

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 581–595 | 581

Deep Blockchain Approach for Anomaly Detection in the Bitcoin

Network

Swapna Siddamsetti1, Dr. Muktevi Srivenkatesh2

Submitted: 27/08/2023 Revised: 18/10/2023 Accepted: 29/10/2023

Abstract: Long-term research has been done on anomaly detection. Its uses in the banking industry have made it easier to spot

questionable hacker activity. However, it is more difficult to trick financial systems due to innovations in the financial sector like

blockchain and artificial intelligence. Despite these technical developments, there have nevertheless been several instances of fraud. To

address the anomaly detection issue, a variety of artificial intelligence algorithms have been put forth; while some findings seem to be

remarkably encouraging, no clear victor has emerged. The transactional data of "Bitcoin," which is one of the public financial block

chains, can be detected with the help of several anomaly detection algorithms. This paper makes a quantum leap toward bridging the gap

between artificial intelligence and blockchain. In light of anomaly detection, this article also explains the importance of block chain

technology and its use in the financial sector. Additionally, it pulls the bitcoin blockchain's transactional data and uses unsupervised

machine learning algorithms to look for fraudulent transactions. Although various artificial intelligence algorithms have been proposed

for anomaly detection, none have distinctly outperformed the rest. This paper delves into the intersection of artificial intelligence and

blockchain, specifically focusing on the transactional data of Bitcoin, a leading public financial blockchain. We employ a range of

unsupervised machine learning algorithms to identify potentially fraudulent transactions. A variety of techniques are assessed and

contrasted, including isolation forest, cluster-based local outlier factor (CBLOF), deep autoencoder networks, and ensemble approaches

service. This paper underscores the synergy of blockchain technology and anomaly detection in the realm of financial security,

establishing a comprehensive perspective on modern approaches to fraud detection.

Keywords: Anomaly Detection, Blockchain, Deep Learning, Fraud Detection, Unsupervised Learning,

1. Introduction

As long as network structures have existed, there has been

suspicious activity in them. Anomalies are entities or their

behaviors that frequently exhibit anomalous behaviour

inside the system. The identification of financial fraud,

network intrusion, anti-money laundering, virus detection,

and other cybersecurity applications all make heavy use of

anomaly detection. In these networks, finding these

abnormalities and stopping such criminal activity from

occurring in the future is typically a shared objective. As

technology develops, blockchain plays an increasingly

crucial role in protecting these network architectures.

According to Carlozo and Lou (2017), fraudulent records

can be blocked with the help of the immutability property

and the decentralised distributed feature of the block chain.

However, users of a blockchain network may attempt to

engage in illicit activity and, in some situations, succeed in

tricking the system to operate in their favour. Modern,

cutting-edge approaches for anomaly detection are created

and put into practice with the support of centralized

systems. Blockchain development technology necessitates

the implementation of anomaly detection processes inside

these systems. In this thesis, we take data from the publicly

accessible bitcoin blockchain and analyze it. According to

Nakamoto and Satoshi (2008), bitcoin is a peer-to-peer

blockchain for digital currency that enables users to

transfer and receive money anonymously between

themselves without the necessity of a middleman. The

records from the repository are joined together to form a

chain, which represents the block chain technology. From

a technological perspective, a blockchain is an append-

only ledger with the feature of immutability that operates

on the phenomena of peer-to-peer (P2P) networking by

Saad et al. (2020) with decentralisation. Each block in the

blockchain ledger contains many transactions, which can

range in kind from financial transactions to data about

transportation.

The field of cyber security has historically made extensive

use of data analysis techniques Buczak et al. (2015), and

more recently, the spread of cutting-edge machine learning

techniques has made it possible to precisely detect

cyberattacks and threats, both in real-time and during post-

incident analysis (Usman et al, 2019; Mahdavifar et al,

1 S.D.M.College of Eng. &Tec1Department of Computer Science, GITAM

School of Science, GITAM Deemed to be University, Vishakapatnam, and

Assistant Professor,

Department of Computer Science and Engineering, Neil Gogte Institute of

Technology, Hyderabad, Telangana, India.

swapnangit2021@gmail.com
2Associate Professor, Department of Computer Science, GITAM School of

Science, GITAM Deemed to be University, Vishakapatnam, India.

srivenkatesh.muktevi@gitam.edu

h, Fort Collins – 8023, USA

ORCID ID : 0000-3343-7165-777X
2 KLE.Institute of Technology, Tsukuba – 80309, JAPAN

ORCID ID : 0000-3343-7165-777X
3 Computer Eng., Selcuk University, Konya – 42002, TURKEY

ORCID ID : 0000-3343-7165-777X

* Corresponding Author Email: swapnangit2021@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 581–595 | 582

2019). To assist intrusion detection and prevention

systems, to detect system abuses and security breaches

with the help of supervised and unsupervised learning

algorithms are efficiently used. The packet-level or

application-level data, which is a continuous stream of

data, describes the underlying network behaviour and is

often identified as an interesting situation. Despite these

advantages, block chain technology does not provide

complete security and is vulnerable to several problems

and attacks (Chen et al, 2019; Hassan et al, 2019). For

instance, to rob money from innocent users, several Ponzi

methods have been discovered, and numerous fraudulent

accounts are continuously generated to engage in money

laundering. Similar to this, rogue forks are occasionally

developed and used to outperform processing capacity and

execute double spending within the network (Zhang et al.

2019). As a result, it is critical to accurately and promptly

identify the occurrence of these vulnerabilities for the

proper operation of a blockchain network. Anomaly

detection for blockchain comes into play to make it

possible to find and predict these kinds of attacks through

blockchain.

This research aims to identify transactions that are unusual

or suspicious in the bitcoin network, where all nodes are

unlabelled and there is no way to tell whether a given

transaction is fraudulent. Finding abnormalities in the

bitcoin transaction network is the main objective.

