accurately and promptly 

identify the occurrence of these vulnerabilities for the 

proper operation of a blockchain network. Anomaly 

detection for blockchain comes into play to make it 

possible to find and predict these kinds of attacks through 

blockchain. 

This research aims to identify transactions that are unusual 

or suspicious in the bitcoin network, where all nodes are 

unlabelled and there is no way to tell whether a given 

transaction is fraudulent. Finding abnormalities in the 

bitcoin transaction network is the main objective. 

According to the authors' explanation in (Farren et a1. 

2016), all kinds of financial transaction blockchain systems 

fraud detection issues that are relevant to the research are 

identified. This paper looks at a more general problem with 

finding anomalies in blockchains. This is because the 

problem can be used in different blockchain networks, like 

the blockchain of health services, the blockchain of the 

public sector, etc. 

The rapid expansion of the digital financial world has 

fundamentally transformed the way we perceive, transact, 

and store value. Parallel to this evolution, unfortunately, is 

the escalating complexity of deceptive activities targeting 

these systems. Historically, the financial industry has seen 

a constant battle between the mechanisms of fraud 

detection and the intricacies of financial fraud itself. At the 

heart of this battle lies anomaly detection—a technique 

aiming to identify patterns in data that do not conform to 

expected behavior. 

The banking industry, for instance, has relied extensively 

on anomaly detection for identifying suspicious activities. 

As these traditional systems grew in sophistication, so did 

the techniques of those wishing to exploit them. Enter the 

age of blockchain and artificial intelligence (AI): two 

technological powerhouses poised to revolutionize 

numerous sectors, especially finance. Blockchain, with its 

decentralized and transparent nature, promised 

unparalleled security, while AI's computational prowess 

offered the promise of predictive accuracy. 

Bitcoin, representing the nexus of these innovations, 

emerged as a public financial blockchain, heralding a new 

era of decentralized currencies and offering rich, intricate 

data on financial transactions. Yet, the promise of security 

through blockchain technology was soon questioned as 

various fraudulent activities started surfacing in Bitcoin's 

ecosystem. The challenge then pivoted from detecting 

anomalies in traditional financial systems to identifying 

fraudulent patterns in the vast sea of public blockchain 

transactions. 

While artificial intelligence boasts a spectrum of 

algorithms designed for anomaly detection, a clear victor 

in terms of efficacy remains elusive. Is there an AI 

algorithm that can seamlessly sift through the immense 

transactional data of Bitcoin and spot the proverbial 'needle 

in the haystack'? Can the amalgamation of AI and 

blockchain produce a system robust enough to detect and 

deter financial malpractices? 

In this paper, we journey through this intersection, 

exploring various unsupervised machine learning 

algorithms specifically tailored to Bitcoin's transactional 

data. From the isolation forests that hinge on the 

partitioning of data to the depths of autoencoder networks 

that reconstruct information, a diverse set of techniques are 

scrutinized. The intention is not just to discern their 

individual merits but to appreciate the holistic picture they 

paint in the realm of financial security. 

This paper endeavors to provide both, an insight into the 

modern challenges of anomaly detection in public financial 

blockchains and an evaluation of contemporary AI-driven 

techniques that address these challenges. 

2. Background and Related Work 

Anomaly detection methods can identify anomalous 

participants since their behaviour often differs dramatically 

from that of other valid participants. When developing 

anomaly detection models for blockchain networks, several 

crucial considerations must be made in order to obtain 

effective results. Having enough data to analyse is one of 

the key requirements for any anomaly detection algorithm 

to perform well. This phase of data collection is difficult in 

a typical anomaly detection context, and owing to different 

safeguards built into the blockchain data collection 

process, it becomes even harder in blockchain-based 

anomaly detection scenarios. Depending on the type of 

blockchain, there are different ways to collect data. For 

example, in a public blockchain, all participating nodes can 

access the data, which makes it easy to detect anomalies. 

However, in a private or consortium situation, the data is 

not accessible to the general public, and certain clearances 
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are needed before any data processing can be done. 

Additionally, the participating nodes in all of these 

categories are frequently identified by pseudonyms, 

making it challenging to locate the specific individuals 

even after classifying them as anomalies due to a lack of 

knowledge about them. Figure 1 shows some of the most 

important data sets that can be used to train models that 

can predict problems in blockchain networks. 

An architecture for group-based blockchain anomaly 

detection was proposed by Ide and Tsuyoshi (2018). The 

noisy data generated from the sensors can be handled with 

the notion of deterministic smart contracts in the 

management of industrial assets based on predefined 

conditions. The technical key challenges like validation, 

establishment of consensus, and privacy of data can be 

traditionally addressed with the support of machine 

learning methods by formalising the collaborative anomaly 

detection goal as multi-task probabilistic dictionary 

learning. The Blockchain can be seen as a platform for 

collaborative learning rather than a decentralized system 

for managing data. It has features like being able to track 

changes and not being able to be changed, and it can be 

used to get to "Blockchain 3.0." 

 

Fig 1 Datasets for detecting anomalies in blockchain 

Datasets for Anomaly Detection 

1. Cryptocurrency Sets: These datasets are derived directly 

from the transactional histories of various 

cryptocurrencies. 

Bitcoin Dataset: Contains transaction records of Bitcoin. 