According to the authors' explanation in (Farren et a1.

2016), all kinds of financial transaction blockchain systems

fraud detection issues that are relevant to the research are

identified. This paper looks at a more general problem with

finding anomalies in blockchains. This is because the

problem can be used in different blockchain networks, like

the blockchain of health services, the blockchain of the

public sector, etc.

The rapid expansion of the digital financial world has

fundamentally transformed the way we perceive, transact,

and store value. Parallel to this evolution, unfortunately, is

the escalating complexity of deceptive activities targeting

these systems. Historically, the financial industry has seen

a constant battle between the mechanisms of fraud

detection and the intricacies of financial fraud itself. At the

heart of this battle lies anomaly detection—a technique

aiming to identify patterns in data that do not conform to

expected behavior.

The banking industry, for instance, has relied extensively

on anomaly detection for identifying suspicious activities.

As these traditional systems grew in sophistication, so did

the techniques of those wishing to exploit them. Enter the

age of blockchain and artificial intelligence (AI): two

technological powerhouses poised to revolutionize

numerous sectors, especially finance. Blockchain, with its

decentralized and transparent nature, promised

unparalleled security, while AI's computational prowess

offered the promise of predictive accuracy.

Bitcoin, representing the nexus of these innovations,

emerged as a public financial blockchain, heralding a new

era of decentralized currencies and offering rich, intricate

data on financial transactions. Yet, the promise of security

through blockchain technology was soon questioned as

various fraudulent activities started surfacing in Bitcoin's

ecosystem. The challenge then pivoted from detecting

anomalies in traditional financial systems to identifying

fraudulent patterns in the vast sea of public blockchain

transactions.

While artificial intelligence boasts a spectrum of

algorithms designed for anomaly detection, a clear victor

in terms of efficacy remains elusive. Is there an AI

algorithm that can seamlessly sift through the immense

transactional data of Bitcoin and spot the proverbial 'needle

in the haystack'? Can the amalgamation of AI and

blockchain produce a system robust enough to detect and

deter financial malpractices?

In this paper, we journey through this intersection,

exploring various unsupervised machine learning

algorithms specifically tailored to Bitcoin's transactional

data. From the isolation forests that hinge on the

partitioning of data to the depths of autoencoder networks

that reconstruct information, a diverse set of techniques are

scrutinized. The intention is not just to discern their

individual merits but to appreciate the holistic picture they

paint in the realm of financial security.

This paper endeavors to provide both, an insight into the

modern challenges of anomaly detection in public financial

blockchains and an evaluation of contemporary AI-driven

techniques that address these challenges.

2. Background and Related Work

Anomaly detection methods can identify anomalous

participants since their behaviour often differs dramatically

from that of other valid participants. When developing

anomaly detection models for blockchain networks, several

crucial considerations must be made in order to obtain

effective results. Having enough data to analyse is one of

the key requirements for any anomaly detection algorithm

to perform well. This phase of data collection is difficult in

a typical anomaly detection context, and owing to different

safeguards built into the blockchain data collection

process, it becomes even harder in blockchain-based

anomaly detection scenarios. Depending on the type of

blockchain, there are different ways to collect data. For

example, in a public blockchain, all participating nodes can

access the data, which makes it easy to detect anomalies.

However, in a private or consortium situation, the data is

not accessible to the general public, and certain clearances

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 581–595 | 583

are needed before any data processing can be done.

Additionally, the participating nodes in all of these

categories are frequently identified by pseudonyms,

making it challenging to locate the specific individuals

even after classifying them as anomalies due to a lack of

knowledge about them. Figure 1 shows some of the most

important data sets that can be used to train models that

can predict problems in blockchain networks.

An architecture for group-based blockchain anomaly

detection was proposed by Ide and Tsuyoshi (2018). The

noisy data generated from the sensors can be handled with

the notion of deterministic smart contracts in the

management of industrial assets based on predefined

conditions. The technical key challenges like validation,

establishment of consensus, and privacy of data can be

traditionally addressed with the support of machine

learning methods by formalising the collaborative anomaly

detection goal as multi-task probabilistic dictionary

learning. The Blockchain can be seen as a platform for

collaborative learning rather than a decentralized system

for managing data. It has features like being able to track

changes and not being able to be changed, and it can be

used to get to "Blockchain 3.0."

Fig 1 Datasets for detecting anomalies in blockchain

Datasets for Anomaly Detection

1. Cryptocurrency Sets: These datasets are derived directly

from the transactional histories of various

cryptocurrencies.

Bitcoin Dataset: Contains transaction records of Bitcoin.

Typically, this dataset will involve inputs, outputs,

amounts, timestamps, and block information.

Ethereum Dataset: Given Ethereum's capability to handle

smart contracts, this dataset might also include smart

contract interactions, gas prices, and contract executions in

addition to simple transfers.

Bitcoin Cash Dataset: A fork of Bitcoin, the dataset will be

similar to Bitcoin but will also reflect the specific nuances

and rules of the Bitcoin Cash network.

2. Real-life Data Sets: These datasets encompass more

traditional financial and transactional records, as well as

blockchain applications in real-world scenarios.

Stock Trading Data: Consists of stock prices, volumes,

buy/sell orders, and other related financial indicators.

Could be used to detect anomalies in trading behavior or

price manipulation.

Blockchain Wallet Data: This can encompass wallet

balances, transaction histories, and even meta-information

like the frequency of transactions, the diversity of received

assets, etc.

Smart Contract Datasets: Apart from Ethereum, other

blockchains like Binance Smart Chain or Polkadot also

allow smart contract functionalities. This dataset will

comprise contract calls, contract deployments, and

interactions.