Typically, this dataset will involve inputs, outputs, 

amounts, timestamps, and block information. 

Ethereum Dataset: Given Ethereum's capability to handle 

smart contracts, this dataset might also include smart 

contract interactions, gas prices, and contract executions in 

addition to simple transfers. 

Bitcoin Cash Dataset: A fork of Bitcoin, the dataset will be 

similar to Bitcoin but will also reflect the specific nuances 

and rules of the Bitcoin Cash network. 

2. Real-life Data Sets: These datasets encompass more 

traditional financial and transactional records, as well as 

blockchain applications in real-world scenarios. 

Stock Trading Data: Consists of stock prices, volumes, 

buy/sell orders, and other related financial indicators. 

Could be used to detect anomalies in trading behavior or 

price manipulation. 

Blockchain Wallet Data: This can encompass wallet 

balances, transaction histories, and even meta-information 

like the frequency of transactions, the diversity of received 

assets, etc. 

Smart Contract Datasets: Apart from Ethereum, other 

blockchains like Binance Smart Chain or Polkadot also 

allow smart contract functionalities. This dataset will 

comprise contract calls, contract deployments, and 

interactions. 

3. Synthetic Datasets: Artificially created datasets, either 

through simulation or by using algorithms. They are often 

used to test the efficacy of anomaly detection algorithms 
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under controlled conditions. 

3. Proposed Model 

This section explains the blockchain anomaly detection 

process' life cycle as well as the tools and frameworks that 

were utilised to carry out the tests for this research. Along 

with data examples from the exploratory analysis, it also 

discusses how the dataset was created and prepared for the 

modelling methods. The dataset used for this thesis was 

created from raw bitcoin blockchain data. Using the bitcoin 

client program, all data related to bitcoin was synchronised 

from the internet. The public ledger that houses all the data 

in the bitcoin blockchain is represented by the bitcoin 

currency unit (BTC). All transactions involving bitcoin 

from the time the network was founded to the present are 

included in the ledger data. Approximately 450,000,000 

transactions were available in the bitcoin ledger, according 

to data from Blockchain.com (2019). 

There might be a variety of sender and destination 

addresses for each transaction. Additionally, since none of 

the addresses are linked to any personal information, a 

single client can acquire many addresses, and each client 

will be unspecified. The year parameter was used to filter 

away a portion of the synced raw data from the bitcoin 

client. This subset, which is made up of data about 

29,000,000 transactions, was taken out with the help of a 

Python snippet. BTC Thefts, BTC Hacks, and BTC Losses 

are just a few of the categories that Bitcoin Forum (2014) 

has covered in depth. Each category includes information 

on the red-flagged transaction of interest in each case, as 

well as the date and the amount of BTC that was stolen or 

lost. 

 

Fig 2 Exploratory Data Analysis 

4. Exploratory Data Analysis 

Several visualisations are used throughout the exploratory 

analysis of the data to aid in a deeper understanding of the 

data and the connections between its aspects. Additionally, 

it was useful in identifying class imbalances in the data and 

the association between its features. Understanding the 

kind of transformation that can be used on data to modify it 

for modelling was another benefit of the exploratory 

investigation. Some insights into the data were discovered 

through exploratory data analysis. The dataset's class 

distribution is severely unbalanced, as previously 

indicated, with non-malicious data points of a value of 

30,248,026 and just 108 malicious transactions, or around 

0.00035 percent of the total data, as seen in Figure 2. 

When using the findings from EDA, it's important to 

identify any patterns or trends related to seasonality in the 

data. Seasonality refers to regular patterns that repeat over 

fixed intervals, such as daily, weekly, or monthly cycles. 

This could be especially relevant in time-series data or data 

that exhibits temporal patterns. Additionally, highlighting 

relationships between features can provide insights into 

potential dependencies within the data. Correlation 

analysis can help identify which features tend to move 

together or have some degree of influence on each other. 

The various problems can be rectified using the following 

methods: 

Outlier Transactions: 

Outliers are data points that significantly deviate from the 

rest of the distribution. Identifying and understanding 

outlier transactions can provide valuable insights into 

potential anomalies or errors in the data. Outliers might 

indicate fraudulent transactions, data entry errors, or other 

exceptional situations that could impact modelling 

accuracy. 

Imbalanced Dataset and Addressing Imbalance: 

An imbalanced dataset occurs when the distribution of 

classes (or target labels) in the dataset is heavily skewed. 

For example, in a binary classification problem, if one 
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class comprises the majority of instances while the other is 

significantly underrepresented, it's an imbalanced dataset. 

Addressing this imbalance is crucial because most machine 

learning algorithms assume a relatively balanced class 

distribution. Techniques to handle imbalanced data 

include: 

Oversampling: Generating more instances of the minority 

class to balance the distribution. This can be done through 

methods like random duplication or more sophisticated 

techniques like Synthetic Minority Over-sampling 

Technique (SMOTE). 

Undersampling: Reducing the number of instances in the 

majority class to balance the distribution. This may involve 

randomly removing instances or selecting representative 

instances from the majority class. 

SMOTE (Synthetic Minority Over-sampling Technique): 

This technique involves creating synthetic instances of the 

minority class by interpolating between existing instances. 