3. Synthetic Datasets: Artificially created datasets, either

through simulation or by using algorithms. They are often

used to test the efficacy of anomaly detection algorithms

Datasets for Anomaly

Detection in Blockchain

Cryptocurrenc

y

based

Synthetic

Datasets
Real-Life

Data

sets

Bitcoin

Data

set

Ethereum

Datas

et

Stock Trading

Data

Blockchain

wallet

Smart Contracts

Databases
Bitcoin

Cash Dataset

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 581–595 | 584

under controlled conditions.

3. Proposed Model

This section explains the blockchain anomaly detection

process' life cycle as well as the tools and frameworks that

were utilised to carry out the tests for this research. Along

with data examples from the exploratory analysis, it also

discusses how the dataset was created and prepared for the

modelling methods. The dataset used for this thesis was

created from raw bitcoin blockchain data. Using the bitcoin

client program, all data related to bitcoin was synchronised

from the internet. The public ledger that houses all the data

in the bitcoin blockchain is represented by the bitcoin

currency unit (BTC). All transactions involving bitcoin

from the time the network was founded to the present are

included in the ledger data. Approximately 450,000,000

transactions were available in the bitcoin ledger, according

to data from Blockchain.com (2019).

There might be a variety of sender and destination

addresses for each transaction. Additionally, since none of

the addresses are linked to any personal information, a

single client can acquire many addresses, and each client

will be unspecified. The year parameter was used to filter

away a portion of the synced raw data from the bitcoin

client. This subset, which is made up of data about

29,000,000 transactions, was taken out with the help of a

Python snippet. BTC Thefts, BTC Hacks, and BTC Losses

are just a few of the categories that Bitcoin Forum (2014)

has covered in depth. Each category includes information

on the red-flagged transaction of interest in each case, as

well as the date and the amount of BTC that was stolen or

lost.

Fig 2 Exploratory Data Analysis

4. Exploratory Data Analysis

Several visualisations are used throughout the exploratory

analysis of the data to aid in a deeper understanding of the

data and the connections between its aspects. Additionally,

it was useful in identifying class imbalances in the data and

the association between its features. Understanding the

kind of transformation that can be used on data to modify it

for modelling was another benefit of the exploratory

investigation. Some insights into the data were discovered

through exploratory data analysis. The dataset's class

distribution is severely unbalanced, as previously

indicated, with non-malicious data points of a value of

30,248,026 and just 108 malicious transactions, or around

0.00035 percent of the total data, as seen in Figure 2.

When using the findings from EDA, it's important to

identify any patterns or trends related to seasonality in the

data. Seasonality refers to regular patterns that repeat over

fixed intervals, such as daily, weekly, or monthly cycles.

This could be especially relevant in time-series data or data

that exhibits temporal patterns. Additionally, highlighting

relationships between features can provide insights into

potential dependencies within the data. Correlation

analysis can help identify which features tend to move

together or have some degree of influence on each other.

The various problems can be rectified using the following

methods:

Outlier Transactions:

Outliers are data points that significantly deviate from the

rest of the distribution. Identifying and understanding

outlier transactions can provide valuable insights into

potential anomalies or errors in the data. Outliers might

indicate fraudulent transactions, data entry errors, or other

exceptional situations that could impact modelling

accuracy.

Imbalanced Dataset and Addressing Imbalance:

An imbalanced dataset occurs when the distribution of

classes (or target labels) in the dataset is heavily skewed.

For example, in a binary classification problem, if one

3,02,48,02

6

108
100

50,00,100

1,00,00,100

1,50,00,100

2,00,00,100

2,50,00,100

3,00,00,100

3,50,00,100

Non-malicious: 0 malicious : 1

C
o

u
n

t

Class

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 581–595 | 585

class comprises the majority of instances while the other is

significantly underrepresented, it's an imbalanced dataset.

Addressing this imbalance is crucial because most machine

learning algorithms assume a relatively balanced class

distribution. Techniques to handle imbalanced data

include:

Oversampling: Generating more instances of the minority

class to balance the distribution. This can be done through

methods like random duplication or more sophisticated

techniques like Synthetic Minority Over-sampling

Technique (SMOTE).

Undersampling: Reducing the number of instances in the

majority class to balance the distribution. This may involve

randomly removing instances or selecting representative

instances from the majority class.

SMOTE (Synthetic Minority Over-sampling Technique):

This technique involves creating synthetic instances of the

minority class by interpolating between existing instances.

It helps balance the class distribution while avoiding exact

duplication.

Cost-Sensitive Learning: Modifying the learning algorithm

to give more weight to the minority class, effectively

penalizing misclassifications of the minority class more

than the majority class.

Ensemble Methods: Utilizing ensemble methods like

Random Forest or Gradient Boosting, which can handle

imbalanced data to some extent by design.

When discussing your plans to address the imbalanced

dataset, it's important to explain which specific technique

you intend to use, and why you believe that choice is

appropriate for your dataset and problem domain.

Overall, by thoroughly addressing these points in our

analysis, we set the stage for a more robust and effective

modelling process.

5. Data Preprocessing

Standardisation is a basic prerequisite of many machine

learning algorithms. Usually, this is accomplished by

scaling to the unit variance after subtracting the mean.

However, outliers might negatively affect the sample mean

and variance, which will impact the results. The

interquartile range and median may frequently produce

superior results in these circumstances, which is why the

robust scaler was specifically chosen. The features of the

data are shown to be less skewed after the normalisation

and sizing procedures have been carried out. The data are

more realistic because all of the variables' units are the

same. The proposed Anomaly Detection process is shown

in Figure 3.

The normalization techniques which can be used as

mentioned below:

Normalization techniques in data preprocessing are used to

scale and transform the features (variables) in a dataset to a

common range. This ensures that the features have similar

magnitudes, which can improve the performance of

machine learning algorithms and other statistical

techniques. There are several normalization techniques

available, each with its own advantages and disadvantages.