It helps balance the class distribution while avoiding exact 

duplication. 

Cost-Sensitive Learning: Modifying the learning algorithm 

to give more weight to the minority class, effectively 

penalizing misclassifications of the minority class more 

than the majority class. 

Ensemble Methods: Utilizing ensemble methods like 

Random Forest or Gradient Boosting, which can handle 

imbalanced data to some extent by design. 

When discussing your plans to address the imbalanced 

dataset, it's important to explain which specific technique 

you intend to use, and why you believe that choice is 

appropriate for your dataset and problem domain. 

Overall, by thoroughly addressing these points in our 

analysis, we set the stage for a more robust and effective 

modelling process. 

5. Data Preprocessing 

Standardisation is a basic prerequisite of many machine 

learning algorithms. Usually, this is accomplished by 

scaling to the unit variance after subtracting the mean. 

However, outliers might negatively affect the sample mean 

and variance, which will impact the results. The 

interquartile range and median may frequently produce 

superior results in these circumstances, which is why the 

robust scaler was specifically chosen. The features of the 

data are shown to be less skewed after the normalisation 

and sizing procedures have been carried out. The data are 

more realistic because all of the variables' units are the 

same. The proposed Anomaly Detection process is shown 

in Figure 3. 

The normalization techniques which can be used as 

mentioned below: 

Normalization techniques in data preprocessing are used to 

scale and transform the features (variables) in a dataset to a 

common range. This ensures that the features have similar 

magnitudes, which can improve the performance of 

machine learning algorithms and other statistical 

techniques. There are several normalization techniques 

available, each with its own advantages and disadvantages. 

Here are a few commonly used normalization techniques: 

Min-Max Scaling (Normalization): 

Min-Max scaling scales features to a specified range, 

usually between 0 and 1.The advantages are  

Keeps the relationships between data points intact,Suitable 

for algorithms that expect input features to be within a 

specific range.The disadvantages are Sensitive to outliers, 

as they can disproportionately influence the scaling,does 

not handle outliers well, which can lead to a compressed 

range for most data points. 

Standardization (Z-Score Scaling): 

Standardization transforms features to have a mean of 0 

and a standard deviation of 1. The advantages are less 

sensitive to outliers compared to Min-Max 

scaling,preserves the shape of the original distribution and 

is suitable for algorithms that assume Gaussian-distributed 

data.The disadvantages are does not bound features to a 

specific range, which might be required for some 

algorithms. 

Robust Scaling: 

Robust scaling is a technique that uses median and 

interquartile range (IQR) to scale features. It's less affected 

by outliers than Min-Max scaling and standardization.The 

advantages are resistant to outliers, making it suitable for 

datasets with extreme values,retains the distribution's shape 

better than Min-Max scaling.The disadvantages are scales 

features based on the IQR, which might not be ideal if the 

distribution of data is not approximately Gaussian. 

Normalization by L2 Norm (Unit Vector Scaling): 

This technique scales each data point to have a Euclidean 

norm (L2 norm) of 1. It's often used for text data and in 

cases where the magnitude of each feature is important. 

The advantages are useful for algorithms that rely on the 

magnitude of features,maintains the direction of the data 

points.The disadvantages are can lead to sparsity in some 

cases, especially if the data is sparse to begin with. 

In our model we used robust scaling as it is suitable for our 

data collected. 

The missing data if any while doing the normalisation can 

be handled using various mechanisms as mentioned below: 

Listwise Deletion (Dropping Rows): This involves 

removing entire rows with missing values. It's a 
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straightforward approach, but it can lead to loss of valuable 

information, especially if the missing data is not random. 

Pairwise Deletion (Dropping Columns): In this case, only 

columns with missing values are dropped. This can 

preserve more data but may lead to issues if missing values 

are widespread across multiple columns. 

Imputation: 

Imputation involves filling in missing values with 

estimated or predicted values. 

Mean/Median Imputation: Replace missing values with the 

mean or median of the non-missing values in that column. 

This is suitable for numerical data. 

Mode Imputation: Replace missing values with the mode 

(most frequent value) of the column. This is suitable for 

categorical data. 

Regression Imputation: Use regression models to predict 

missing values based on other variables. This can be more 

accurate but requires a significant amount of data and 

proper feature selection. 

K-Nearest Neighbors (KNN) Imputation: Fill missing 

values using the values of the k-nearest neighbors in the 

feature space. 

Domain-specific Imputation: 

In some cases, domain knowledge can guide the 

imputation process. For instance, if missing salary data is 

common for unemployed individuals, you could assign a 

specific value or label to represent unemployment. 

Time-Series Interpolation: 

In time-series data, missing values can often be 

interpolated based on the adjacent time points. Techniques 

like linear interpolation or spline interpolation can be 

useful here. 

Advanced Techniques: 

There are more advanced techniques such as multiple 

imputation, probabilistic models, and deep learning-based 

imputation methods that can handle complex scenarios. 

These approaches require a deep understanding of the data 

and the techniques themselves. 

In this paper we proposed deep learning biased imputation 

for missing data. 

The below methods are used for mislabelled instances of 

data: 

Manual Inspection and Correction: 

Begin by manually inspecting a subset of your data to 

identify and correct mislabeled instances. This process can 

be time-consuming but can help you gain a deeper 

understanding of the mislabeling issues and improve the 

quality of your dataset. 