Here are a few commonly used normalization techniques:

Min-Max Scaling (Normalization):

Min-Max scaling scales features to a specified range,

usually between 0 and 1.The advantages are

Keeps the relationships between data points intact,Suitable

for algorithms that expect input features to be within a

specific range.The disadvantages are Sensitive to outliers,

as they can disproportionately influence the scaling,does

not handle outliers well, which can lead to a compressed

range for most data points.

Standardization (Z-Score Scaling):

Standardization transforms features to have a mean of 0

and a standard deviation of 1. The advantages are less

sensitive to outliers compared to Min-Max

scaling,preserves the shape of the original distribution and

is suitable for algorithms that assume Gaussian-distributed

data.The disadvantages are does not bound features to a

specific range, which might be required for some

algorithms.

Robust Scaling:

Robust scaling is a technique that uses median and

interquartile range (IQR) to scale features. It's less affected

by outliers than Min-Max scaling and standardization.The

advantages are resistant to outliers, making it suitable for

datasets with extreme values,retains the distribution's shape

better than Min-Max scaling.The disadvantages are scales

features based on the IQR, which might not be ideal if the

distribution of data is not approximately Gaussian.

Normalization by L2 Norm (Unit Vector Scaling):

This technique scales each data point to have a Euclidean

norm (L2 norm) of 1. It's often used for text data and in

cases where the magnitude of each feature is important.

The advantages are useful for algorithms that rely on the

magnitude of features,maintains the direction of the data

points.The disadvantages are can lead to sparsity in some

cases, especially if the data is sparse to begin with.

In our model we used robust scaling as it is suitable for our

data collected.

The missing data if any while doing the normalisation can

be handled using various mechanisms as mentioned below:

Listwise Deletion (Dropping Rows): This involves

removing entire rows with missing values. It's a

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 581–595 | 586

straightforward approach, but it can lead to loss of valuable

information, especially if the missing data is not random.

Pairwise Deletion (Dropping Columns): In this case, only

columns with missing values are dropped. This can

preserve more data but may lead to issues if missing values

are widespread across multiple columns.

Imputation:

Imputation involves filling in missing values with

estimated or predicted values.

Mean/Median Imputation: Replace missing values with the

mean or median of the non-missing values in that column.

This is suitable for numerical data.

Mode Imputation: Replace missing values with the mode

(most frequent value) of the column. This is suitable for

categorical data.

Regression Imputation: Use regression models to predict

missing values based on other variables. This can be more

accurate but requires a significant amount of data and

proper feature selection.

K-Nearest Neighbors (KNN) Imputation: Fill missing

values using the values of the k-nearest neighbors in the

feature space.

Domain-specific Imputation:

In some cases, domain knowledge can guide the

imputation process. For instance, if missing salary data is

common for unemployed individuals, you could assign a

specific value or label to represent unemployment.

Time-Series Interpolation:

In time-series data, missing values can often be

interpolated based on the adjacent time points. Techniques

like linear interpolation or spline interpolation can be

useful here.

Advanced Techniques:

There are more advanced techniques such as multiple

imputation, probabilistic models, and deep learning-based

imputation methods that can handle complex scenarios.

These approaches require a deep understanding of the data

and the techniques themselves.

In this paper we proposed deep learning biased imputation

for missing data.

The below methods are used for mislabelled instances of

data:

Manual Inspection and Correction:

Begin by manually inspecting a subset of your data to

identify and correct mislabeled instances. This process can

be time-consuming but can help you gain a deeper

understanding of the mislabeling issues and improve the

quality of your dataset.

Cross-Validation:

Utilize cross-validation techniques like k-fold cross-

validation to assess the robustness of your model against

mislabeled data. Cross-validation can provide insights into

whether your model's performance is consistent across

different folds, indicating potential mislabeling issues.

Outlier Detection:

Treat mislabeled instances as outliers and use outlier

detection techniques to identify them. If a data point is

significantly distant from the cluster of similar points, it

could be a mislabeled instance.

Majority Voting:

If multiple labels are assigned to a single instance, consider

using majority voting to determine the correct label. This is

particularly useful when a small fraction of instances have

mislabeled data.

Human Expert Validation:

Consult domain experts or individuals with domain

knowledge to validate and correct mislabeled instances.

Their expertise can help you make accurate decisions

about whether instances are truly mislabeled.

Bootstrapping:

Bootstrapping involves repeatedly resampling your dataset

to create new training sets. During each resampling, you

can change the labels of a certain percentage of instances

and train models on these modified datasets. This can help

identify mislabeled instances by observing changes in

model performance.

Label Cleaning Models:

Build models specifically designed to identify and correct

mislabeled instances. These models can learn from the

relationships between features and labels and flag instances

with high prediction uncertainty.

Semi-Supervised Learning:

Utilize semi-supervised learning techniques to leverage

both labeled and unlabeled data. This can help improve the

model's robustness to mislabeled instances in the labeled

portion of the data.

Crowdsourcing:

Consider using crowdsourcing platforms to obtain

annotations from multiple human annotators for each

instance. By comparing the annotators' responses, you can

identify and correct instances with inconsistent labels.

Error Analysis:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 581–595 | 587

Conduct a thorough error analysis after model training.

Analyze instances that were misclassified by the model

and assess whether the model's mistakes are due to

mislabeled data. This can guide your efforts in handling

mislabeled instances.

We can use any of the method for mislabelled data.

Fig 3 Proposed Anomaly Detection process

Different machine learning estimators can perform better

by using this preprocessing step. However, the data is still

somewhat biased, which might make modelling difficult.

Correlation matrices are one of the key components to

comprehending data when it comes to feature correlation.

They can help us identify factors that strongly sway a

particular transaction's likelihood of being harmful. A

feature's capacity to influence malice can be shown by

either an exceedingly positive or negative association. A

second correlation matrix is made and looked at for a

random subsample with evenly distributed classes to make

sure that too much imbalance in the data doesn't hurt the

correlation between features. All the data from this study's

experiments is processed through a pipeline that filters,

normalizes, and scales the data before it is ready for

modelling. Despite the fact that this experiment is

considered to be unsupervised, the dataset is classified as

both a training dataset and a test dataset for the assessment.

The isolation forest training dataset contains 80% of the

data; non-malicious data points are 24,198,425, and

malicious data points are 82. 20% of the test dataset

contains non-malicious data points, or 6,049,601 data

points are non-malicious and malicious data points are 26.

Isolation Forest

Isolation Forest is a decision tree-based unsupervised

technique for anomaly detection. Data points that are few

and abnormally defined are anomalies. The method used

by Isolation Forest involves creating a structure of a tree

based on attributes that are randomly chosen and

processing the sample of the dataset into the tree. The

random threshold that is between the minimum and

maximum values of the chosen is used to create a

branching structure. A sample is less likely to be an oddity

as it moves further into the tree.

The following is a description of the algorithm: Let T serve

as a tree node, q serves as selected features of a sample, the

threshold value is p, and X serves as the dataset with n

samples and d features per sample. T may either be an

inner node or a leaf node (with two sub-nodes, Tleft and

Tright). The sample will remain in the Tleft if the condition

threshold p > q is satisfied, else it will be forwarded to the

Tright. This procedure is repeated until the node contains

just one sample, all of the samples at the node have

comparable values, or the tree has grown to its deepest

potential level (length). The count of edges that arise from

the root node of the tree to the outside node may be used to

calculate the length of path h (x). The likelihood that

sample x will be classified as an anomaly is increased by

the smaller h (x). The sample x's anomaly score may be

computed as follows:

𝑠(𝑥, 𝑛) = 2
𝐸(ℎ(𝑥))

𝑐(𝑛) (1)

where c(n) denotes the assessment of the average h(x)

value for the tree's outside node and can be calculated

using the following equation:

Dataset

Data

preprocessin

g

Blockchain

miner

 Financial

sector

Normalized data

Stage 1

Training

data

Testing

data

Outliers’

detection

Specify type of

transaction

using

clustering

Stage 2

Malicious

Non-Malicious

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 581–595 | 588

𝑐(𝑛) = {
2𝐻(𝑛 − 1) −

2(𝑛 − 1)

𝑛
 𝑓𝑜𝑟 𝑛 > 2

1 𝑓𝑜𝑟 𝑛 > 2
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2)

using the formula ln(i) +γ (where is Euler's constant) you

can figure out the harmonic value, which is given by the

value of H(i).

The CBLOF method of finding anomalies in this technique

is based on clustering the data, which is then used to create

an anomalous value, like LOF. The clustering stage can be

executed by using any arbitrary clustering technique.

However, there will be a direct impact on the output

quality of the clustering method. This has a direct impact

on the quality of the CBLOF results. The software assigns

each observation in a dataset named D to a cluster after

grouping it using any clustering method. According to their

respective sizes, the clusters are arranged in the following

order: |C1| |C2| |Ck|, where C1, C2, ..., Ck represents all the

clusters, and k represents the total number of available

clusters. The union of all clusters should include all of the

observations from dataset D, but any intersection of two

clusters should provide an empty set. The next step

involves looking for a border index value that distinguishes

between small clusters (SC) and big clusters (LC). There

are two different approaches to computing this boundary.

(|𝐶1| + |𝐶2| + ⋯ . . +|𝐶𝑏|) ≥ |𝐷|𝛼 (3)

(|𝐶𝑏|/|𝐶𝑏+1|) ≥ 𝛽 (4)

Α, β are variables that the user defines in the

aforementioned equations. The data that the large clusters

are made up of and is between [0,1]. (LC). The lower

constraint on the relative size among two successive

clusters is defined by the value, which must be set to be

bigger than one.

Refinements

The provided description is a good starting point for

understanding the Isolation Forest and CBLOF methods.

However, a few modifications and clarifications can help

improve the coherence and readability of the content.

Here are the suggested refinements:

Deep Autoencoders

Autoencoders can be used to successfully complete the

task of unsupervised learning as a reduced representation

of the latent properties that describe the portion of

information. The autoencoder can be defined as a neural

network that has been trained to replicate its input as its

output. The two parts are shown in Figure 4.

• The encoder Θ, a neural network whose goal is to map

an input �⃗� to a latent compact representation Θ(�⃗�) =

𝑧 𝜖 ℝ𝐾.This mapping results in the process for

embedding the original input into a latent vector whose

size is K.

• A decoder Φ, is another neural network works with a,

given K-dimensional vector 𝑧, aims at producing an

output Φ(𝑧) = �⃗� that is close to the original input.

Fig 4 General Autoencoder structure

The features are not included in the summary above. In our

approach, the autoencoder's input and output are seen as

temporally marked events. Consequently, they might be

referred to as recurrent neural networks (RNNs). An RNN

supports sequential data as iterating over the sequence

saves (partial) RAM for each event. In our strategy, we

decided to use RNNs for implementing long-term memory

networks (LSTM).

The resultant architecture is represented in Figure 5,

designed as a recurrent autoencoder (RAE) model

connected with sequence-to-sequence. In essence, the goal

of RAE is to: (i) interpret every event in the sequence; (ii)

extract the compact representation of each and every event

in the sequence; and (iii) use the representation to create a

current sequence that is a replica of (or facsimile of) the

input provided. This may be defined mathematically as

follows: We compute an output given an input sequence.