Cross-Validation: 

Utilize cross-validation techniques like k-fold cross-

validation to assess the robustness of your model against 

mislabeled data. Cross-validation can provide insights into 

whether your model's performance is consistent across 

different folds, indicating potential mislabeling issues. 

Outlier Detection: 

Treat mislabeled instances as outliers and use outlier 

detection techniques to identify them. If a data point is 

significantly distant from the cluster of similar points, it 

could be a mislabeled instance. 

Majority Voting: 

If multiple labels are assigned to a single instance, consider 

using majority voting to determine the correct label. This is 

particularly useful when a small fraction of instances have 

mislabeled data. 

Human Expert Validation: 

Consult domain experts or individuals with domain 

knowledge to validate and correct mislabeled instances. 

Their expertise can help you make accurate decisions 

about whether instances are truly mislabeled. 

Bootstrapping: 

Bootstrapping involves repeatedly resampling your dataset 

to create new training sets. During each resampling, you 

can change the labels of a certain percentage of instances 

and train models on these modified datasets. This can help 

identify mislabeled instances by observing changes in 

model performance. 

Label Cleaning Models: 

Build models specifically designed to identify and correct 

mislabeled instances. These models can learn from the 

relationships between features and labels and flag instances 

with high prediction uncertainty. 

Semi-Supervised Learning: 

Utilize semi-supervised learning techniques to leverage 

both labeled and unlabeled data. This can help improve the 

model's robustness to mislabeled instances in the labeled 

portion of the data. 

Crowdsourcing: 

Consider using crowdsourcing platforms to obtain 

annotations from multiple human annotators for each 

instance. By comparing the annotators' responses, you can 

identify and correct instances with inconsistent labels. 

Error Analysis: 
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Conduct a thorough error analysis after model training. 

Analyze instances that were misclassified by the model 

and assess whether the model's mistakes are due to 

mislabeled data. This can guide your efforts in handling 

mislabeled instances. 

We can use any of the method for mislabelled data. 

   

Fig 3 Proposed Anomaly Detection process 

Different machine learning estimators can perform better 

by using this preprocessing step. However, the data is still 

somewhat biased, which might make modelling difficult. 

Correlation matrices are one of the key components to 

comprehending data when it comes to feature correlation. 

They can help us identify factors that strongly sway a 

particular transaction's likelihood of being harmful. A 

feature's capacity to influence malice can be shown by 

either an exceedingly positive or negative association. A 

second correlation matrix is made and looked at for a 

random subsample with evenly distributed classes to make 

sure that too much imbalance in the data doesn't hurt the 

correlation between features. All the data from this study's 

experiments is processed through a pipeline that filters, 

normalizes, and scales the data before it is ready for 

modelling. Despite the fact that this experiment is 

considered to be unsupervised, the dataset is classified as 

both a training dataset and a test dataset for the assessment. 

The isolation forest training dataset contains 80% of the 

data; non-malicious data points are 24,198,425, and 

malicious data points are 82. 20% of the test dataset 

contains non-malicious data points, or 6,049,601 data 

points are non-malicious and malicious data points are 26. 

Isolation Forest 

Isolation Forest is a decision tree-based unsupervised 

technique for anomaly detection. Data points that are few 

and abnormally defined are anomalies. The method used 

by Isolation Forest involves creating a structure of a tree 

based on attributes that are randomly chosen and 

processing the sample of the dataset into the tree. The 

random threshold that is between the minimum and 

maximum values of the chosen is used to create a 

branching structure. A sample is less likely to be an oddity 

as it moves further into the tree. 

The following is a description of the algorithm: Let T serve 

as a tree node, q serves as selected features of a sample, the 

threshold value is p, and X serves as the dataset with n 

samples and d features per sample. T may either be an 

inner node or a leaf node (with two sub-nodes, Tleft and 

Tright). The sample will remain in the Tleft if the condition 

threshold p > q is satisfied, else it will be forwarded to the 

Tright. This procedure is repeated until the node contains 

just one sample, all of the samples at the node have 

comparable values, or the tree has grown to its deepest 

potential level (length). The count of edges that arise from 

the root node of the tree to the outside node may be used to 

calculate the length of path h (x). The likelihood that 

sample x will be classified as an anomaly is increased by 

the smaller h (x). The sample x's anomaly score may be 

computed as follows: 

𝑠(𝑥, 𝑛) = 2
𝐸(ℎ(𝑥))

𝑐(𝑛)                                                                    (1) 

where c(n) denotes the assessment of the average h(x) 

value for the tree's outside node and can be calculated 

using the following equation: 
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𝑐(𝑛) = {
2𝐻(𝑛 − 1) −

2(𝑛 − 1)

𝑛
 𝑓𝑜𝑟 𝑛 > 2

1                                                𝑓𝑜𝑟 𝑛 > 2      
0                                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    (2) 

using the formula ln(i) +γ (where is Euler's constant) you 

can figure out the harmonic value, which is given by the 

value of H(i). 

The CBLOF method of finding anomalies in this technique 

is based on clustering the data, which is then used to create 

an anomalous value, like LOF. The clustering stage can be 

executed by using any arbitrary clustering technique. 

However, there will be a direct impact on the output 

quality of the clustering method. This has a direct impact 

on the quality of the CBLOF results. The software assigns 

each observation in a dataset named D to a cluster after 

grouping it using any clustering method. According to their 

respective sizes, the clusters are arranged in the following 

order: |C1| |C2| |Ck|, where C1, C2, ..., Ck represents all the 

clusters, and k represents the total number of available 

clusters. The union of all clusters should include all of the 

observations from dataset D, but any intersection of two 

clusters should provide an empty set. The next step 

involves looking for a border index value that distinguishes 

between small clusters (SC) and big clusters (LC). There 

are two different approaches to computing this boundary. 

(|𝐶1| + |𝐶2| + ⋯ . . +|𝐶𝑏|) ≥ |𝐷|𝛼                                    (3) 

 

(|𝐶𝑏|/|𝐶𝑏+1|) ≥ 𝛽                                                                  (4) 

Α, β are variables that the user defines in the 

aforementioned equations. The data that the large clusters 

are made up of and is between [0,1]. (LC). The lower 

constraint on the relative size among two successive 

clusters is defined by the value, which must be set to be 

bigger than one. 

Refinements  

The provided description is a good starting point for 

understanding the Isolation Forest and CBLOF methods. 

However, a few modifications and clarifications can help 

improve the coherence and readability of the content. 

Here are the suggested refinements: 

Deep Autoencoders 

Autoencoders can be used to successfully complete the 

task of unsupervised learning as a reduced representation 

of the latent properties that describe the portion of 

information. The autoencoder can be defined as a neural 

network that has been trained to replicate its input as its 

output. The two parts are shown in Figure 4. 

• The encoder Θ, a neural network whose goal is to map 

an input �⃗� to a latent compact representation Θ(�⃗�) =

𝑧 𝜖 ℝ𝐾.This mapping results in the process for 

embedding the original input into a latent vector whose 

size is K. 

•  A decoder Φ, is another neural network works with a, 

given K-dimensional vector 𝑧, aims at producing an 

output Φ(𝑧) = �⃗� that is close to the original input. 

 

Fig 4 General Autoencoder structure 

The features are not included in the summary above. In our 

approach, the autoencoder's input and output are seen as 

temporally marked events. Consequently, they might be 

referred to as recurrent neural networks (RNNs). An RNN 

supports sequential data as iterating over the sequence 

saves (partial) RAM for each event. In our strategy, we 

decided to use RNNs for implementing long-term memory 

networks (LSTM). 

The resultant architecture is represented in Figure 5, 

designed as a recurrent autoencoder (RAE) model 

connected with sequence-to-sequence. In essence, the goal 

of RAE is to: (i) interpret every event in the sequence; (ii) 

extract the compact representation of each and every event 

in the sequence; and (iii) use the representation to create a 

current sequence that is a replica of (or facsimile of) the 

input provided. This may be defined mathematically as 

follows: We compute an output given an input sequence. 

𝑂 = [�⃗�1, … , �⃗�𝑛] where: 

ℎ⃗⃗𝑡
(𝑒)

= 𝐿𝑆𝑇𝑀𝜃(�⃗�𝑡 , ℎ⃗⃗𝑡−1
(𝑒)

) 

𝑧 = 𝑚𝑙𝑝𝒱(ℎ⃗⃗𝑛
(𝑒)

)                                                                    (5)     

ℎ⃗⃗𝑡
(𝑑)

= 𝐿𝑆𝑇𝑀𝜙(𝑧, ℎ⃗⃗𝑡−1
(𝑑)

) 

�⃗�𝑡 = 𝑚𝑙𝑝𝜑(ℎ⃗⃗𝑡
(𝑑)

) 
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Where, given the t-th event, and representing the encoder, 

with internal state; symmetrically, representing the 

decoder, with inner state. Additionally, and stand for 

multilayer networks that are parameterized by and, 

respectively. Since the main goal of RAE is to rebuild the 

input from a small representation, a reconstruction loss can 

be taken into account when training the model: 

ℓ(𝐼, 𝑂) =
1

𝑛
∑‖�⃗�𝑡 − �⃗�𝑡‖2

𝑛

𝑡=1

                                                  (6)

 

 

Fig 5 Recurrent Autoencoder (RAE) 

Ensemble Classification 

Instead of depending just on one algorithm, ensemble 

approaches use a variety of different algorithms to arrive at 

a judgement. As was already said, majority voting, which 

is one way to combine the predictive power of these 

algorithms, is a democratic way to come to a decision. The 

majority voting method is shown in equation (7), where the 

votes of each classifier Cj are used to predict the 

classification. 

�̂� = 𝑚𝑜𝑑𝑒{𝐶1(𝑥), 𝐶2(𝑥), … . , 𝐶𝑗(𝑥)}                       (7) 

Here, A is a distinct set of class labels, and A is the 

characteristic function. This discusses soft voting, another 

voting strategy. Soft voting, which is modeled by equation 

(8), takes into account the decision probabilities p of each 

classification method when making a final choice. 