𝑂 = [�⃗�1, … , �⃗�𝑛] where:

ℎ⃗⃗𝑡
(𝑒)

= 𝐿𝑆𝑇𝑀𝜃(�⃗�𝑡 , ℎ⃗⃗𝑡−1
(𝑒)

)

𝑧 = 𝑚𝑙𝑝𝒱(ℎ⃗⃗𝑛
(𝑒)

) (5)

ℎ⃗⃗𝑡
(𝑑)

= 𝐿𝑆𝑇𝑀𝜙(𝑧, ℎ⃗⃗𝑡−1
(𝑑)

)

�⃗�𝑡 = 𝑚𝑙𝑝𝜑(ℎ⃗⃗𝑡
(𝑑)

)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 581–595 | 589

Where, given the t-th event, and representing the encoder,

with internal state; symmetrically, representing the

decoder, with inner state. Additionally, and stand for

multilayer networks that are parameterized by and,

respectively. Since the main goal of RAE is to rebuild the

input from a small representation, a reconstruction loss can

be taken into account when training the model:

ℓ(𝐼, 𝑂) =
1

𝑛
∑‖�⃗�𝑡 − �⃗�𝑡‖2

𝑛

𝑡=1

 (6)

Fig 5 Recurrent Autoencoder (RAE)

Ensemble Classification

Instead of depending just on one algorithm, ensemble

approaches use a variety of different algorithms to arrive at

a judgement. As was already said, majority voting, which

is one way to combine the predictive power of these

algorithms, is a democratic way to come to a decision. The

majority voting method is shown in equation (7), where the

votes of each classifier Cj are used to predict the

classification.

�̂� = 𝑚𝑜𝑑𝑒{𝐶1(𝑥), 𝐶2(𝑥), … . , 𝐶𝑗(𝑥)} (7)

Here, A is a distinct set of class labels, and A is the

characteristic function. This discusses soft voting, another

voting strategy. Soft voting, which is modeled by equation

(8), takes into account the decision probabilities p of each

classification method when making a final choice.

�̂� = 𝑎𝑟𝑔 max
𝑖

∑ 𝑤𝑗ℵ𝐴(𝐶𝑗(𝑥) = 𝑖)

𝑚

𝑗=1

 (8)

Refinements

Your exposition on the recurrent autoencoder (RAE)

utilizing LSTM layers is technical and provides good

insight into the model's functionality. However, there are

some areas where you might want to refine or enhance the

6. Evaluation Metrics

Several evaluation metrics are used in this work are

explained in this subsection. Because there is a large

difference between the classes in this current study,

traditional ways of giving classes don't work. But when

many important evaluation metrics, like confusion matrix,

recall, precision, and accuracy, are used together, the

evaluation is fair. When dataset classes differ in size, it is

sustainable to use micro average metrics, and it is crucial

to see the system performance across the classes of data, it

is crucial to use macro average metrics. For this study,

macro-average measures are usually used to figure out how

well the system works overall for both malicious and non-

malicious classes.

TP+TN TP/TP+FP+FN+TN may be used to calculate

accuracy, a performance metric that computes the ratio

between the predicted observations and the total

observations. It provides an extensive indication of how

effectively a model has been trained, but it performs poorly

and might be misleading for datasets that are unbalanced.

On the other hand, balanced accuracy is a more realistic

method of determining a model's correctness when the data

is unbalanced. Equation (9) can be used to show that the

balanced accuracy values are equal to the average recall

score R for each class.

𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝑎𝑐𝑐𝑢𝑎𝑟𝑐𝑦

=
1

𝐶
∑ 𝑅𝑗

𝐶

𝑗=1

 (9)

Precision may be calculated using TP/TP+FP as the ratio

of accurately predicted positive observations to all

expected positive observations. Equation (10) shows the

macro precision score for C classes, where TPj and FPj

stand for true positive values and false positive values,

respectively, for each class label j.

𝑚𝑎𝑐𝑟𝑜 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

=
1

𝐶
∑

𝑇𝑃𝑗

𝑇𝑃𝑗 + 𝐹𝑃𝑗

 (10)

𝐶

𝑗=1

The recall score value is defined as the ratio of correctly

predicted positive observations to all the observations in

the actual positive class values and can be computed by

TP/TP + FN.

The macro recall score value for C classes is defined as

Equation (11) in which TPj represents true positive values

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 581–595 | 590

and FNj represents false negative values for each class

label j.

𝑚𝑎𝑐𝑟𝑜 𝑟𝑒𝑐𝑎𝑙𝑙 =
1

𝐶
∑

𝑇𝑃𝑗

𝑇𝑃𝑗 + 𝐹𝑁𝑗

𝐶

𝑗=1

 (11)

A weighted average value of precision and recall is defined

as an F-Score. It can also be defined as a harmonic mean of

precision and recall values, which can be calculated by the

equation 2 ×
precision× recall

precision+ recal
. As equation (12) depicts, the

macro-f1 score, which is the harmonic mean between

precision value Pj and recall value Rj.

𝑚𝑎𝑐𝑟𝑜 𝐹1 =
1

𝐶
∑

2 × 𝑃𝑗 × 𝑅𝑗

𝑃𝑗 + 𝑅𝑗

𝐶

𝑗=1

 (12)

7. Results and Discussions

This covers the evaluation results and the methodology

used to achieve them for all algorithms. The evaluation

was conducted using several evaluation indicators. The

huge volume of data makes certain algorithms extremely

time-intensive. However, to address the issue, we fitted 20

alternative models with precisely calibrated hyper-

parameters using a randomly selected subsample of 1/10th

of the training data. According to tests, parameters like

training exactly 20 models and subsampling 1/10th of the

data were determined, and the values were set when the

model's performance remained stable regardless of the

sample size or number of models used.