�̂� = 𝑎𝑟𝑔 max
𝑖

∑ 𝑤𝑗ℵ𝐴(𝐶𝑗(𝑥) = 𝑖)

𝑚

𝑗=1

                            (8) 

Refinements  

Your exposition on the recurrent autoencoder (RAE) 

utilizing LSTM layers is technical and provides good 

insight into the model's functionality. However, there are 

some areas where you might want to refine or enhance the  

6. Evaluation Metrics 

Several evaluation metrics are used in this work are 

explained in this subsection. Because there is a large 

difference between the classes in this current study, 

traditional ways of giving classes don't work. But when 

many important evaluation metrics, like confusion matrix, 

recall, precision, and accuracy, are used together, the 

evaluation is fair. When dataset classes differ in size, it is 

sustainable to use micro average metrics, and it is crucial 

to see the system performance across the classes of data, it 

is crucial to use macro average metrics. For this study, 

macro-average measures are usually used to figure out how 

well the system works overall for both malicious and non-

malicious classes. 

TP+TN TP/TP+FP+FN+TN may be used to calculate 

accuracy, a performance metric that computes the ratio 

between the predicted observations and the total 

observations. It provides an extensive indication of how 

effectively a model has been trained, but it performs poorly 

and might be misleading for datasets that are unbalanced. 

On the other hand, balanced accuracy is a more realistic 

method of determining a model's correctness when the data 

is unbalanced. Equation (9) can be used to show that the 

balanced accuracy values are equal to the average recall 

score R for each class. 

𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝑎𝑐𝑐𝑢𝑎𝑟𝑐𝑦

=
1

𝐶
∑ 𝑅𝑗

𝐶

𝑗=1

                                            (9) 

Precision may be calculated using TP/TP+FP as the ratio 

of accurately predicted positive observations to all 

expected positive observations. Equation (10) shows the 

macro precision score for C classes, where TPj and FPj 

stand for true positive values and false positive values, 

respectively, for each class label j. 

𝑚𝑎𝑐𝑟𝑜 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

=
1

𝐶
∑

𝑇𝑃𝑗

𝑇𝑃𝑗 + 𝐹𝑃𝑗

                                 (10)

𝐶

𝑗=1

 

The recall score value is defined as the ratio of correctly 

predicted positive observations to all the observations in 

the actual positive class values and can be computed by 

TP/TP + FN.  

The macro recall score value for C classes is defined as 

Equation (11) in which TPj represents true positive values 
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and FNj represents false negative values for each class 

label j. 

𝑚𝑎𝑐𝑟𝑜 𝑟𝑒𝑐𝑎𝑙𝑙 =
1

𝐶
∑

𝑇𝑃𝑗

𝑇𝑃𝑗 + 𝐹𝑁𝑗

𝐶

𝑗=1

                                 (11) 

A weighted average value of precision and recall is defined 

as an F-Score. It can also be defined as a harmonic mean of 

precision and recall values, which can be calculated by the 

equation 2 ×
precision× recall

precision+ recal
. As equation (12) depicts, the 

macro-f1 score, which is the harmonic mean between 

precision value Pj and recall value Rj. 

𝑚𝑎𝑐𝑟𝑜 𝐹1 =
1

𝐶
∑

2 × 𝑃𝑗 × 𝑅𝑗

𝑃𝑗 + 𝑅𝑗

𝐶

𝑗=1

                                    (12) 

7. Results and Discussions 

This covers the evaluation results and the methodology 

used to achieve them for all algorithms. The evaluation 

was conducted using several evaluation indicators. The 

huge volume of data makes certain algorithms extremely 

time-intensive. However, to address the issue, we fitted 20 

alternative models with precisely calibrated hyper-

parameters using a randomly selected subsample of 1/10th 

of the training data. According to tests, parameters like 

training exactly 20 models and subsampling 1/10th of the 

data were determined, and the values were set when the 

model's performance remained stable regardless of the 

sample size or number of models used. 

Deep Autoencoders: Deep neural networks can process a 

lot of input, but model calculation can take a very long 

time. The deep autoencoder network receives preprocessed 

data that has been divided into training and test sets. Using 

the Synthetic Minority Over-sampling Technique, 0.8 

percent of the malicious data points are added to the 

training set. This is done to find a pattern of malicious data 

points that are hidden in the unbalanced datasets 

(SMOTE). 

The autoencoder is trained with 256 batches and 100 

epochs. The loss function for this use case is the mean 

squared logarithmic error (MSLE), which only looks at the 

proportional difference between the true and predicted 

values. Tanh and sigmoid functions are employed as the 

activation functions in the optimization algorithm Adam. 

The evaluation metrics produced by the deep autoencoder 

model are shown in Table 1. To determine these measures, 

training and test data were compared with the calculated 

model. 

Table 1 Evaluation results of training data and test data on a deep autoencoder network. 

Evaluation metric  Training Data Linguistic variable 

Balanced Accuracy 0.733119 0.803667 

Macro precision 0.716962 0.500029 

Macro Recall 0.733119 0.803667 

Macro F1 0.724655 0.488155 

ROC AUC 0.870147 0.907563 

Time 25075.109 177.6881 

 

Table 1 shows that the model had an accuracy rate of 80% 

when trained on test data. Figure 6 displays the area under 

the curve function known as the receiver operating 

characteristic curve (ROC), which for the test dataset is 

90%. An examination of the metrics table and a visual 

representation of the ROC curve give a summary of the 

model's overall performance. As shown in Figure 6, the 

receiver operating characteristic curve (ROC) between the 

training and test sets of data does not significantly differ. 

However, a better model is often one with a higher AUC 

score. The recall of the autoencoder model produces an 

encouraging result since it quantifies the percentage of all 

relevant outcomes that the algorithm correctly detected. A 

higher recall measure is essential for the assessment in this 

use-case of distinguishing between dangerous and non-

malicious data bits 
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Fig 6 Training and validation of the autoencoder model's area under the curve (AUC) of the receiver operating 

characteristic curve (ROC) 

The trade-off between the model's accuracy and recall at 

various levels of training and test data is shown in Figure 

7. How a threshold should be extracted depends on the 

goal of the specified use case. The threshold value that is a 

slight less than 4 appears to be suitable. Figure 7 shows the 

accuracy vs. recall trade-off for the autoencoder model 

during training and validation. 

 

    Fig 7 Training and validation precision versus recall trade-off for autoencoder model 

Combinatorial Classification 

An ensemble classifier receives the test set used in every 

experiment as input. All the models that were generated for 

the specified experiments in this paper were combined to 

create this ensemble classifier. There are 26 malicious data 

points and non-malicious data points with a total value of 

6,049,601 in the preprocessed test data. A voting method is 

created using all of the pre-computed models using 

techniques such as Isolation Forest, Cluster-based Local 

Outlier Factor (CBLOF), and Deep Autoencoder. Each 

algorithm's classification output has an equal weight, and 

because this use-case just needs an ensemble approach for 

prediction, it is fast. 

Table 2 displays statistics generated following the 

ensemble classifier's evaluation. A solid outcome is 

provided by the ensemble classification approach, which is 

based on a majority voting algorithm. Figure 8 shows that 

the area under the curve (AUC) of the receiver operating 

characteristic curve (ROC) shows that the ensemble 

method works much more consistently than other methods 

that have been tested. 

Table 2   Evaluation metrics for ensemble classification 

Test data Balanced-

Accuracy 

Macro-

Precision 

Macro-Recall Macro-F1 ROC AUC 

0.80140 0.50002 0.80140 0.4869 0.91576 
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Fig 8 Area under the curve (AUC) of each model's receiver operating characteristic curves is grouped as a whole. 

Since the ensemble classification method does not need its 

own training for the above-mentioned use-case, the 

evaluation was merely done for the test set. The trade-off 

between precision values and recall values of the ensemble 

categorization at various threshold levels is illustrated 

visually in Figure 9. A good threshold value will be 

automatically chosen based on an algorithm in the 

available library that we use to find anomalies. 

 

Fig 9 Trade-off between precision and recall for classifying all models as an ensemble. 

It is clear from the confusion matrix in Figure 10 that the 

ensemble classifier delivered reliable and commendable 

results. Only 35% (9 out of 26) of the harmful data points 

were misclassified as false positives, while 65% (17 out of 

26) were correctly detected. Also, only 5% (308,781 out of 

6,049,601) of the non-malicious data points were correctly 

labeled, giving a 95% accuracy rate (5,740,820 out of 

6,049,601). 
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Fig 10 Ensemble classification confusion matrix for all models 

However, resilience and ideal performance are not 

mutually exclusive. In terms of robustness, the ensemble 

technique appears to be a preferable option since it 

considers the votes of three classifiers while reaching its 

decision, and these votes can have different weights that 

can be changed depending on the use-case for each 

algorithm. Isolation Forest, CBLOF, and Autoencoder are 

in fierce competition for the best solo performance, 

though. 

 

Fig 11   Performance of four models 

Figure 11 shows a histogram of the accuracy of each and 

every model on the test dataset; in this specific use-case, it 

is not appropriate to choose a model purely based on 

accuracy. Only relying on accuracy might be deceiving. In 

situations when the entire performance of the system needs 

to be taken into account, macro assessment metrics are 

helpful indications. Figure 11 histogram shows a 

comparison of the macro recall for each method, and it also 

shows a comparison of the macro-f1 scores for each 

algorithm. According to these macro assessment measures' 

visual representations, the ensemble technique performs 

more consistently and robustly. An algorithm's robustness 

describes how well it works on different but related sets of 

data. Autoencoder and isolation forest, however, perform 

marginally better. 
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Fi 12 Performance of four models 

8. Conclusion 

Due to its relevance in conjunction, blockchain technology 

has drawn a great deal of interest from both academics and 

industry since its inception. It's feasible that more harmful 

data might have produced better outcomes. The dataset's 

modest number of malicious transactional data points 

means that there aren't many odd trends to look for. This 

issue was attempted to be solved by artificially producing 

harmful data points while being careful not to overdo it. 

However, the quality of anomaly detection is impacted, 

which makes the models function less well. The choice of 

characteristics collected from the blockchain transaction 

graph to identify abnormal activity appears to be a crucial 

element, as some variables may contain a special 

opportunity. But the goal of this thesis study is to find 

strange patterns using unsupervised learning methods. 

Adding a time-series component would make the job 

harder.  