Deep Autoencoders: Deep neural networks can process a

lot of input, but model calculation can take a very long

time. The deep autoencoder network receives preprocessed

data that has been divided into training and test sets. Using

the Synthetic Minority Over-sampling Technique, 0.8

percent of the malicious data points are added to the

training set. This is done to find a pattern of malicious data

points that are hidden in the unbalanced datasets

(SMOTE).

The autoencoder is trained with 256 batches and 100

epochs. The loss function for this use case is the mean

squared logarithmic error (MSLE), which only looks at the

proportional difference between the true and predicted

values. Tanh and sigmoid functions are employed as the

activation functions in the optimization algorithm Adam.

The evaluation metrics produced by the deep autoencoder

model are shown in Table 1. To determine these measures,

training and test data were compared with the calculated

model.

Table 1 Evaluation results of training data and test data on a deep autoencoder network.

Evaluation metric Training Data Linguistic variable

Balanced Accuracy 0.733119 0.803667

Macro precision 0.716962 0.500029

Macro Recall 0.733119 0.803667

Macro F1 0.724655 0.488155

ROC AUC 0.870147 0.907563

Time 25075.109 177.6881

Table 1 shows that the model had an accuracy rate of 80%

when trained on test data. Figure 6 displays the area under

the curve function known as the receiver operating

characteristic curve (ROC), which for the test dataset is

90%. An examination of the metrics table and a visual

representation of the ROC curve give a summary of the

model's overall performance. As shown in Figure 6, the

receiver operating characteristic curve (ROC) between the

training and test sets of data does not significantly differ.

However, a better model is often one with a higher AUC

score. The recall of the autoencoder model produces an

encouraging result since it quantifies the percentage of all

relevant outcomes that the algorithm correctly detected. A

higher recall measure is essential for the assessment in this

use-case of distinguishing between dangerous and non-

malicious data bits

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 581–595 | 591

Fig 6 Training and validation of the autoencoder model's area under the curve (AUC) of the receiver operating

characteristic curve (ROC)

The trade-off between the model's accuracy and recall at

various levels of training and test data is shown in Figure

7. How a threshold should be extracted depends on the

goal of the specified use case. The threshold value that is a

slight less than 4 appears to be suitable. Figure 7 shows the

accuracy vs. recall trade-off for the autoencoder model

during training and validation.

 Fig 7 Training and validation precision versus recall trade-off for autoencoder model

Combinatorial Classification

An ensemble classifier receives the test set used in every

experiment as input. All the models that were generated for

the specified experiments in this paper were combined to

create this ensemble classifier. There are 26 malicious data

points and non-malicious data points with a total value of

6,049,601 in the preprocessed test data. A voting method is

created using all of the pre-computed models using

techniques such as Isolation Forest, Cluster-based Local

Outlier Factor (CBLOF), and Deep Autoencoder. Each

algorithm's classification output has an equal weight, and

because this use-case just needs an ensemble approach for

prediction, it is fast.

Table 2 displays statistics generated following the

ensemble classifier's evaluation. A solid outcome is

provided by the ensemble classification approach, which is

based on a majority voting algorithm. Figure 8 shows that

the area under the curve (AUC) of the receiver operating

characteristic curve (ROC) shows that the ensemble

method works much more consistently than other methods

that have been tested.

Table 2 Evaluation metrics for ensemble classification

Test data Balanced-

Accuracy

Macro-

Precision

Macro-Recall Macro-F1 ROC AUC

0.80140 0.50002 0.80140 0.4869 0.91576

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 581–595 | 592

Fig 8 Area under the curve (AUC) of each model's receiver operating characteristic curves is grouped as a whole.

Since the ensemble classification method does not need its

own training for the above-mentioned use-case, the

evaluation was merely done for the test set. The trade-off

between precision values and recall values of the ensemble

categorization at various threshold levels is illustrated

visually in Figure 9. A good threshold value will be

automatically chosen based on an algorithm in the

available library that we use to find anomalies.

Fig 9 Trade-off between precision and recall for classifying all models as an ensemble.

It is clear from the confusion matrix in Figure 10 that the

ensemble classifier delivered reliable and commendable

results. Only 35% (9 out of 26) of the harmful data points

were misclassified as false positives, while 65% (17 out of

26) were correctly detected. Also, only 5% (308,781 out of

6,049,601) of the non-malicious data points were correctly

labeled, giving a 95% accuracy rate (5,740,820 out of

6,049,601).

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 581–595 | 593

Fig 10 Ensemble classification confusion matrix for all models

However, resilience and ideal performance are not

mutually exclusive. In terms of robustness, the ensemble

technique appears to be a preferable option since it

considers the votes of three classifiers while reaching its

decision, and these votes can have different weights that

can be changed depending on the use-case for each

algorithm. Isolation Forest, CBLOF, and Autoencoder are

in fierce competition for the best solo performance,

though.

Fig 11 Performance of four models

Figure 11 shows a histogram of the accuracy of each and

every model on the test dataset; in this specific use-case, it

is not appropriate to choose a model purely based on

accuracy. Only relying on accuracy might be deceiving. In

situations when the entire performance of the system needs

to be taken into account, macro assessment metrics are

helpful indications. Figure 11 histogram shows a

comparison of the macro recall for each method, and it also

shows a comparison of the macro-f1 scores for each

algorithm. According to these macro assessment measures'

visual representations, the ensemble technique performs

more consistently and robustly. An algorithm's robustness

describes how well it works on different but related sets of

data. Autoencoder and isolation forest, however, perform

marginally better.

0.79 0.78
0.74

0.8

0.49
0.45

0.49 0.5

0.96

0.84

0.98 0.98

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I forest CBLOF Autoencoder Ensemble

P
er

fo
rm

a
n

ce
 l
ev

el

Model

macro recall macro f1 Accuracies

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 581–595 | 594

Fi 12 Performance of four models

8. Conclusion

Due to its relevance in conjunction, blockchain technology

has drawn a great deal of interest from both academics and

industry since its inception. It's feasible that more harmful

data might have produced better outcomes. The dataset's

modest number of malicious transactional data points

means that there aren't many odd trends to look for. This

issue was attempted to be solved by artificially producing

harmful data points while being careful not to overdo it.