To address this limitation, we experimented with the 

generation of artificial malicious data points. Yet, walking 

this tightrope was challenging: while enhancing the 

dataset, we were also mindful not to skew it 

disproportionately. This artificial augmentation, 

unfortunately, affected the precision of our anomaly 

detection algorithms, causing the models to perform sub-

optimally. 

Another pivotal aspect emerged regarding the choice of 

features extracted from the blockchain transaction graph. 

Some features seemed to present unique opportunities in 

detecting anomalies, underscoring the critical role of 

feature selection in such studies. Notably, while the study 

aimed to detect anomalies using unsupervised learning 

methods, introducing a time-series component would 

invariably compound the complexity. Yet, this might be a 

necessary evolution for future work in this domain. In 

conclusion, while blockchain offers a fertile ground for 

research, this study underscores the intricate challenges of 

anomaly detection within its vast expanse. Future 

endeavors in this realm must consider the delicate balance 

between data augmentation and model accuracy, and the 

continuous quest for optimal feature selection. 

References 

[1] Carlozo, Lou (2017). \What is blockchain?" In: 

Journal of      Accountancy 224.1, p. 29. 

[2] Nakamoto, Satoshi (2008). \Bitcoin: A peer-to-peer 

electronic cash system". In: North-Denver-News 

(2015). Cybercrime- what are the costs to victims. 

url: http : / / northdenvernews.com/cybercrime-costs-

victims (visited on 11/03/2018). 

[3] Saad, Muhammad & Spaulding, Jeffrey & Njilla, 

Laurent & Kamhoua, Charles & Shetty, Sachin & 

Nyang, Daehun & Mohaisen, David. (2020). 

Exploring the Attack Surface of Blockchain: A 

Comprehensive Survey. IEEE Communications 

Surveys & Tutorials. PP. 1-1. 

10.1109/COMST.2020.2975999. 

[4] Buczak, Anna & Guven, Erhan. (2015). A Survey of 

Data Mining and Machine Learning Methods for 

Cyber Security Intrusion Detection. IEEE 

Communications Surveys & Tutorials. 18. 1-1. 

10.1109/COMST.2015.2494502. 

[5] Usman, Muhammad & Ahmad Jan, Mian & He, 

Xiangjian & Chen, Jinjun. (2019). A Survey on 

Representation Learning Efforts in Cybersecurity 

Domain. ACM Computing Surveys. 52. 1-28. 

10.1145/3331174. 

[6] Mahdavifar, Samaneh & Ghorbani, Ali. (2019). 

Application of Deep Learning to Cybersecurity: A 

Survey. Neurocomputing. 347. 

10.1016/j.neucom.2019.02.056. 

0.97
0.88 0.89

0.98

0.78

0.91 0.93 0.980.96
0.89

0.96 0.97

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I forest CBLOF Autoencoder Ensemble

P
er

fo
rm

a
n

ce
 l
ev

el

Model

Precision Recall F1-score



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 581–595 |  595 

[7] Chen, Weili & Zheng, Zibin & Ngai, Edith & Zheng, 

Peilin & Zhou, Yuren. (2019). Exploiting Blockchain 

Data to Detect Smart Ponzi Schemes on Ethereum. 

IEEE Access. PP. 1-1. 

10.1109/ACCESS.2019.2905769. 

[8] Ul Hassan, Muneeb & Rehmani, Mubashir Husain & 

Chen, Jinjun. (2019). DEAL: Differentially Private 

Auction for Blockchain-Based Microgrids Energy 

Trading. IEEE Transactions on Services Computing. 

PP. 1-1. 10.1109/TSC.2019.2947471. 

[9] Zhang, Shijie & Lee, Jong-Hyouk. (2019). Double-

Spending with a Sybil Attack in the Bitcoin 

Decentralized Network. IEEE Transactions on 

Industrial Informatics. 15. 5715 - 5722. 

10.1109/TII.2019.2921566.  

[10] Farren, Derek, Thai Pham, and Marco Alban-Hidalgo 

(2016). \Low Latency Anomaly Detection and 

Bayesian Network Prediction of Anomaly 

Likelihood". In: arXiv preprint arXiv:1611.03898. 

[11] Ide, Tsuyoshi. (2018). Collaborative Anomaly 

Detection on Blockchain from Noisy Sensor Data. 

120-127. 10.1109/ICDMW.2018.00024. 

[12] Abu Musa, Tahani & Bouras, Abdelaziz. (2021). 

Anomaly Detection in Blockchain-enabled Supply 

Chain: An Ontological Approach. 169-169. 

10.29117/quarfe.2021.0169. 

[13] Golomb, Tomer & Mirsky, Yisroel & Elovici, Yuval. 

(2018). CIoTA: Collaborative Anomaly Detection via 

Blockchain. 10.14722/diss.2018.23003. 

[14] Guarascio, Massimo & Liguori, Angelica & Manco, 

Giuseppe & Ritacco, Ettore & Scicchitano, 

Francesco. (2020). Deep Autoencoder Ensembles for 

Anomaly Detection on Blockchain. 10.1007/978-3-

030-59491-6_43. 

[15] Ofori-Boateng, Dorcas & Segovia-Dominguez, 

Ignacio & Kantarcioglu, Murat & Akcora, Cuneyt & 

Gel, Yulia. (2021). Topological Anomaly Detection 

in Dynamic Multilayer Blockchain Networks. 

 