However, the quality of anomaly detection is impacted,

which makes the models function less well. The choice of

characteristics collected from the blockchain transaction

graph to identify abnormal activity appears to be a crucial

element, as some variables may contain a special

opportunity. But the goal of this thesis study is to find

strange patterns using unsupervised learning methods.

Adding a time-series component would make the job

harder.

To address this limitation, we experimented with the

generation of artificial malicious data points. Yet, walking

this tightrope was challenging: while enhancing the

dataset, we were also mindful not to skew it

disproportionately. This artificial augmentation,

unfortunately, affected the precision of our anomaly

detection algorithms, causing the models to perform sub-

optimally.

Another pivotal aspect emerged regarding the choice of

features extracted from the blockchain transaction graph.

Some features seemed to present unique opportunities in

detecting anomalies, underscoring the critical role of

feature selection in such studies. Notably, while the study

aimed to detect anomalies using unsupervised learning

methods, introducing a time-series component would

invariably compound the complexity. Yet, this might be a

necessary evolution for future work in this domain. In

conclusion, while blockchain offers a fertile ground for

research, this study underscores the intricate challenges of

anomaly detection within its vast expanse. Future

endeavors in this realm must consider the delicate balance

between data augmentation and model accuracy, and the

continuous quest for optimal feature selection.

References

[1] Carlozo, Lou (2017). \What is blockchain?" In:

Journal of Accountancy 224.1, p. 29.

[2] Nakamoto, Satoshi (2008). \Bitcoin: A peer-to-peer

electronic cash system". In: North-Denver-News

(2015). Cybercrime- what are the costs to victims.

url: http : / / northdenvernews.com/cybercrime-costs-

victims (visited on 11/03/2018).

[3] Saad, Muhammad & Spaulding, Jeffrey & Njilla,

Laurent & Kamhoua, Charles & Shetty, Sachin &

Nyang, Daehun & Mohaisen, David. (2020).

Exploring the Attack Surface of Blockchain: A

Comprehensive Survey. IEEE Communications

Surveys & Tutorials. PP. 1-1.

10.1109/COMST.2020.2975999.

[4] Buczak, Anna & Guven, Erhan. (2015). A Survey of

Data Mining and Machine Learning Methods for

Cyber Security Intrusion Detection. IEEE

Communications Surveys & Tutorials. 18. 1-1.

10.1109/COMST.2015.2494502.

[5] Usman, Muhammad & Ahmad Jan, Mian & He,

Xiangjian & Chen, Jinjun. (2019). A Survey on

Representation Learning Efforts in Cybersecurity

Domain. ACM Computing Surveys. 52. 1-28.

10.1145/3331174.

[6] Mahdavifar, Samaneh & Ghorbani, Ali. (2019).

Application of Deep Learning to Cybersecurity: A

Survey. Neurocomputing. 347.

10.1016/j.neucom.2019.02.056.

0.97
0.88 0.89

0.98

0.78

0.91 0.93 0.980.96
0.89

0.96 0.97

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I forest CBLOF Autoencoder Ensemble

P
er

fo
rm

a
n

ce
 l
ev

el

Model

Precision Recall F1-score

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 581–595 | 595

[7] Chen, Weili & Zheng, Zibin & Ngai, Edith & Zheng,

Peilin & Zhou, Yuren. (2019). Exploiting Blockchain

Data to Detect Smart Ponzi Schemes on Ethereum.

IEEE Access. PP. 1-1.

10.1109/ACCESS.2019.2905769.

[8] Ul Hassan, Muneeb & Rehmani, Mubashir Husain &

Chen, Jinjun. (2019). DEAL: Differentially Private

Auction for Blockchain-Based Microgrids Energy

Trading. IEEE Transactions on Services Computing.

PP. 1-1. 10.1109/TSC.2019.2947471.

[9] Zhang, Shijie & Lee, Jong-Hyouk. (2019). Double-

Spending with a Sybil Attack in the Bitcoin

Decentralized Network. IEEE Transactions on

Industrial Informatics. 15. 5715 - 5722.

10.1109/TII.2019.2921566.

[10] Farren, Derek, Thai Pham, and Marco Alban-Hidalgo

(2016). \Low Latency Anomaly Detection and

Bayesian Network Prediction of Anomaly

Likelihood". In: arXiv preprint arXiv:1611.03898.

[11] Ide, Tsuyoshi. (2018). Collaborative Anomaly

Detection on Blockchain from Noisy Sensor Data.

120-127. 10.1109/ICDMW.2018.00024.

[12] Abu Musa, Tahani & Bouras, Abdelaziz. (2021).

Anomaly Detection in Blockchain-enabled Supply

Chain: An Ontological Approach. 169-169.

10.29117/quarfe.2021.0169.

[13] Golomb, Tomer & Mirsky, Yisroel & Elovici, Yuval.

(2018). CIoTA: Collaborative Anomaly Detection via

Blockchain. 10.14722/diss.2018.23003.

[14] Guarascio, Massimo & Liguori, Angelica & Manco,

Giuseppe & Ritacco, Ettore & Scicchitano,

Francesco. (2020). Deep Autoencoder Ensembles for

Anomaly Detection on Blockchain. 10.1007/978-3-

030-59491-6_43.

[15] Ofori-Boateng, Dorcas & Segovia-Dominguez,

Ignacio & Kantarcioglu, Murat & Akcora, Cuneyt &

Gel, Yulia. (2021). Topological Anomaly Detection

in Dynamic Multilayer Blockchain Networks.

